Example #1
0
/*
 * Get info about a partition
 */
static int part_get_info_amiga(struct blk_desc *dev_desc, int part,
				    disk_partition_t *info)
{
    struct partition_block *p = find_partition(dev_desc, part-1);
    struct amiga_part_geometry *g;
    u32 disk_type;

    if (!p) return -1;

    g = (struct amiga_part_geometry *)&(p->environment);
    info->start = g->low_cyl  * g->block_per_track * g->surfaces;
    info->size  = (g->high_cyl - g->low_cyl + 1) * g->block_per_track * g->surfaces - 1;
    info->blksz = rdb.block_bytes;
    bcpl_strcpy((char *)info->name, p->drive_name);


    disk_type = g->dos_type;

    info->type[0] = (disk_type & 0xFF000000)>>24;
    info->type[1] = (disk_type & 0x00FF0000)>>16;
    info->type[2] = (disk_type & 0x0000FF00)>>8;
    info->type[3] = '\\';
    info->type[4] = (disk_type & 0x000000FF) + '0';
    info->type[5] = 0;

    return 0;
}
tdev_handle_t
HAI_initdevice(
	IN	byte * dev,
	IN	int16 sector_size)
{
	struct tdev_t *pdev = (struct tdev_t *)dev;

	pdev->sector_size = sector_size;
	if (find_partition(pdev))
		return (tdev_handle_t)NULL;
	return (tdev_handle_t)dev;
}
Example #3
0
void ccp::find_new_partition(int num_p) {
  char name[64];
  sprintf(name, "cluster-config.txt.%d", num_p);
  fprintf(stderr,"Trying to open file [%s]...\n", name); 
  
  int res = read_config_file(name);
  if (res == -1) {

    fprintf(stderr,"Failed to open [%s]\n", name); 

    float *targets = (float*)malloc(num_p * sizeof(float)); 
    for (int i = 0; i < num_p; i++) targets[i] = 1.0 / (float)num_p; 
    find_partition(num_p, targets);
    materialize_new_partition();

  } else {
    fprintf(stderr,"Success to open [%s]\n", name);
  }
}
Example #4
0
// Find a JOS kernel partition
int find_partition(off_t partition_sect, off_t extended_sect, int partoff) {
    int i, r;
    uint8_t buf[SECTORSIZE];
    off_t o;
    struct Partitiondesc *ptable;

    // read the partition sector: initially sector 0
    readsect(buf, partition_sect);

    // check for partition table magic number
    if ((uint8_t) buf[PTABLE_MAGIC_OFFSET] != PTABLE_MAGIC1
	|| (uint8_t) buf[PTABLE_MAGIC_OFFSET + 1] != PTABLE_MAGIC2)
	return 0;

    // search partition table
    ptable = (struct Partitiondesc*) (buf + PTABLE_OFFSET);
    for (i = 0; i < 4; i++)
	if (ptable[i].lba_length == 0)
	    /* ignore entry */;
	else if (ptable[i].type == PTYPE_JOS_KERN) {
	    // use this partition
	    partition_sect += (off_t) ptable[i].lba_start;
	    fprintf(stderr, "Using partition %d (start sector %ld, sector length %ld)\n", partoff + i + 1, (long) partition_sect, (long) ptable[i].lba_length);
	    o = lseek(diskfd, partition_sect * SECTORSIZE, SEEK_SET);
	    if (o != partition_sect * SECTORSIZE) {
		fprintf(stderr, "cannot seek to partition start: %s\n", strerror(errno));
		usage();
	    }
	    maxoff = (off_t) ptable[i].lba_length * SECTORSIZE;
	    return 1;
	} else if (ptable[i].type == PTYPE_DOS_EXTENDED
		   || ptable[i].type == PTYPE_W95_EXTENDED
		   || ptable[i].type == PTYPE_LINUX_EXTENDED) {
	    off_t inner_sect = extended_sect;
	    if (!inner_sect)
		inner_sect = ptable[i].lba_start;
	    if ((r = find_partition(ptable[i].lba_start + extended_sect, inner_sect, (partoff ? partoff + 1 : 4))) > 0)
		return r;
	}

    // no partition number found
    return 0;
}
Example #5
0
EquivalentFactors::partition_set_t
EquivalentFactors::get_factors_for(BiobaseTablePssmEntry * pssm) const
{
	partition_set_t result;

	const FactorLinkList & factors = pssm->get_factors();

	//for each factor
	for (FactorLinkList::const_iterator f = factors.begin();
		factors.end() != f;
		++f)
	{
		partition_ptr_t partition = find_partition(f->get()->link.entry_idx);
		if (0 != partition)
		{
			result.insert(partition);
		}
	}

	return result;
}
Example #6
0
char* query_esp_path_by_disk_path(const char* path)
{
    PedDevice* device = ped_device_get(path);
    PedDiskType *type = ped_disk_probe(device);
    if (type == 0) {
        return NULL;
    }
    if (strncmp(type->name, "loop", 5) == 0) {
        return NULL;
    }
    PedDisk* disk = ped_disk_new(device);
    if (disk == 0) {
        return NULL;
    }

    PedPartition* esp = find_partition(disk,
        (PartitionFilter)filter_partition_by_esp, NULL, NULL);
    if (esp != NULL) {
        return ped_partition_get_path(esp);
    }

    return NULL;
}
Example #7
0
int main(int argc, char **argv)
{
    BlockDriverState *bs;
    off_t dev_offset = 0;
    off_t offset = 0;
    bool readonly = false;
    bool disconnect = false;
    const char *bindto = "0.0.0.0";
    int port = NBD_DEFAULT_PORT;
    struct sockaddr_in addr;
    socklen_t addr_len = sizeof(addr);
    off_t fd_size;
    char *device = NULL;
    char *socket = NULL;
    char sockpath[128];
    const char *sopt = "hVb:o:p:rsnP:c:dvk:e:t";
    struct option lopt[] = {
        { "help", 0, NULL, 'h' },
        { "version", 0, NULL, 'V' },
        { "bind", 1, NULL, 'b' },
        { "port", 1, NULL, 'p' },
        { "socket", 1, NULL, 'k' },
        { "offset", 1, NULL, 'o' },
        { "read-only", 0, NULL, 'r' },
        { "partition", 1, NULL, 'P' },
        { "connect", 1, NULL, 'c' },
        { "disconnect", 0, NULL, 'd' },
        { "snapshot", 0, NULL, 's' },
        { "nocache", 0, NULL, 'n' },
        { "shared", 1, NULL, 'e' },
        { "persistent", 0, NULL, 't' },
        { "verbose", 0, NULL, 'v' },
        { NULL, 0, NULL, 0 }
    };
    int ch;
    int opt_ind = 0;
    int li;
    char *end;
    int flags = BDRV_O_RDWR;
    int partition = -1;
    int ret;
    int shared = 1;
    uint8_t *data;
    fd_set fds;
    int *sharing_fds;
    int fd;
    int i;
    int nb_fds = 0;
    int max_fd;
    int persistent = 0;
    uint32_t nbdflags;

    while ((ch = getopt_long(argc, argv, sopt, lopt, &opt_ind)) != -1) {
        switch (ch) {
        case 's':
            flags |= BDRV_O_SNAPSHOT;
            break;
        case 'n':
            flags |= BDRV_O_NOCACHE;
            break;
        case 'b':
            bindto = optarg;
            break;
        case 'p':
            li = strtol(optarg, &end, 0);
            if (*end) {
                errx(EXIT_FAILURE, "Invalid port `%s'", optarg);
            }
            if (li < 1 || li > 65535) {
                errx(EXIT_FAILURE, "Port out of range `%s'", optarg);
            }
            port = (uint16_t)li;
            break;
        case 'o':
                dev_offset = strtoll (optarg, &end, 0);
            if (*end) {
                errx(EXIT_FAILURE, "Invalid offset `%s'", optarg);
            }
            if (dev_offset < 0) {
                errx(EXIT_FAILURE, "Offset must be positive `%s'", optarg);
            }
            break;
        case 'r':
            readonly = true;
            flags &= ~BDRV_O_RDWR;
            break;
        case 'P':
            partition = strtol(optarg, &end, 0);
            if (*end)
                errx(EXIT_FAILURE, "Invalid partition `%s'", optarg);
            if (partition < 1 || partition > 8)
                errx(EXIT_FAILURE, "Invalid partition %d", partition);
            break;
        case 'k':
            socket = optarg;
            if (socket[0] != '/')
                errx(EXIT_FAILURE, "socket path must be absolute\n");
            break;
        case 'd':
            disconnect = true;
            break;
        case 'c':
            device = optarg;
            break;
        case 'e':
            shared = strtol(optarg, &end, 0);
            if (*end) {
                errx(EXIT_FAILURE, "Invalid shared device number '%s'", optarg);
            }
            if (shared < 1) {
                errx(EXIT_FAILURE, "Shared device number must be greater than 0\n");
            }
            break;
	case 't':
	    persistent = 1;
	    break;
        case 'v':
            verbose = 1;
            break;
        case 'V':
            version(argv[0]);
            exit(0);
            break;
        case 'h':
            usage(argv[0]);
            exit(0);
            break;
        case '?':
            errx(EXIT_FAILURE, "Try `%s --help' for more information.",
                 argv[0]);
        }
    }

    if ((argc - optind) != 1) {
        errx(EXIT_FAILURE, "Invalid number of argument.\n"
             "Try `%s --help' for more information.",
             argv[0]);
    }

    if (disconnect) {
        fd = open(argv[optind], O_RDWR);
        if (fd == -1)
            err(EXIT_FAILURE, "Cannot open %s", argv[optind]);

        nbd_disconnect(fd);

        close(fd);

        printf("%s disconnected\n", argv[optind]);

	return 0;
    }

    bdrv_init();

    bs = bdrv_new("hda");
    if (bs == NULL)
        return 1;

    if ((ret = bdrv_open(bs, argv[optind], flags, NULL)) < 0) {
        errno = -ret;
        err(EXIT_FAILURE, "Failed to bdrv_open '%s'", argv[optind]);
    }

    fd_size = bs->total_sectors * 512;

    if (partition != -1 &&
        find_partition(bs, partition, &dev_offset, &fd_size))
        err(EXIT_FAILURE, "Could not find partition %d", partition);

    if (device) {
        pid_t pid;
        int sock;

