/* * Get info about a partition */ static int part_get_info_amiga(struct blk_desc *dev_desc, int part, disk_partition_t *info) { struct partition_block *p = find_partition(dev_desc, part-1); struct amiga_part_geometry *g; u32 disk_type; if (!p) return -1; g = (struct amiga_part_geometry *)&(p->environment); info->start = g->low_cyl * g->block_per_track * g->surfaces; info->size = (g->high_cyl - g->low_cyl + 1) * g->block_per_track * g->surfaces - 1; info->blksz = rdb.block_bytes; bcpl_strcpy((char *)info->name, p->drive_name); disk_type = g->dos_type; info->type[0] = (disk_type & 0xFF000000)>>24; info->type[1] = (disk_type & 0x00FF0000)>>16; info->type[2] = (disk_type & 0x0000FF00)>>8; info->type[3] = '\\'; info->type[4] = (disk_type & 0x000000FF) + '0'; info->type[5] = 0; return 0; }
tdev_handle_t HAI_initdevice( IN byte * dev, IN int16 sector_size) { struct tdev_t *pdev = (struct tdev_t *)dev; pdev->sector_size = sector_size; if (find_partition(pdev)) return (tdev_handle_t)NULL; return (tdev_handle_t)dev; }
void ccp::find_new_partition(int num_p) { char name[64]; sprintf(name, "cluster-config.txt.%d", num_p); fprintf(stderr,"Trying to open file [%s]...\n", name); int res = read_config_file(name); if (res == -1) { fprintf(stderr,"Failed to open [%s]\n", name); float *targets = (float*)malloc(num_p * sizeof(float)); for (int i = 0; i < num_p; i++) targets[i] = 1.0 / (float)num_p; find_partition(num_p, targets); materialize_new_partition(); } else { fprintf(stderr,"Success to open [%s]\n", name); } }
// Find a JOS kernel partition int find_partition(off_t partition_sect, off_t extended_sect, int partoff) { int i, r; uint8_t buf[SECTORSIZE]; off_t o; struct Partitiondesc *ptable; // read the partition sector: initially sector 0 readsect(buf, partition_sect); // check for partition table magic number if ((uint8_t) buf[PTABLE_MAGIC_OFFSET] != PTABLE_MAGIC1 || (uint8_t) buf[PTABLE_MAGIC_OFFSET + 1] != PTABLE_MAGIC2) return 0; // search partition table ptable = (struct Partitiondesc*) (buf + PTABLE_OFFSET); for (i = 0; i < 4; i++) if (ptable[i].lba_length == 0) /* ignore entry */; else if (ptable[i].type == PTYPE_JOS_KERN) { // use this partition partition_sect += (off_t) ptable[i].lba_start; fprintf(stderr, "Using partition %d (start sector %ld, sector length %ld)\n", partoff + i + 1, (long) partition_sect, (long) ptable[i].lba_length); o = lseek(diskfd, partition_sect * SECTORSIZE, SEEK_SET); if (o != partition_sect * SECTORSIZE) { fprintf(stderr, "cannot seek to partition start: %s\n", strerror(errno)); usage(); } maxoff = (off_t) ptable[i].lba_length * SECTORSIZE; return 1; } else if (ptable[i].type == PTYPE_DOS_EXTENDED || ptable[i].type == PTYPE_W95_EXTENDED || ptable[i].type == PTYPE_LINUX_EXTENDED) { off_t inner_sect = extended_sect; if (!inner_sect) inner_sect = ptable[i].lba_start; if ((r = find_partition(ptable[i].lba_start + extended_sect, inner_sect, (partoff ? partoff + 1 : 4))) > 0) return r; } // no partition number found return 0; }