        /* want to fail before daemonizing */
        if (access(device, R_OK|W_OK) == -1) {
            err(EXIT_FAILURE, "Could not access '%s'", device);
        }

        if (!verbose) {
            /* detach client and server */
            if (daemon(0, 0) == -1) {
                err(EXIT_FAILURE, "Failed to daemonize");
            }
        }

        if (socket == NULL) {
            snprintf(sockpath, sizeof(sockpath), SOCKET_PATH,
                     basename(device));
            socket = sockpath;
        }

        pid = fork();
        if (pid < 0)
            return 1;
        if (pid != 0) {
            off_t size;
            size_t blocksize;

            ret = 0;
            bdrv_close(bs);

            do {
                sock = unix_socket_outgoing(socket);
                if (sock == -1) {
                    if (errno != ENOENT && errno != ECONNREFUSED) {
                        ret = 1;
                        goto out;
                    }
                    sleep(1);	/* wait children */
                }
            } while (sock == -1);

            fd = open(device, O_RDWR);
            if (fd == -1) {
                ret = 1;
                goto out;
            }

            ret = nbd_receive_negotiate(sock, NULL, &nbdflags,
					&size, &blocksize);
            if (ret == -1) {
                ret = 1;
                goto out;
            }

            ret = nbd_init(fd, sock, size, blocksize);
            if (ret == -1) {
                ret = 1;
                goto out;
            }

            printf("NBD device %s is now connected to file %s\n",
                    device, argv[optind]);

	    /* update partition table */

            show_parts(device);

            ret = nbd_client(fd);
            if (ret) {
                ret = 1;
            }
            close(fd);
 out:
            kill(pid, SIGTERM);
            unlink(socket);

            return ret;
        }
        /* children */
    }

    sharing_fds = qemu_malloc((shared + 1) * sizeof(int));

    if (socket) {
        sharing_fds[0] = unix_socket_incoming(socket);
    } else {
        sharing_fds[0] = tcp_socket_incoming(bindto, port);
    }

    if (sharing_fds[0] == -1)
        return 1;
    max_fd = sharing_fds[0];
    nb_fds++;

    data = qemu_blockalign(bs, NBD_BUFFER_SIZE);
    if (data == NULL)
        errx(EXIT_FAILURE, "Cannot allocate data buffer");

    do {

        FD_ZERO(&fds);
        for (i = 0; i < nb_fds; i++)
            FD_SET(sharing_fds[i], &fds);

        ret = select(max_fd + 1, &fds, NULL, NULL, NULL);
        if (ret == -1)
            break;

        if (FD_ISSET(sharing_fds[0], &fds))
            ret--;
        for (i = 1; i < nb_fds && ret; i++) {
            if (FD_ISSET(sharing_fds[i], &fds)) {
                if (nbd_trip(bs, sharing_fds[i], fd_size, dev_offset,
                    &offset, readonly, data, NBD_BUFFER_SIZE) != 0) {
                    close(sharing_fds[i]);
                    nb_fds--;
                    sharing_fds[i] = sharing_fds[nb_fds];
                    i--;
                }
                ret--;
            }
        }
        /* new connection ? */
        if (FD_ISSET(sharing_fds[0], &fds)) {
            if (nb_fds < shared + 1) {
                sharing_fds[nb_fds] = accept(sharing_fds[0],
                                             (struct sockaddr *)&addr,
                                             &addr_len);
                if (sharing_fds[nb_fds] != -1 &&
                    nbd_negotiate(sharing_fds[nb_fds], fd_size) != -1) {
                        if (sharing_fds[nb_fds] > max_fd)
                            max_fd = sharing_fds[nb_fds];
                        nb_fds++;
                }
            }
        }
    } while (persistent || nb_fds > 1);
    qemu_vfree(data);

    close(sharing_fds[0]);
    bdrv_close(bs);
    qemu_free(sharing_fds);
    if (socket)
        unlink(socket);

    return 0;
}
Example #8
0
int main(int argc, char **argv)
{
    BlockBackend *blk;
    BlockDriverState *bs;
    off_t dev_offset = 0;
    uint16_t nbdflags = 0;
    bool disconnect = false;
    const char *bindto = NULL;
    const char *port = NULL;
    char *sockpath = NULL;
    char *device = NULL;
    off_t fd_size;
    QemuOpts *sn_opts = NULL;
    const char *sn_id_or_name = NULL;
    const char *sopt = "hVb:o:p:rsnP:c:dvk:e:f:tl:x:T:D:";
    struct option lopt[] = {
        { "help", no_argument, NULL, 'h' },
        { "version", no_argument, NULL, 'V' },
        { "bind", required_argument, NULL, 'b' },
        { "port", required_argument, NULL, 'p' },
        { "socket", required_argument, NULL, 'k' },
        { "offset", required_argument, NULL, 'o' },
        { "read-only", no_argument, NULL, 'r' },
        { "partition", required_argument, NULL, 'P' },
        { "connect", required_argument, NULL, 'c' },
        { "disconnect", no_argument, NULL, 'd' },
        { "snapshot", no_argument, NULL, 's' },
        { "load-snapshot", required_argument, NULL, 'l' },
        { "nocache", no_argument, NULL, 'n' },
        { "cache", required_argument, NULL, QEMU_NBD_OPT_CACHE },
        { "aio", required_argument, NULL, QEMU_NBD_OPT_AIO },
        { "discard", required_argument, NULL, QEMU_NBD_OPT_DISCARD },
        { "detect-zeroes", required_argument, NULL,
          QEMU_NBD_OPT_DETECT_ZEROES },
        { "shared", required_argument, NULL, 'e' },
        { "format", required_argument, NULL, 'f' },
        { "persistent", no_argument, NULL, 't' },
        { "verbose", no_argument, NULL, 'v' },
        { "object", required_argument, NULL, QEMU_NBD_OPT_OBJECT },
        { "export-name", required_argument, NULL, 'x' },
        { "description", required_argument, NULL, 'D' },
        { "tls-creds", required_argument, NULL, QEMU_NBD_OPT_TLSCREDS },
        { "image-opts", no_argument, NULL, QEMU_NBD_OPT_IMAGE_OPTS },
        { "trace", required_argument, NULL, 'T' },
        { "fork", no_argument, NULL, QEMU_NBD_OPT_FORK },
        { NULL, 0, NULL, 0 }
    };
    int ch;
    int opt_ind = 0;
    char *end;
    int flags = BDRV_O_RDWR;
    int partition = -1;
    int ret = 0;
    bool seen_cache = false;
    bool seen_discard = false;
    bool seen_aio = false;
    pthread_t client_thread;
    const char *fmt = NULL;
    Error *local_err = NULL;
    BlockdevDetectZeroesOptions detect_zeroes = BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF;
    QDict *options = NULL;
    const char *export_name = NULL;
    const char *export_description = NULL;
    const char *tlscredsid = NULL;
    bool imageOpts = false;
    bool writethrough = true;
    char *trace_file = NULL;
    bool fork_process = false;
    int old_stderr = -1;
    unsigned socket_activation;

    /* The client thread uses SIGTERM to interrupt the server.  A signal
     * handler ensures that "qemu-nbd -v -c" exits with a nice status code.
     */
    struct sigaction sa_sigterm;
    memset(&sa_sigterm, 0, sizeof(sa_sigterm));
    sa_sigterm.sa_handler = termsig_handler;
    sigaction(SIGTERM, &sa_sigterm, NULL);