EquivalentFactors::partition_set_t EquivalentFactors::get_factors_for(BiobaseTablePssmEntry * pssm) const { partition_set_t result; const FactorLinkList & factors = pssm->get_factors(); //for each factor for (FactorLinkList::const_iterator f = factors.begin(); factors.end() != f; ++f) { partition_ptr_t partition = find_partition(f->get()->link.entry_idx); if (0 != partition) { result.insert(partition); } } return result; }
char* query_esp_path_by_disk_path(const char* path) { PedDevice* device = ped_device_get(path); PedDiskType *type = ped_disk_probe(device); if (type == 0) { return NULL; } if (strncmp(type->name, "loop", 5) == 0) { return NULL; } PedDisk* disk = ped_disk_new(device); if (disk == 0) { return NULL; } PedPartition* esp = find_partition(disk, (PartitionFilter)filter_partition_by_esp, NULL, NULL); if (esp != NULL) { return ped_partition_get_path(esp); } return NULL; }
int main(int argc, char **argv) { BlockDriverState *bs; off_t dev_offset = 0; off_t offset = 0; bool readonly = false; bool disconnect = false; const char *bindto = "0.0.0.0"; int port = NBD_DEFAULT_PORT; struct sockaddr_in addr; socklen_t addr_len = sizeof(addr); off_t fd_size; char *device = NULL; char *socket = NULL; char sockpath[128]; const char *sopt = "hVb:o:p:rsnP:c:dvk:e:t"; struct option lopt[] = { { "help", 0, NULL, 'h' }, { "version", 0, NULL, 'V' }, { "bind", 1, NULL, 'b' }, { "port", 1, NULL, 'p' }, { "socket", 1, NULL, 'k' }, { "offset", 1, NULL, 'o' }, { "read-only", 0, NULL, 'r' }, { "partition", 1, NULL, 'P' }, { "connect", 1, NULL, 'c' }, { "disconnect", 0, NULL, 'd' }, { "snapshot", 0, NULL, 's' }, { "nocache", 0, NULL, 'n' }, { "shared", 1, NULL, 'e' }, { "persistent", 0, NULL, 't' }, { "verbose", 0, NULL, 'v' }, { NULL, 0, NULL, 0 } }; int ch; int opt_ind = 0; int li; char *end; int flags = BDRV_O_RDWR; int partition = -1; int ret; int shared = 1; uint8_t *data; fd_set fds; int *sharing_fds; int fd; int i; int nb_fds = 0; int max_fd; int persistent = 0; uint32_t nbdflags; while ((ch = getopt_long(argc, argv, sopt, lopt, &opt_ind)) != -1) { switch (ch) { case 's': flags |= BDRV_O_SNAPSHOT; break; case 'n': flags |= BDRV_O_NOCACHE; break; case 'b': bindto = optarg; break; case 'p': li = strtol(optarg, &end, 0); if (*end) { errx(EXIT_FAILURE, "Invalid port `%s'", optarg); } if (li < 1 || li > 65535) { errx(EXIT_FAILURE, "Port out of range `%s'", optarg); } port = (uint16_t)li; break; case 'o': dev_offset = strtoll (optarg, &end, 0); if (*end) { errx(EXIT_FAILURE, "Invalid offset `%s'", optarg); } if (dev_offset < 0) { errx(EXIT_FAILURE, "Offset must be positive `%s'", optarg); } break; case 'r': readonly = true; flags &= ~BDRV_O_RDWR; break; case 'P': partition = strtol(optarg, &end, 0); if (*end) errx(EXIT_FAILURE, "Invalid partition `%s'", optarg); if (partition < 1 || partition > 8) errx(EXIT_FAILURE, "Invalid partition %d", partition); break; case 'k': socket = optarg; if (socket[0] != '/') errx(EXIT_FAILURE, "socket path must be absolute\n"); break; case 'd': disconnect = true; break; case 'c': device = optarg; break; case 'e': shared = strtol(optarg, &end, 0); if (*end) { errx(EXIT_FAILURE, "Invalid shared device number '%s'", optarg); } if (shared < 1) { errx(EXIT_FAILURE, "Shared device number must be greater than 0\n"); } break; case 't': persistent = 1; break; case 'v': verbose = 1; break; case 'V': version(argv[0]); exit(0); break; case 'h': usage(argv[0]); exit(0); break; case '?': errx(EXIT_FAILURE, "Try `%s --help' for more information.", argv[0]); } } if ((argc - optind) != 1) { errx(EXIT_FAILURE, "Invalid number of argument.