#ifdef CONFIG_POSIX
    signal(SIGPIPE, SIG_IGN);
#endif

    module_call_init(MODULE_INIT_TRACE);
    qcrypto_init(&error_fatal);

    module_call_init(MODULE_INIT_QOM);
    qemu_add_opts(&qemu_object_opts);
    qemu_add_opts(&qemu_trace_opts);
    qemu_init_exec_dir(argv[0]);

    while ((ch = getopt_long(argc, argv, sopt, lopt, &opt_ind)) != -1) {
        switch (ch) {
        case 's':
            flags |= BDRV_O_SNAPSHOT;
            break;
        case 'n':
            optarg = (char *) "none";
            /* fallthrough */
        case QEMU_NBD_OPT_CACHE:
            if (seen_cache) {
                error_report("-n and --cache can only be specified once");
                exit(EXIT_FAILURE);
            }
            seen_cache = true;
            if (bdrv_parse_cache_mode(optarg, &flags, &writethrough) == -1) {
                error_report("Invalid cache mode `%s'", optarg);
                exit(EXIT_FAILURE);
            }
            break;
        case QEMU_NBD_OPT_AIO:
            if (seen_aio) {
                error_report("--aio can only be specified once");
                exit(EXIT_FAILURE);
            }
            seen_aio = true;
            if (!strcmp(optarg, "native")) {
                flags |= BDRV_O_NATIVE_AIO;
            } else if (!strcmp(optarg, "threads")) {
                /* this is the default */
            } else {
               error_report("invalid aio mode `%s'", optarg);
               exit(EXIT_FAILURE);
            }
            break;
        case QEMU_NBD_OPT_DISCARD:
            if (seen_discard) {
                error_report("--discard can only be specified once");
                exit(EXIT_FAILURE);
            }
            seen_discard = true;
            if (bdrv_parse_discard_flags(optarg, &flags) == -1) {
                error_report("Invalid discard mode `%s'", optarg);
                exit(EXIT_FAILURE);
            }
            break;
        case QEMU_NBD_OPT_DETECT_ZEROES:
            detect_zeroes =
                qapi_enum_parse(BlockdevDetectZeroesOptions_lookup,
                                optarg,
                                BLOCKDEV_DETECT_ZEROES_OPTIONS__MAX,
                                BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF,
                                &local_err);
            if (local_err) {
                error_reportf_err(local_err,
                                  "Failed to parse detect_zeroes mode: ");
                exit(EXIT_FAILURE);
            }
            if (detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP &&
                !(flags & BDRV_O_UNMAP)) {
                error_report("setting detect-zeroes to unmap is not allowed "
                             "without setting discard operation to unmap");
                exit(EXIT_FAILURE);
            }
            break;
        case 'b':
            bindto = optarg;
            break;
        case 'p':
            port = optarg;
            break;
        case 'o':
                dev_offset = strtoll (optarg, &end, 0);
            if (*end) {
                error_report("Invalid offset `%s'", optarg);
                exit(EXIT_FAILURE);
            }
            if (dev_offset < 0) {
                error_report("Offset must be positive `%s'", optarg);
                exit(EXIT_FAILURE);
            }
            break;
        case 'l':
            if (strstart(optarg, SNAPSHOT_OPT_BASE, NULL)) {
                sn_opts = qemu_opts_parse_noisily(&internal_snapshot_opts,
                                                  optarg, false);
                if (!sn_opts) {
                    error_report("Failed in parsing snapshot param `%s'",
                                 optarg);
                    exit(EXIT_FAILURE);
                }
            } else {
                sn_id_or_name = optarg;
            }
            /* fall through */
        case 'r':
            nbdflags |= NBD_FLAG_READ_ONLY;
            flags &= ~BDRV_O_RDWR;
            break;
        case 'P':
            partition = strtol(optarg, &end, 0);
            if (*end) {
                error_report("Invalid partition `%s'", optarg);
                exit(EXIT_FAILURE);
            }
            if (partition < 1 || partition > 8) {
                error_report("Invalid partition %d", partition);
                exit(EXIT_FAILURE);
            }
            break;
        case 'k':
            sockpath = optarg;
            if (sockpath[0] != '/') {
                error_report("socket path must be absolute");
                exit(EXIT_FAILURE);
            }
            break;
        case 'd':
            disconnect = true;
            break;
        case 'c':
            device = optarg;
            break;
        case 'e':
            shared = strtol(optarg, &end, 0);
            if (*end) {
                error_report("Invalid shared device number '%s'", optarg);
                exit(EXIT_FAILURE);
            }
            if (shared < 1) {
                error_report("Shared device number must be greater than 0");
                exit(EXIT_FAILURE);
            }
            break;
        case 'f':
            fmt = optarg;
            break;
        case 't':
            persistent = 1;
            break;
        case 'x':
            export_name = optarg;
            break;
        case 'D':
            export_description = optarg;
            break;
        case 'v':
            verbose = 1;
            break;
        case 'V':
            version(argv[0]);
            exit(0);
            break;
        case 'h':
            usage(argv[0]);
            exit(0);
            break;
        case '?':
            error_report("Try `%s --help' for more information.", argv[0]);
            exit(EXIT_FAILURE);
        case QEMU_NBD_OPT_OBJECT: {
            QemuOpts *opts;
            opts = qemu_opts_parse_noisily(&qemu_object_opts,
                                           optarg, true);
            if (!opts) {
                exit(EXIT_FAILURE);
            }
        }   break;
        case QEMU_NBD_OPT_TLSCREDS:
            tlscredsid = optarg;
            break;
        case QEMU_NBD_OPT_IMAGE_OPTS:
            imageOpts = true;
            break;
        case 'T':
            g_free(trace_file);
            trace_file = trace_opt_parse(optarg);
            break;
        case QEMU_NBD_OPT_FORK:
            fork_process = true;
            break;
        }
    }

    if ((argc - optind) != 1) {
        error_report("Invalid number of arguments");
        error_printf("Try `%s --help' for more information.\n", argv[0]);
        exit(EXIT_FAILURE);
    }

    if (qemu_opts_foreach(&qemu_object_opts,
                          user_creatable_add_opts_foreach,
                          NULL, NULL)) {
        exit(EXIT_FAILURE);
    }

    if (!trace_init_backends()) {
        exit(1);
    }
    trace_init_file(trace_file);
    qemu_set_log(LOG_TRACE);

    socket_activation = check_socket_activation();
    if (socket_activation == 0) {
        setup_address_and_port(&bindto, &port);
    } else {
        /* Using socket activation - check user didn't use -p etc. */
        const char *err_msg = socket_activation_validate_opts(device, sockpath,
                                                              bindto, port);
        if (err_msg != NULL) {
            error_report("%s", err_msg);
            exit(EXIT_FAILURE);
        }

        /* qemu-nbd can only listen on a single socket.  */
        if (socket_activation > 1) {
            error_report("qemu-nbd does not support socket activation with %s > 1",
                         "LISTEN_FDS");
            exit(EXIT_FAILURE);
        }
    }

    if (tlscredsid) {
        if (sockpath) {
            error_report("TLS is only supported with IPv4/IPv6");
            exit(EXIT_FAILURE);
        }
        if (device) {
            error_report("TLS is not supported with a host device");
            exit(EXIT_FAILURE);
        }
        if (!export_name) {
            /* Set the default NBD protocol export name, since
             * we *must* use new style protocol for TLS */
            export_name = "";
        }
        tlscreds = nbd_get_tls_creds(tlscredsid, &local_err);
        if (local_err) {
            error_report("Failed to get TLS creds %s",
                         error_get_pretty(local_err));
            exit(EXIT_FAILURE);
        }
    }

    if (disconnect) {
        int nbdfd = open(argv[optind], O_RDWR);
        if (nbdfd < 0) {
            error_report("Cannot open %s: %s", argv[optind],
                         strerror(errno));
            exit(EXIT_FAILURE);
        }
        nbd_disconnect(nbdfd);

        close(nbdfd);

        printf("%s disconnected\n", argv[optind]);

        return 0;
    }

    if ((device && !verbose) || fork_process) {
        int stderr_fd[2];
        pid_t pid;
        int ret;

        if (qemu_pipe(stderr_fd) < 0) {
            error_report("Error setting up communication pipe: %s",
                         strerror(errno));
            exit(EXIT_FAILURE);
        }

        /* Now daemonize, but keep a communication channel open to
         * print errors and exit with the proper status code.
         */
        pid = fork();
        if (pid < 0) {
            error_report("Failed to fork: %s", strerror(errno));
            exit(EXIT_FAILURE);
        } else if (pid == 0) {
            close(stderr_fd[0]);
            ret = qemu_daemon(1, 0);

            /* Temporarily redirect stderr to the parent's pipe...  */
            old_stderr = dup(STDERR_FILENO);
            dup2(stderr_fd[1], STDERR_FILENO);
            if (ret < 0) {
                error_report("Failed to daemonize: %s", strerror(errno));
                exit(EXIT_FAILURE);
            }

            /* ... close the descriptor we inherited and go on.  */
            close(stderr_fd[1]);
        } else {
            bool errors = false;
            char *buf;

            /* In the parent.  Print error messages from the child until
             * it closes the pipe.
             */
            close(stderr_fd[1]);
            buf = g_malloc(1024);
            while ((ret = read(stderr_fd[0], buf, 1024)) > 0) {
                errors = true;
                ret = qemu_write_full(STDERR_FILENO, buf, ret);
                if (ret < 0) {
                    exit(EXIT_FAILURE);
                }
            }
            if (ret < 0) {
                error_report("Cannot read from daemon: %s",
                             strerror(errno));
                exit(EXIT_FAILURE);
            }

            /* Usually the daemon should not print any message.
             * Exit with zero status in that case.
             */
            exit(errors);
        }
    }

    if (device != NULL && sockpath == NULL) {
        sockpath = g_malloc(128);
        snprintf(sockpath, 128, SOCKET_PATH, basename(device));
    }

    if (socket_activation == 0) {
        server_ioc = qio_channel_socket_new();
        saddr = nbd_build_socket_address(sockpath, bindto, port);
        if (qio_channel_socket_listen_sync(server_ioc, saddr, &local_err) < 0) {
            object_unref(OBJECT(server_ioc));
            error_report_err(local_err);
            return 1;
        }
    } else {
        /* See comment in check_socket_activation above. */
        assert(socket_activation == 1);
        server_ioc = qio_channel_socket_new_fd(FIRST_SOCKET_ACTIVATION_FD,
                                               &local_err);
        if (server_ioc == NULL) {
            error_report("Failed to use socket activation: %s",
                         error_get_pretty(local_err));
            exit(EXIT_FAILURE);
        }
    }

    if (qemu_init_main_loop(&local_err)) {
        error_report_err(local_err);
        exit(EXIT_FAILURE);
    }
    bdrv_init();
    atexit(bdrv_close_all);

    srcpath = argv[optind];
    if (imageOpts) {
        QemuOpts *opts;
        if (fmt) {
            error_report("--image-opts and -f are mutually exclusive");
            exit(EXIT_FAILURE);
        }
        opts = qemu_opts_parse_noisily(&file_opts, srcpath, true);
        if (!opts) {
            qemu_opts_reset(&file_opts);
            exit(EXIT_FAILURE);
        }
        options = qemu_opts_to_qdict(opts, NULL);
        qemu_opts_reset(&file_opts);
        blk = blk_new_open(NULL, NULL, options, flags, &local_err);
    } else {
        if (fmt) {
            options = qdict_new();
            qdict_put_str(options, "driver", fmt);
        }
        blk = blk_new_open(srcpath, NULL, options, flags, &local_err);
    }

    if (!blk) {
        error_reportf_err(local_err, "Failed to blk_new_open '%s': ",
                          argv[optind]);
        exit(EXIT_FAILURE);
    }
    bs = blk_bs(blk);

    blk_set_enable_write_cache(blk, !writethrough);

    if (sn_opts) {
        ret = bdrv_snapshot_load_tmp(bs,
                                     qemu_opt_get(sn_opts, SNAPSHOT_OPT_ID),
                                     qemu_opt_get(sn_opts, SNAPSHOT_OPT_NAME),
                                     &local_err);
    } else if (sn_id_or_name) {
        ret = bdrv_snapshot_load_tmp_by_id_or_name(bs, sn_id_or_name,
                                                   &local_err);
    }
    if (ret < 0) {
        error_reportf_err(local_err, "Failed to load snapshot: ");
        exit(EXIT_FAILURE);
    }

    bs->detect_zeroes = detect_zeroes;
    fd_size = blk_getlength(blk);
    if (fd_size < 0) {
        error_report("Failed to determine the image length: %s",
                     strerror(-fd_size));
        exit(EXIT_FAILURE);
    }

    if (dev_offset >= fd_size) {
        error_report("Offset (%lld) has to be smaller than the image size "
                     "(%lld)",
                     (long long int)dev_offset, (long long int)fd_size);
        exit(EXIT_FAILURE);
    }
    fd_size -= dev_offset;

    if (partition != -1) {
        ret = find_partition(blk, partition, &dev_offset, &fd_size);
        if (ret < 0) {
            error_report("Could not find partition %d: %s", partition,
                         strerror(-ret));
            exit(EXIT_FAILURE);
        }
    }

    exp = nbd_export_new(bs, dev_offset, fd_size, nbdflags, nbd_export_closed,
                         writethrough, NULL, &local_err);
    if (!exp) {
        error_report_err(local_err);
        exit(EXIT_FAILURE);
    }
    if (export_name) {
        nbd_export_set_name(exp, export_name);
        nbd_export_set_description(exp, export_description);
        newproto = true;
    } else if (export_description) {
        error_report("Export description requires an export name");
        exit(EXIT_FAILURE);
    }

    if (device) {
        int ret;

        ret = pthread_create(&client_thread, NULL, nbd_client_thread, device);
        if (ret != 0) {
            error_report("Failed to create client thread: %s", strerror(ret));
            exit(EXIT_FAILURE);
        }
    } else {
        /* Shut up GCC warnings.  */
        memset(&client_thread, 0, sizeof(client_thread));
    }

    nbd_update_server_watch();

    /* now when the initialization is (almost) complete, chdir("/")
     * to free any busy filesystems */
    if (chdir("/") < 0) {
        error_report("Could not chdir to root directory: %s",
                     strerror(errno));
        exit(EXIT_FAILURE);
    }

    if (fork_process) {
        dup2(old_stderr, STDERR_FILENO);
        close(old_stderr);
    }

    state = RUNNING;
    do {
        main_loop_wait(false);
        if (state == TERMINATE) {
            state = TERMINATING;
            nbd_export_close(exp);
            nbd_export_put(exp);
            exp = NULL;
        }
    } while (state != TERMINATED);

    blk_unref(blk);
    if (sockpath) {
        unlink(sockpath);
    }

    qemu_opts_del(sn_opts);

    if (device) {
        void *ret;
        pthread_join(client_thread, &ret);
        exit(ret != NULL);
    } else {
        exit(EXIT_SUCCESS);
    }
}
Example #9
0
int main(int argc, char **argv)
{
    BlockBackend *blk;
    BlockDriverState *bs;
    off_t dev_offset = 0;
    uint32_t nbdflags = 0;
    bool disconnect = false;
    const char *bindto = "0.0.0.0";
    const char *port = NULL;
    char *sockpath = NULL;
    char *device = NULL;
    off_t fd_size;
    QemuOpts *sn_opts = NULL;
    const char *sn_id_or_name = NULL;
    const char *sopt = "hVb:o:p:rsnP:c:dvk:e:f:tl:";
    struct option lopt[] = {
        { "help", 0, NULL, 'h' },
        { "version", 0, NULL, 'V' },
        { "bind", 1, NULL, 'b' },
        { "port", 1, NULL, 'p' },
        { "socket", 1, NULL, 'k' },
        { "offset", 1, NULL, 'o' },
        { "read-only", 0, NULL, 'r' },
        { "partition", 1, NULL, 'P' },
        { "connect", 1, NULL, 'c' },
        { "disconnect", 0, NULL, 'd' },
        { "snapshot", 0, NULL, 's' },
        { "load-snapshot", 1, NULL, 'l' },
        { "nocache", 0, NULL, 'n' },
        { "cache", 1, NULL, QEMU_NBD_OPT_CACHE },
        { "aio", 1, NULL, QEMU_NBD_OPT_AIO },
        { "discard", 1, NULL, QEMU_NBD_OPT_DISCARD },
        { "detect-zeroes", 1, NULL, QEMU_NBD_OPT_DETECT_ZEROES },
        { "shared", 1, NULL, 'e' },
        { "format", 1, NULL, 'f' },
        { "persistent", 0, NULL, 't' },
        { "verbose", 0, NULL, 'v' },
        { NULL, 0, NULL, 0 }
    };
    int ch;
    int opt_ind = 0;
    char *end;
    int flags = BDRV_O_RDWR;
    int partition = -1;
    int ret = 0;
    int fd;
    bool seen_cache = false;
    bool seen_discard = false;
    bool seen_aio = false;
    pthread_t client_thread;
    const char *fmt = NULL;
    Error *local_err = NULL;
    BlockdevDetectZeroesOptions detect_zeroes = BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF;
    QDict *options = NULL;

    /* The client thread uses SIGTERM to interrupt the server.  A signal
     * handler ensures that "qemu-nbd -v -c" exits with a nice status code.
     */
    struct sigaction sa_sigterm;
    memset(&sa_sigterm, 0, sizeof(sa_sigterm));
    sa_sigterm.sa_handler = termsig_handler;
    sigaction(SIGTERM, &sa_sigterm, NULL);
    qemu_init_exec_dir(argv[0]);

    while ((ch = getopt_long(argc, argv, sopt, lopt, &opt_ind)) != -1) {
        switch (ch) {
        case 's':
            flags |= BDRV_O_SNAPSHOT;
            break;
        case 'n':
            optarg = (char *) "none";
            /* fallthrough */
        case QEMU_NBD_OPT_CACHE:
            if (seen_cache) {
                errx(EXIT_FAILURE, "-n and --cache can only be specified once");
            }
            seen_cache = true;
            if (bdrv_parse_cache_flags(optarg, &flags) == -1) {
                errx(EXIT_FAILURE, "Invalid cache mode `%s'", optarg);
            }
            break;
        case QEMU_NBD_OPT_AIO:
            if (seen_aio) {
                errx(EXIT_FAILURE, "--aio can only be specified once");
            }
            seen_aio = true;
            if (!strcmp(optarg, "native")) {
                flags |= BDRV_O_NATIVE_AIO;
            } else if (!strcmp(optarg, "threads")) {
                /* this is the default */
            } else {
               errx(EXIT_FAILURE, "invalid aio mode `%s'", optarg);
            }
            break;
        case QEMU_NBD_OPT_DISCARD:
            if (seen_discard) {
                errx(EXIT_FAILURE, "--discard can only be specified once");
            }
            seen_discard = true;
            if (bdrv_parse_discard_flags(optarg, &flags) == -1) {
                errx(EXIT_FAILURE, "Invalid discard mode `%s'", optarg);
            }
            break;
        case QEMU_NBD_OPT_DETECT_ZEROES:
            detect_zeroes =
                qapi_enum_parse(BlockdevDetectZeroesOptions_lookup,
                                optarg,
                                BLOCKDEV_DETECT_ZEROES_OPTIONS_MAX,
                                BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF,
                                &local_err);
            if (local_err) {
                errx(EXIT_FAILURE, "Failed to parse detect_zeroes mode: %s", 
                     error_get_pretty(local_err));
            }
            if (detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP &&
                !(flags & BDRV_O_UNMAP)) {
                errx(EXIT_FAILURE, "setting detect-zeroes to unmap is not allowed "
                                   "without setting discard operation to unmap"); 
            }
            break;
        case 'b':
            bindto = optarg;
            break;
        case 'p':
            port = optarg;
            break;
        case 'o':
                dev_offset = strtoll (optarg, &end, 0);
            if (*end) {
                errx(EXIT_FAILURE, "Invalid offset `%s'", optarg);
            }
            if (dev_offset < 0) {
                errx(EXIT_FAILURE, "Offset must be positive `%s'", optarg);
            }
            break;
        case 'l':
            if (strstart(optarg, SNAPSHOT_OPT_BASE, NULL)) {
                sn_opts = qemu_opts_parse_noisily(&internal_snapshot_opts,
                                                  optarg, false);
                if (!sn_opts) {
                    errx(EXIT_FAILURE, "Failed in parsing snapshot param `%s'",
                         optarg);
                }
            } else {
                sn_id_or_name = optarg;
            }
            /* fall through */
        case 'r':
            nbdflags |= NBD_FLAG_READ_ONLY;
            flags &= ~BDRV_O_RDWR;
            break;
        case 'P':
            partition = strtol(optarg, &end, 0);
            if (*end) {
                errx(EXIT_FAILURE, "Invalid partition `%s'", optarg);
            }
            if (partition < 1 || partition > 8) {
                errx(EXIT_FAILURE, "Invalid partition %d", partition);
            }
            break;
        case 'k':
            sockpath = optarg;
            if (sockpath[0] != '/') {
                errx(EXIT_FAILURE, "socket path must be absolute\n");
            }
            break;
        case 'd':
            disconnect = true;
            break;
        case 'c':
            device = optarg;
            break;
        case 'e':
            shared = strtol(optarg, &end, 0);
            if (*end) {
                errx(EXIT_FAILURE, "Invalid shared device number '%s'", optarg);
            }
            if (shared < 1) {
                errx(EXIT_FAILURE, "Shared device number must be greater than 0\n");
            }
            break;
        case 'f':
            fmt = optarg;
            break;
        case 't':
            persistent = 1;
            break;
        case 'v':
            verbose = 1;
            break;
        case 'V':
            version(argv[0]);
            exit(0);
            break;
        case 'h':
            usage(argv[0]);
            exit(0);
            break;
        case '?':
            errx(EXIT_FAILURE, "Try `%s --help' for more information.",
                 argv[0]);
        }
    }