\n" "Try `%s --help' for more information.", argv[0]); } if (disconnect) { fd = open(argv[optind], O_RDWR); if (fd == -1) err(EXIT_FAILURE, "Cannot open %s", argv[optind]); nbd_disconnect(fd); close(fd); printf("%s disconnected\n", argv[optind]); return 0; } bdrv_init(); bs = bdrv_new("hda"); if (bs == NULL) return 1; if ((ret = bdrv_open(bs, argv[optind], flags, NULL)) < 0) { errno = -ret; err(EXIT_FAILURE, "Failed to bdrv_open '%s'", argv[optind]); } fd_size = bs->total_sectors * 512; if (partition != -1 && find_partition(bs, partition, &dev_offset, &fd_size)) err(EXIT_FAILURE, "Could not find partition %d", partition); if (device) { pid_t pid; int sock; /* want to fail before daemonizing */ if (access(device, R_OK|W_OK) == -1) { err(EXIT_FAILURE, "Could not access '%s'", device); } if (!verbose) { /* detach client and server */ if (daemon(0, 0) == -1) { err(EXIT_FAILURE, "Failed to daemonize"); } } if (socket == NULL) { snprintf(sockpath, sizeof(sockpath), SOCKET_PATH, basename(device)); socket = sockpath; } pid = fork(); if (pid < 0) return 1; if (pid != 0) { off_t size; size_t blocksize; ret = 0; bdrv_close(bs); do { sock = unix_socket_outgoing(socket); if (sock == -1) { if (errno != ENOENT && errno != ECONNREFUSED) { ret = 1; goto out; } sleep(1); /* wait children */ } } while (sock == -1); fd = open(device, O_RDWR); if (fd == -1) { ret = 1; goto out; } ret = nbd_receive_negotiate(sock, NULL, &nbdflags, &size, &blocksize); if (ret == -1) { ret = 1; goto out; } ret = nbd_init(fd, sock, size, blocksize); if (ret == -1) { ret = 1; goto out; } printf("NBD device %s is now connected to file %s\n", device, argv[optind]); /* update partition table */ show_parts(device); ret = nbd_client(fd); if (ret) { ret = 1; } close(fd); out: kill(pid, SIGTERM); unlink(socket); return ret; } /* children */ } sharing_fds = qemu_malloc((shared + 1) * sizeof(int)); if (socket) { sharing_fds[0] = unix_socket_incoming(socket); } else { sharing_fds[0] = tcp_socket_incoming(bindto, port); } if (sharing_fds[0] == -1) return 1; max_fd = sharing_fds[0]; nb_fds++; data = qemu_blockalign(bs, NBD_BUFFER_SIZE); if (data == NULL) errx(EXIT_FAILURE, "Cannot allocate data buffer"); do { FD_ZERO(&fds); for (i = 0; i < nb_fds; i++) FD_SET(sharing_fds[i], &fds); ret = select(max_fd + 1, &fds, NULL, NULL, NULL); if (ret == -1) break; if (FD_ISSET(sharing_fds[0], &fds)) ret--; for (i = 1; i < nb_fds && ret; i++) { if (FD_ISSET(sharing_fds[i], &fds)) { if (nbd_trip(bs, sharing_fds[i], fd_size, dev_offset, &offset, readonly, data, NBD_BUFFER_SIZE) != 0) { close(sharing_fds[i]); nb_fds--; sharing_fds[i] = sharing_fds[nb_fds]; i--; } ret--; } } /* new connection ? */ if (FD_ISSET(sharing_fds[0], &fds)) { if (nb_fds < shared + 1) { sharing_fds[nb_fds] = accept(sharing_fds[0], (struct sockaddr *)&addr, &addr_len); if (sharing_fds[nb_fds] != -1 && nbd_negotiate(sharing_fds[nb_fds], fd_size) != -1) { if (sharing_fds[nb_fds] > max_fd) max_fd = sharing_fds[nb_fds]; nb_fds++; } } } } while (persistent || nb_fds > 1); qemu_vfree(data); close(sharing_fds[0]); bdrv_close(bs); qemu_free(sharing_fds); if (socket) unlink(socket); return 0; }