    if ((argc - optind) != 1) {
        errx(EXIT_FAILURE, "Invalid number of argument.\n"
             "Try `%s --help' for more information.",
             argv[0]);
    }

    if (disconnect) {
        fd = open(argv[optind], O_RDWR);
        if (fd < 0) {
            err(EXIT_FAILURE, "Cannot open %s", argv[optind]);
        }
        nbd_disconnect(fd);

        close(fd);

        printf("%s disconnected\n", argv[optind]);

        return 0;
    }

    if (device && !verbose) {
        int stderr_fd[2];
        pid_t pid;
        int ret;

        if (qemu_pipe(stderr_fd) < 0) {
            err(EXIT_FAILURE, "Error setting up communication pipe");
        }

        /* Now daemonize, but keep a communication channel open to
         * print errors and exit with the proper status code.
         */
        pid = fork();
        if (pid < 0) {
            err(EXIT_FAILURE, "Failed to fork");
        } else if (pid == 0) {
            close(stderr_fd[0]);
            ret = qemu_daemon(1, 0);

            /* Temporarily redirect stderr to the parent's pipe...  */
            dup2(stderr_fd[1], STDERR_FILENO);
            if (ret < 0) {
                err(EXIT_FAILURE, "Failed to daemonize");
            }

            /* ... close the descriptor we inherited and go on.  */
            close(stderr_fd[1]);
        } else {
            bool errors = false;
            char *buf;

            /* In the parent.  Print error messages from the child until
             * it closes the pipe.
             */
            close(stderr_fd[1]);
            buf = g_malloc(1024);
            while ((ret = read(stderr_fd[0], buf, 1024)) > 0) {
                errors = true;
                ret = qemu_write_full(STDERR_FILENO, buf, ret);
                if (ret < 0) {
                    exit(EXIT_FAILURE);
                }
            }
            if (ret < 0) {
                err(EXIT_FAILURE, "Cannot read from daemon");
            }

            /* Usually the daemon should not print any message.
             * Exit with zero status in that case.
             */
            exit(errors);
        }
    }

    if (device != NULL && sockpath == NULL) {
        sockpath = g_malloc(128);
        snprintf(sockpath, 128, SOCKET_PATH, basename(device));
    }

    saddr = nbd_build_socket_address(sockpath, bindto, port);

    if (qemu_init_main_loop(&local_err)) {
        error_report_err(local_err);
        exit(EXIT_FAILURE);
    }
    bdrv_init();
    atexit(bdrv_close_all);

    if (fmt) {
        options = qdict_new();
        qdict_put(options, "driver", qstring_from_str(fmt));
    }

    srcpath = argv[optind];
    blk = blk_new_open("hda", srcpath, NULL, options, flags, &local_err);
    if (!blk) {
        errx(EXIT_FAILURE, "Failed to blk_new_open '%s': %s", argv[optind],
             error_get_pretty(local_err));
    }
    bs = blk_bs(blk);

    if (sn_opts) {
        ret = bdrv_snapshot_load_tmp(bs,
                                     qemu_opt_get(sn_opts, SNAPSHOT_OPT_ID),
                                     qemu_opt_get(sn_opts, SNAPSHOT_OPT_NAME),
                                     &local_err);
    } else if (sn_id_or_name) {
        ret = bdrv_snapshot_load_tmp_by_id_or_name(bs, sn_id_or_name,
                                                   &local_err);
    }
    if (ret < 0) {
        errno = -ret;
        err(EXIT_FAILURE,
            "Failed to load snapshot: %s",
            error_get_pretty(local_err));
    }

    bs->detect_zeroes = detect_zeroes;
    fd_size = blk_getlength(blk);
    if (fd_size < 0) {
        errx(EXIT_FAILURE, "Failed to determine the image length: %s",
             strerror(-fd_size));
    }

    if (partition != -1) {
        ret = find_partition(blk, partition, &dev_offset, &fd_size);
        if (ret < 0) {
            errno = -ret;
            err(EXIT_FAILURE, "Could not find partition %d", partition);
        }
    }

    exp = nbd_export_new(blk, dev_offset, fd_size, nbdflags, nbd_export_closed,
                         &local_err);
    if (!exp) {
        errx(EXIT_FAILURE, "%s", error_get_pretty(local_err));
    }

    fd = socket_listen(saddr, &local_err);
    if (fd < 0) {
        error_report_err(local_err);
        return 1;
    }

    if (device) {
        int ret;

        ret = pthread_create(&client_thread, NULL, nbd_client_thread, device);
        if (ret != 0) {
            errx(EXIT_FAILURE, "Failed to create client thread: %s",
                 strerror(ret));
        }
    } else {
        /* Shut up GCC warnings.  */
        memset(&client_thread, 0, sizeof(client_thread));
    }

    server_fd = fd;
    nbd_update_server_fd_handler(fd);

    /* now when the initialization is (almost) complete, chdir("/")
     * to free any busy filesystems */
    if (chdir("/") < 0) {
        err(EXIT_FAILURE, "Could not chdir to root directory");
    }

    state = RUNNING;
    do {
        main_loop_wait(false);
        if (state == TERMINATE) {
            state = TERMINATING;
            nbd_export_close(exp);
            nbd_export_put(exp);
            exp = NULL;
        }
    } while (state != TERMINATED);

    blk_unref(blk);
    if (sockpath) {
        unlink(sockpath);
    }

    qemu_opts_del(sn_opts);

    if (device) {
        void *ret;
        pthread_join(client_thread, &ret);
        exit(ret != NULL);
    } else {
        exit(EXIT_SUCCESS);
    }
}
Example #10
0
int initNbd(char* filename)
{
    BlockDriverState *bs;
    off_t dev_offset = 0;
    uint32_t nbdflags = 0;
    bool disconnect = false;
    const char *bindto = "0.0.0.0";
    char *device = NULL;
    int port = NBD_DEFAULT_PORT;
    off_t fd_size;
    const char *sopt = "hVb:o:p:rsnP:c:dvk:e:t";
    struct option lopt[] = {
        { "help", 0, NULL, 'h' },
        { "version", 0, NULL, 'V' },
        { "bind", 1, NULL, 'b' },
        { "port", 1, NULL, 'p' },
        { "socket", 1, NULL, 'k' },
        { "offset", 1, NULL, 'o' },
        { "read-only", 0, NULL, 'r' },
        { "partition", 1, NULL, 'P' },
        { "connect", 1, NULL, 'c' },
        { "disconnect", 0, NULL, 'd' },
        { "snapshot", 0, NULL, 's' },
        { "nocache", 0, NULL, 'n' },
        { "shared", 1, NULL, 'e' },
        { "persistent", 0, NULL, 't' },
        { "verbose", 0, NULL, 'v' },
        { NULL, 0, NULL, 0 }
    };
    int ch;
    int opt_ind = 0;
    int li;
    char *end;
    int flags = BDRV_O_RDWR;
    int partition = -1;
    int ret;
    int fd;
    int persistent = 0;
    pthread_t client_thread;

    /* The client thread uses SIGTERM to interrupt the server.  A signal
     * handler ensures that "qemu-nbd -v -c" exits with a nice status code.
     */
    struct sigaction sa_sigterm;
    memset(&sa_sigterm, 0, sizeof(sa_sigterm));
    sa_sigterm.sa_handler = termsig_handler;
    sigaction(SIGTERM, &sa_sigterm, NULL);

//    while ((ch = getopt_long(argc, argv, sopt, lopt, &opt_ind)) != -1) {
//        switch (ch) {
//        case 's':
//            flags |= BDRV_O_SNAPSHOT;
//            break;
//        case 'n':
//            flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
//            break;
//        case 'b':
//            bindto = optarg;
//            break;
//        case 'p':
//            li = strtol(optarg, &end, 0);
//            if (*end) {
//                errx(EXIT_FAILURE, "Invalid port `%s'", optarg);
//            }
//            if (li < 1 || li > 65535) {
//                errx(EXIT_FAILURE, "Port out of range `%s'", optarg);
//            }
//            port = (uint16_t)li;
//            break;
//        case 'o':
//                dev_offset = strtoll (optarg, &end, 0);
//            if (*end) {
//                errx(EXIT_FAILURE, "Invalid offset `%s'", optarg);
//            }
//            if (dev_offset < 0) {
//                errx(EXIT_FAILURE, "Offset must be positive `%s'", optarg);
//            }
//            break;
//        case 'r':
//            nbdflags |= NBD_FLAG_READ_ONLY;
//            flags &= ~BDRV_O_RDWR;
//            break;
//        case 'P':
//            partition = strtol(optarg, &end, 0);
//            if (*end)
//                errx(EXIT_FAILURE, "Invalid partition `%s'", optarg);
//            if (partition < 1 || partition > 8)
//                errx(EXIT_FAILURE, "Invalid partition %d", partition);
//            break;
//        case 'k':
//            sockpath = optarg;
//            if (sockpath[0] != '/')
//                errx(EXIT_FAILURE, "socket path must be absolute\n");
//            break;
//        case 'd':
//            disconnect = true;
//            break;
//        case 'c':
//            device = optarg;
//            break;
//        case 'e':
//            shared = strtol(optarg, &end, 0);
//            if (*end) {
//                errx(EXIT_FAILURE, "Invalid shared device number '%s'", optarg);
//            }
//            if (shared < 1) {
//                errx(EXIT_FAILURE, "Shared device number must be greater than 0\n");
//            }
//            break;
//	case 't':
//	    persistent = 1;
//	    break;
//        case 'v':
//            verbose = 1;
//            break;
//        case 'V':
//            version(argv[0]);
//            exit(0);
//            break;
//        case 'h':
//            usage(argv[0]);
//            exit(0);
//            break;
//        case '?':
//            errx(EXIT_FAILURE, "Try `%s --help' for more information.",
//                 argv[0]);
//        }
//    }

//    if ((argc - optind) != 1) {
//        errx(EXIT_FAILURE, "Invalid number of argument.\n"
//             "Try `%s --help' for more information.",
//             argv[0]);
//    }


    /*
       Start a daemon!
       Use client thread to start daemon and write errors;
       Use parent thread to wait for and write error messages.
    */


//    if (device && !verbose) {
//        int stderr_fd[2];
//        pid_t pid;
//        int ret;
//
//        //Setting up Pipe, close after succeeded.
//        if (qemu_pipe(stderr_fd) < 0) {
//            err(EXIT_FAILURE, "Error setting up communication pipe");
//        }
//
//        /* Now daemonize, but keep a communication channel open to
//         * print errors and exit with the proper status code.
//         */
//        //Fork returns 0 for child process and the pid of child process for the parent process
//        pid = fork();
//        if (pid == 0) {
//            close(stderr_fd[0]);
//            ret = qemu_daemon(1, 0);
//
//            /* Temporarily redirect stderr to the parent's pipe...  */
//            dup2(stderr_fd[1], STDERR_FILENO);
//            if (ret < 0) {
//                err(EXIT_FAILURE, "Failed to daemonize");
//            }
//
//            /* ... close the descriptor we inherited and go on.  */
//            close(stderr_fd[1]);
//        } else {
//            bool errors = false;
//            char *buf;
//
//            /* In the parent.  Print error messages from the child until
//             * it closes the pipe.
//             */
//            close(stderr_fd[1]);
//            buf = g_malloc(1024);
//            while ((ret = read(stderr_fd[0], buf, 1024)) > 0) {
//                errors = true;
//                ret = qemu_write_full(STDERR_FILENO, buf, ret);
//                if (ret < 0) {
//                    exit(EXIT_FAILURE);
//                }
//            }
//            if (ret < 0) {
//                err(EXIT_FAILURE, "Cannot read from daemon");
//            }
//
//            /* Usually the daemon should not print any message.
//             * Exit with zero status in that case.
//             */
//            exit(errors);
//        }
//    }
//
//    //Set sock path... But what is sock path???
//    if (device != NULL && sockpath == NULL) {
//        sockpath = g_malloc(128);
//        snprintf(sockpath, 128, SOCKET_PATH, basename(device));
//    }

    //Init a block device!
    bdrv_init();
    atexit(bdrv_close_all);

    //Malloc a new block device state
    bs = bdrv_new("hda");
    srcpath = filename;
    if ((ret = bdrv_open(bs, srcpath, flags, NULL)) < 0) {
        errno = -ret;
        err(EXIT_FAILURE, "Failed to bdrv_open '%s'", srcpath);
    }

    fd_size = bdrv_getlength(bs);

    if (partition != -1) {
        ret = find_partition(bs, partition, &dev_offset, &fd_size);
        if (ret < 0) {
            errno = -ret;
            err(EXIT_FAILURE, "Could not find partition %d", partition);
        }
    }

    exp = nbd_export_new(bs, dev_offset, fd_size, nbdflags);


    if (sockpath) {
        fd = unix_socket_incoming(sockpath);
        fprintf(stderr, "NBD device running on sock path :%s\n", sockpath);
    } else {
        fd = tcp_socket_incoming(bindto, port);
        fprintf(stderr, "NBD device running on port :%i\n", port);
    }

    if (fd < 0) {
        return 1;
    }

    if (device) {
        int ret;

        ret = pthread_create(&client_thread, NULL, nbd_client_thread, device);
        if (ret != 0) {
            errx(EXIT_FAILURE, "Failed to create client thread: %s",
                 strerror(ret));
        }
    } else {
        /* Shut up GCC warnings.  */
        memset(&client_thread, 0, sizeof(client_thread));
    }

    qemu_init_main_loop();
    qemu_set_fd_handler2(fd, nbd_can_accept, nbd_accept, NULL,
                         (void *)(uintptr_t)fd);

    /* now when the initialization is (almost) complete, chdir("/")
     * to free any busy filesystems */
    if (chdir("/") < 0) {
        err(EXIT_FAILURE, "Could not chdir to root directory");
    }


    do {
        main_loop_wait(false);
    } while (!sigterm_reported && (persistent || !nbd_started || nb_fds > 0));

    nbd_export_close(exp);
    if (sockpath) {
        unlink(sockpath);
    }


    if (device) {
        void *ret;
        pthread_join(client_thread, &ret);
        exit(ret != NULL);
    } else {
        exit(EXIT_SUCCESS);
    }
}
Example #11
0
int main(int argc, char *argv[]) {
    char buf[4096];
    char zerobuf[512];
    FILE *f;
    size_t n;
    size_t nsectors;
    int i;
    int bootsector_special = 1;

#if defined(_MSDOS) || defined(_WIN32)
    // As our output file is binary, we must set its file mode to binary.
    diskfd = _fileno(stdout);
    _setmode(diskfd, _O_BINARY);
#else
    diskfd = fileno(stdout);
#endif

    // Check for a partition
    if (argc >= 2 && strcmp(argv[1], "-p") == 0) {
	if (argc < 3)
	    usage();
	if ((diskfd = open(argv[2], O_RDWR)) < 0) {
	    fprintf(stderr, "%s: %s\n", argv[2], strerror(errno));
	    usage();
	}
	if (find_partition(0, 0, 0) <= 0) {
	    fprintf(stderr, "%s: no JOS partition (type 0x27) found!\n", argv[2]);
	    usage();
	}
	argc -= 2;
	argv += 2;
	bootsector_special = 0;
    }

    // Check for multiboot option
    if (argc >= 2 && strcmp(argv[1], "-m") == 0) {
	if (argc < 3)
	    usage();
	do_multiboot(argv[2]);
    }

    // Read files
    if (argc < 2)
	usage();

    // Read boot sector
    if (bootsector_special) {
	f = fopencheck(argv[1]);
	n = fread(buf, 1, 4096, f);
	if (n > 510) {
	    fprintf(stderr, "%s: boot block too large: %s%u bytes (max 510)\n", argv[1], (n == 4096 ? ">= " : ""), (unsigned) n);
	    usage();
	}
	fclose(f);

	// Append signature and write modified boot sector
	memset(buf + n, 0, 510 - n);
	buf[510] = 0x55;
	buf[511] = 0xAA;
	diskwrite(buf, 512);
	nsectors = 1;

	argc--;
	argv++;
    } else
	nsectors = 0;

    // Read any succeeding files, then write them out
    memset(zerobuf, 0, 512);
    for (i = 1; i < argc; i++) {
	size_t pos;
	char *str;
	unsigned long skipto_sector;

	// An argument like "@X" means "skip to sector X".
	if (argv[i][0] == '@' && isdigit(argv[i][1])
	    && ((skipto_sector = strtoul(argv[i] + 1, &str, 0)), *str == 0)) {
	    if (nsectors > skipto_sector) {
		fprintf(stderr, "mkbootdisk: can't skip to sector %u, already at sector %u\n", (unsigned) skipto_sector, (unsigned) nsectors);
		usage();
	    }
	    while (nsectors < skipto_sector) {
		diskwrite(zerobuf, 512);
		nsectors++;
	    }
	    continue;
	}

	// Otherwise, read the file.
	f = fopencheck(argv[i]);
	pos = 0;
	while ((n = fread(buf, 1, 4096, f)) > 0) {
	    diskwrite(buf, n);
	    pos += n;
	}
	if (pos % 512 != 0) {
	    diskwrite(zerobuf, 512 - (pos % 512));
	    pos += 512 - (pos % 512);
	}
	nsectors += pos / 512;
	fclose(f);
    }

    // Fill out to 1024 sectors with 0 blocks
    while (nsectors < 1024) {
	diskwrite(zerobuf, 512);
	nsectors++;
    }

    return 0;
}
Example #12
0
static void
ask(uval deflist, uval ofd)
{
	int i;
	char inbuf[17];
	uval sz;
	uval chunks = 1;
	uval lpalgn = LOG_CHUNKSIZE;

	for (i = 0; i < 4; i++) {
		uval def;
		def = deflist & (0xffUL << (8 * i));
		def >>= 8 * i;
		if (def == 0 || def >= image_cnt) {
			continue;
		}

		if (image_names[def - 1] != NULL) {
			uval mem = get_pages_aligned(&logical_pa,
						     CHUNK_SIZE,
						     LOG_CHUNKSIZE);
			assert(mem != PAGE_ALLOC_ERROR,
			       "no memory for partition\n");

			launch_image(mem, CHUNK_SIZE,
				     image_names[def - 1], ofd);

			yield(1);
		}
	}

	for (;;) {
		const char *iostr;
		uval iolpid = iohost_lpid;
		i = 0;
		hputs("Choose one of the following images\n");
		while (image_names[i] != NULL) {
			hprintf("  %02d: %s\n", i + 1, image_names[i]);
			++i;
		}

		switch (iohost_lpid) {
		case 0:
			iostr = "Next";
			break;
		case 1:
			iostr = "Unavailable";
			break;
		case IOHOST_NONE:
			iostr = "None";
			iolpid = 0;
			break;
		default:
			i = find_partition(iohost_lpid);
			iostr = partitions[i].name;
			break;
		}

		hprintf("  i: IOHost Selection: 0x%lx: %s\n", iolpid, iostr);
#ifdef USE_OPENFIRMWARE
		hputs("  o: Dump OF master device tree (if available)\n");
#endif
		if (rags_state != NULL) {
			hputs("  R: Resource Allocation Management: ");
			if (rags_state()) {
				hputs("ON\n");
			} else {
				hputs("OFF\n");
			}
		}

		hputs("  d: destroy a partition\n");
		hputs("  b: trigger breakpoint\n");
		hputs("  B: trigger HV Core breakpoint\n");
		hputs("  H: set HV debug verbosity level\n");
		hprintf("  A: set default partition boot arguments\n\t%s\n",
			default_bootargs);
		hputs("  s: schedule partitions\n");
		hputs("  h: halt machine\n");
		hputs("  y: yield forever\n");
		hprintf("  M: partition size (%ld x CHUNK_SIZE) (1..9)\n",
			chunks);
		hputs("Choice [1]: ");

		sz = get_input(inbuf);
		inbuf[16] = '\0';

		if (sz == 0) {
			continue;
		}
		hprintf("Got command: %s %ld\n",inbuf,sz);
		uval val;
		switch (inbuf[0]) {
		case 'y':
			hcall_yield(NULL, 0);
			break;
		case 'b':
			breakpoint();
			break;
		case 'H':
			ask_debug_flags();
			break;
		case 'A':
			ask_boot_args();
			break;
		case 'B':
			hcall_debug(NULL, H_BREAKPOINT, 0, 0, 0, 0);
			break;
		case 'h':
			controller_halt();
			break;
		case 'd':
			ask_destroy_partition();
			break;
		case 's':
			ask_schedule_partition();
			break;
		case 'M':{
			uval x = 1;
			while (inbuf[x]) {
				if (inbuf[x]>='1' && inbuf[x]<='9') {
					chunks = inbuf[x] - '0';
					break;
				}
				++x;
			}
			break;
		}
		case 'i':
			switch (iohost_lpid) {
			case IOHOST_NONE:
				iohost_lpid = 0;
				break;
			case 0:
				iohost_lpid = IOHOST_NONE;
				break;
			case 1:
				break;
			default:
				i = find_partition(iohost_lpid);

				assert (i >= 0, "bad iohost_lpid?\n");
				hprintf("IO Host already selected: "
					"0x%lx: %s\n",
					partitions[i].lpid,
					partitions[i].name);
				break;
			}
			break;
#ifdef USE_OPENFIRMWARE
		case 'o':
			if (ofd > 0) {
				ofd_walk((void *)ofd, OFD_ROOT,
					 ofd_dump_props, OFD_DUMP_ALL);
			} else {
				hputs("sorry no Of tree available\n");
			}
			break;
#endif
		case 'R':
			if (rags_ask) {
				rags_ask();
			}
			break;
		case '0' ... '9':
			val = strtoul(inbuf, NULL, 0) - 1;
			if (val < image_cnt) {
				uval mem;

				mem = get_pages_aligned(&logical_pa,
							chunks * CHUNK_SIZE,
							lpalgn);


				if (mem == PAGE_ALLOC_ERROR) {
					/* So what do we do here? */
					assert(0,
					       "no memory for partition\n");
				}

				if (mem != PAGE_ALLOC_ERROR) {
					launch_image(mem, chunks * CHUNK_SIZE,
						     image_names[val], ofd);
				}
			}
			break;
		default:
			hprintf("invalid entry: %s\n", inbuf);
			break;
		}
	}
}
Example #13
0
struct super_block *ps2fs_read_super(struct super_block *sb, void *data,
				     int silent)
{
    kdev_t dev = sb->s_dev;
    int blocksize;
    struct buffer_head *bh;
    struct ps2fs_super_block *ps2sb;
    struct ps2fs_sb_info *sbinfo = PS2FS_SB(sb);
    char opt_partition[PS2_PART_IDMAX+2] = "";
    int opt_tzoffset = 0;
    int i;
    char *s;

    /* Parse options */
    if (!parse_options((char *)data, opt_partition, &opt_tzoffset))
	return NULL;

    /* Get the hardware block size */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
    blocksize = get_hardsect_size(dev);
#else
    blocksize = get_hardblocksize(dev);
    if (blocksize < BLOCK_SIZE)
	blocksize = BLOCK_SIZE;
#endif

    /* Locate the partition given by the "partition=" option, if any */
    if (*opt_partition)
	s = opt_partition;
    else
	s = NULL;
    i = find_partition(dev, blocksize, s, sbinfo->first_sector, sbinfo->size);
    if (i < 0)
	return NULL;
    sbinfo->n_subparts = i;

    /* Read the super block from address 0x400000 in the first subpart */
    bh = bread(dev, sbinfo->first_sector[0] + (0x400000/blocksize), blocksize);
    if (!bh) {
	printk("ps2fs: unable to read superblock\n");
	return NULL;
    }
    ps2sb = (struct ps2fs_super_block *)(bh->b_data);

    /* Check the magic value and save other values */
    if (le32_to_cpu(ps2sb->magic) != PS2FS_SUPER_MAGIC) {
	printk("ps2fs: bad magic number in superblock\n");
	brelse(bh);
	return NULL;
    }
    i = le32_to_cpu(ps2sb->blocksize) / blocksize;
    sbinfo->block_shift = 0;
    while (i > 1) {
	sbinfo->block_shift++;
	i >>= 1;
    }
    sbinfo->root_inode = le32_to_cpu(ps2sb->rootdir);
    if (sbinfo->root_inode < (0x400000 / le32_to_cpu(ps2sb->blocksize)) + 2) {
	ps2fs_warning(sb, "ps2fs_read_super", "root inode number (%d) too"
		      " small", sbinfo->root_inode);
    }
    sbinfo->tzoffset = opt_tzoffset*60;

    /* Free the superblock data */
    brelse(bh);

    /* Set various superblock entries */
    sb->s_blocksize = blocksize;
    sb->s_blocksize_bits = 0;
    i = blocksize;
    while (i > 1) {
	sb->s_blocksize_bits++;
	i >>= 1;
    }

    /* Retrieve root inode */
    sb->s_op = &ps2fs_sops;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
    sb->s_root = d_alloc_root(iget(sb, sbinfo->root_inode));
#else
    sb->s_root = d_alloc_root(iget(sb, sbinfo->root_inode), NULL);
#endif
    if (!sb->s_root
     || !S_ISDIR(sb->s_root->d_inode->i_mode)
     || !sb->s_root->d_inode->i_blocks
     || !sb->s_root->d_inode->i_size
    ) {
	if (sb->s_root) {
	    ps2fs_error(sb, "ps2fs_read_super", "root inode corrupt!"
			" (mode=0%o blocks=%d size=%ld)",
			sb->s_root->d_inode->i_mode,
			sb->s_root->d_inode->i_blocks,
			sb->s_root->d_inode->i_size);
	    dput(sb->s_root);
	    sb->s_root = NULL;
	} else {
	    ps2fs_error(sb, "ps2fs_read_super", "unable to read root inode");
	}
	return NULL;
    }

    /* Successful completion */
    return sb;
}
Example #14
0
int main(int argc, char **argv)
{
    BlockDriverState *bs;
    off_t dev_offset = 0;
    off_t offset = 0;
    uint32_t nbdflags = 0;
    bool disconnect = false;
    const char *bindto = "0.0.0.0";
    int port = NBD_DEFAULT_PORT;
    struct sockaddr_in addr;
    socklen_t addr_len = sizeof(addr);
    off_t fd_size;
    const char *sopt = "hVb:o:p:rsnP:c:dvk:e:t";
    struct option lopt[] = {
        { "help", 0, NULL, 'h' },
        { "version", 0, NULL, 'V' },
        { "bind", 1, NULL, 'b' },
        { "port", 1, NULL, 'p' },
        { "socket", 1, NULL, 'k' },
        { "offset", 1, NULL, 'o' },
        { "read-only", 0, NULL, 'r' },
        { "partition", 1, NULL, 'P' },
        { "connect", 1, NULL, 'c' },
        { "disconnect", 0, NULL, 'd' },
        { "snapshot", 0, NULL, 's' },
        { "nocache", 0, NULL, 'n' },
        { "shared", 1, NULL, 'e' },
        { "persistent", 0, NULL, 't' },
        { "verbose", 0, NULL, 'v' },
        { NULL, 0, NULL, 0 }
    };
    int ch;
    int opt_ind = 0;
    int li;
    char *end;
    int flags = BDRV_O_RDWR;
    int partition = -1;
    int ret;
    int shared = 1;
    uint8_t *data;
    fd_set fds;
    int *sharing_fds;
    int fd;
    int i;
    int nb_fds = 0;
    int max_fd;
    int persistent = 0;
    pthread_t client_thread;

    /* The client thread uses SIGTERM to interrupt the server.  A signal
     * handler ensures that "qemu-nbd -v -c" exits with a nice status code.
     */
    struct sigaction sa_sigterm;
    int sigterm_fd[2];
    if (qemu_pipe(sigterm_fd) == -1) {
        err(EXIT_FAILURE, "Error setting up communication pipe");
    }

    sigterm_wfd = sigterm_fd[1];
    memset(&sa_sigterm, 0, sizeof(sa_sigterm));
    sa_sigterm.sa_handler = termsig_handler;
    sigaction(SIGTERM, &sa_sigterm, NULL);

    while ((ch = getopt_long(argc, argv, sopt, lopt, &opt_ind)) != -1) {
        switch (ch) {
        case 's':
            flags |= BDRV_O_SNAPSHOT;
            break;
        case 'n':
            flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
            break;
        case 'b':
            bindto = optarg;
            break;
        case 'p':
            li = strtol(optarg, &end, 0);
            if (*end) {
                errx(EXIT_FAILURE, "Invalid port `%s'", optarg);
            }
            if (li < 1 || li > 65535) {
                errx(EXIT_FAILURE, "Port out of range `%s'", optarg);
            }
            port = (uint16_t)li;
            break;
        case 'o':
                dev_offset = strtoll (optarg, &end, 0);
            if (*end) {
                errx(EXIT_FAILURE, "Invalid offset `%s'", optarg);
            }
            if (dev_offset < 0) {
                errx(EXIT_FAILURE, "Offset must be positive `%s'", optarg);
            }
            break;
        case 'r':
            nbdflags |= NBD_FLAG_READ_ONLY;
            flags &= ~BDRV_O_RDWR;
            break;
        case 'P':
            partition = strtol(optarg, &end, 0);
            if (*end)
                errx(EXIT_FAILURE, "Invalid partition `%s'", optarg);
            if (partition < 1 || partition > 8)
                errx(EXIT_FAILURE, "Invalid partition %d", partition);
            break;
        case 'k':
            sockpath = optarg;
            if (sockpath[0] != '/')
                errx(EXIT_FAILURE, "socket path must be absolute\n");
            break;
        case 'd':
            disconnect = true;
            break;
        case 'c':
            device = optarg;
            break;
        case 'e':
            shared = strtol(optarg, &end, 0);
            if (*end) {
                errx(EXIT_FAILURE, "Invalid shared device number '%s'", optarg);
            }
            if (shared < 1) {
                errx(EXIT_FAILURE, "Shared device number must be greater than 0\n");
            }
            break;
	case 't':
	    persistent = 1;
	    break;
        case 'v':
            verbose = 1;
            break;
        case 'V':
            version(argv[0]);
            exit(0);
            break;
        case 'h':
            usage(argv[0]);
            exit(0);
            break;
        case '?':
            errx(EXIT_FAILURE, "Try `%s --help' for more information.",
                 argv[0]);
        }
    }

    if ((argc - optind) != 1) {
        errx(EXIT_FAILURE, "Invalid number of argument.\n"
             "Try `%s --help' for more information.",
             argv[0]);
    }

    if (disconnect) {
        fd = open(argv[optind], O_RDWR);
        if (fd == -1)
            err(EXIT_FAILURE, "Cannot open %s", argv[optind]);

        nbd_disconnect(fd);

        close(fd);

        printf("%s disconnected\n", argv[optind]);

	return 0;
    }

    if (device && !verbose) {
        int stderr_fd[2];
        pid_t pid;
        int ret;

        if (qemu_pipe(stderr_fd) == -1) {
            err(EXIT_FAILURE, "Error setting up communication pipe");
        }

        /* Now daemonize, but keep a communication channel open to
         * print errors and exit with the proper status code.
         */
        pid = fork();
        if (pid == 0) {
            close(stderr_fd[0]);
            ret = qemu_daemon(0, 0);

            /* Temporarily redirect stderr to the parent's pipe...  */
            dup2(stderr_fd[1], STDERR_FILENO);
            if (ret == -1) {
                err(EXIT_FAILURE, "Failed to daemonize");
            }

            /* ... close the descriptor we inherited and go on.  */
            close(stderr_fd[1]);
        } else {
            bool errors = false;
            char *buf;

            /* In the parent.  Print error messages from the child until
             * it closes the pipe.
             */
            close(stderr_fd[1]);
            buf = g_malloc(1024);
            while ((ret = read(stderr_fd[0], buf, 1024)) > 0) {
                errors = true;
                ret = qemu_write_full(STDERR_FILENO, buf, ret);
                if (ret == -1) {
                    exit(EXIT_FAILURE);
                }
            }
            if (ret == -1) {
                err(EXIT_FAILURE, "Cannot read from daemon");
            }

            /* Usually the daemon should not print any message.
             * Exit with zero status in that case.
             */
            exit(errors);
        }
    }

    if (device) {
        /* Open before spawning new threads.  In the future, we may
         * drop privileges after opening.
         */
        fd = open(device, O_RDWR);
        if (fd == -1) {
            err(EXIT_FAILURE, "Failed to open %s", device);
        }

        if (sockpath == NULL) {
            sockpath = g_malloc(128);
            snprintf(sockpath, 128, SOCKET_PATH, basename(device));
        }
    }

    bdrv_init();
    atexit(bdrv_close_all);

    bs = bdrv_new("hda");
    srcpath = argv[optind];
    if ((ret = bdrv_open(bs, srcpath, flags, NULL)) < 0) {
        errno = -ret;
        err(EXIT_FAILURE, "Failed to bdrv_open '%s'", argv[optind]);
    }

    fd_size = bs->total_sectors * 512;

    if (partition != -1 &&
        find_partition(bs, partition, &dev_offset, &fd_size)) {
        err(EXIT_FAILURE, "Could not find partition %d", partition);
    }

    sharing_fds = g_malloc((shared + 1) * sizeof(int));

    if (sockpath) {
        sharing_fds[0] = unix_socket_incoming(sockpath);
    } else {
        sharing_fds[0] = tcp_socket_incoming(bindto, port);
    }

    if (sharing_fds[0] == -1)
        return 1;

    if (device) {
        int ret;

        ret = pthread_create(&client_thread, NULL, nbd_client_thread, &fd);
        if (ret != 0) {
            errx(EXIT_FAILURE, "Failed to create client thread: %s",
                 strerror(ret));
        }
    } else {
        /* Shut up GCC warnings.  */
        memset(&client_thread, 0, sizeof(client_thread));
    }

    max_fd = sharing_fds[0];
    nb_fds++;

    data = qemu_blockalign(bs, NBD_BUFFER_SIZE);
    if (data == NULL) {
        errx(EXIT_FAILURE, "Cannot allocate data buffer");
    }

    do {
        FD_ZERO(&fds);
        FD_SET(sigterm_fd[0], &fds);
        for (i = 0; i < nb_fds; i++)
            FD_SET(sharing_fds[i], &fds);

        do {
            ret = select(max_fd + 1, &fds, NULL, NULL, NULL);
        } while (ret == -1 && errno == EINTR);
        if (ret == -1 || FD_ISSET(sigterm_fd[0], &fds)) {
            break;
        }

        if (FD_ISSET(sharing_fds[0], &fds))
            ret--;
        for (i = 1; i < nb_fds && ret; i++) {
            if (FD_ISSET(sharing_fds[i], &fds)) {
                if (nbd_trip(bs, sharing_fds[i], fd_size, dev_offset,
                    &offset, nbdflags, data, NBD_BUFFER_SIZE) != 0) {
                    close(sharing_fds[i]);
                    nb_fds--;
                    sharing_fds[i] = sharing_fds[nb_fds];
                    i--;
                }
                ret--;
            }
        }
        /* new connection ? */
        if (FD_ISSET(sharing_fds[0], &fds)) {
            if (nb_fds < shared + 1) {
                sharing_fds[nb_fds] = accept(sharing_fds[0],
                                             (struct sockaddr *)&addr,
                                             &addr_len);
                if (sharing_fds[nb_fds] != -1 &&
                    nbd_negotiate(sharing_fds[nb_fds], fd_size, nbdflags) != -1) {
                        if (sharing_fds[nb_fds] > max_fd)
                            max_fd = sharing_fds[nb_fds];
                        nb_fds++;
                }
            }
        }
    } while (persistent || nb_fds > 1);
    qemu_vfree(data);

    close(sharing_fds[0]);
    g_free(sharing_fds);
    if (sockpath) {
        unlink(sockpath);
    }

    if (device) {
        void *ret;
        pthread_join(client_thread, &ret);
        exit(ret != NULL);
    } else {
        exit(EXIT_SUCCESS);
    }
}