int main(int argc, char **argv) { BlockBackend *blk; BlockDriverState *bs; off_t dev_offset = 0; uint16_t nbdflags = 0; bool disconnect = false; const char *bindto = NULL; const char *port = NULL; char *sockpath = NULL; char *device = NULL; off_t fd_size; QemuOpts *sn_opts = NULL; const char *sn_id_or_name = NULL; const char *sopt = "hVb:o:p:rsnP:c:dvk:e:f:tl:x:T:D:"; struct option lopt[] = { { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, 'V' }, { "bind", required_argument, NULL, 'b' }, { "port", required_argument, NULL, 'p' }, { "socket", required_argument, NULL, 'k' }, { "offset", required_argument, NULL, 'o' }, { "read-only", no_argument, NULL, 'r' }, { "partition", required_argument, NULL, 'P' }, { "connect", required_argument, NULL, 'c' }, { "disconnect", no_argument, NULL, 'd' }, { "snapshot", no_argument, NULL, 's' }, { "load-snapshot", required_argument, NULL, 'l' }, { "nocache", no_argument, NULL, 'n' }, { "cache", required_argument, NULL, QEMU_NBD_OPT_CACHE }, { "aio", required_argument, NULL, QEMU_NBD_OPT_AIO }, { "discard", required_argument, NULL, QEMU_NBD_OPT_DISCARD }, { "detect-zeroes", required_argument, NULL, QEMU_NBD_OPT_DETECT_ZEROES }, { "shared", required_argument, NULL, 'e' }, { "format", required_argument, NULL, 'f' }, { "persistent", no_argument, NULL, 't' }, { "verbose", no_argument, NULL, 'v' }, { "object", required_argument, NULL, QEMU_NBD_OPT_OBJECT }, { "export-name", required_argument, NULL, 'x' }, { "description", required_argument, NULL, 'D' }, { "tls-creds", required_argument, NULL, QEMU_NBD_OPT_TLSCREDS }, { "image-opts", no_argument, NULL, QEMU_NBD_OPT_IMAGE_OPTS }, { "trace", required_argument, NULL, 'T' }, { "fork", no_argument, NULL, QEMU_NBD_OPT_FORK }, { NULL, 0, NULL, 0 } }; int ch; int opt_ind = 0; char *end; int flags = BDRV_O_RDWR; int partition = -1; int ret = 0; bool seen_cache = false; bool seen_discard = false; bool seen_aio = false; pthread_t client_thread; const char *fmt = NULL; Error *local_err = NULL; BlockdevDetectZeroesOptions detect_zeroes = BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF; QDict *options = NULL; const char *export_name = NULL; const char *export_description = NULL; const char *tlscredsid = NULL; bool imageOpts = false; bool writethrough = true; char *trace_file = NULL; bool fork_process = false; int old_stderr = -1; unsigned socket_activation; /* The client thread uses SIGTERM to interrupt the server. A signal * handler ensures that "qemu-nbd -v -c" exits with a nice status code. */ struct sigaction sa_sigterm; memset(&sa_sigterm, 0, sizeof(sa_sigterm)); sa_sigterm.sa_handler = termsig_handler; sigaction(SIGTERM, &sa_sigterm, NULL); #ifdef CONFIG_POSIX signal(SIGPIPE, SIG_IGN); #endif module_call_init(MODULE_INIT_TRACE); qcrypto_init(&error_fatal); module_call_init(MODULE_INIT_QOM); qemu_add_opts(&qemu_object_opts); qemu_add_opts(&qemu_trace_opts); qemu_init_exec_dir(argv[0]); while ((ch = getopt_long(argc, argv, sopt, lopt, &opt_ind)) != -1) { switch (ch) { case 's': flags |= BDRV_O_SNAPSHOT; break; case 'n': optarg = (char *) "none"; /* fallthrough */ case QEMU_NBD_OPT_CACHE: if (seen_cache) { error_report("-n and --cache can only be specified once"); exit(EXIT_FAILURE); } seen_cache = true; if (bdrv_parse_cache_mode(optarg, &flags, &writethrough) == -1) { error_report("Invalid cache mode `%s'", optarg); exit(EXIT_FAILURE); } break; case QEMU_NBD_OPT_AIO: if (seen_aio) { error_report("--aio can only be specified once"); exit(EXIT_FAILURE); } seen_aio = true; if (!strcmp(optarg, "native")) { flags |= BDRV_O_NATIVE_AIO; } else if (!strcmp(optarg, "threads")) { /* this is the default */ } else { error_report("invalid aio mode `%s'", optarg); exit(EXIT_FAILURE); } break; case QEMU_NBD_OPT_DISCARD: if (seen_discard) { error_report("--discard can only be specified once"); exit(EXIT_FAILURE); } seen_discard = true; if (bdrv_parse_discard_flags(optarg, &flags) == -1) { error_report("Invalid discard mode `%s'", optarg); exit(EXIT_FAILURE); } break; case QEMU_NBD_OPT_DETECT_ZEROES: detect_zeroes = qapi_enum_parse(BlockdevDetectZeroesOptions_lookup, optarg, BLOCKDEV_DETECT_ZEROES_OPTIONS__MAX, BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF, &local_err); if (local_err) { error_reportf_err(local_err, "Failed to parse detect_zeroes mode: "); exit(EXIT_FAILURE); } if (detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP && !(flags & BDRV_O_UNMAP)) { error_report("setting detect-zeroes to unmap is not allowed " "without setting discard operation to unmap"); exit(EXIT_FAILURE); } break; case 'b': bindto = optarg; break; case 'p': port = optarg; break; case 'o': dev_offset = strtoll (optarg, &end, 0); if (*end) { error_report("Invalid offset `%s'", optarg); exit(EXIT_FAILURE); } if (dev_offset < 0) { error_report("Offset must be positive `%s'", optarg); exit(EXIT_FAILURE); } break; case 'l': if (strstart(optarg, SNAPSHOT_OPT_BASE, NULL)) { sn_opts = qemu_opts_parse_noisily(&internal_snapshot_opts, optarg, false); if (!sn_opts) { error_report("Failed in parsing snapshot param `%s'", optarg); exit(EXIT_FAILURE); } } else { sn_id_or_name = optarg; } /* fall through */ case 'r': nbdflags |= NBD_FLAG_READ_ONLY; flags &= ~BDRV_O_RDWR; break; case 'P': partition = strtol(optarg, &end, 0); if (*end) { error_report("Invalid partition `%s'", optarg); exit(EXIT_FAILURE); } if (partition < 1 || partition > 8) { error_report("Invalid partition %d", partition); exit(EXIT_FAILURE); } break; case 'k': sockpath = optarg; if (sockpath[0] != '/') { error_report("socket path must be absolute"); exit(EXIT_FAILURE); } break; case 'd': disconnect = true; break; case 'c': device = optarg; break; case 'e': shared = strtol(optarg, &end, 0); if (*end) { error_report("Invalid shared device number '%s'", optarg); exit(EXIT_FAILURE); } if (shared < 1) { error_report("Shared device number must be greater than 0"); exit(EXIT_FAILURE); } break; case 'f': fmt = optarg; break; case 't': persistent = 1; break; case 'x': export_name = optarg; break; case 'D': export_description = optarg; break; case 'v': verbose = 1; break; case 'V': version(argv[0]); exit(0); break; case 'h': usage(argv[0]); exit(0); break; case '?': error_report("Try `%s --help' for more information.", argv[0]); exit(EXIT_FAILURE); case QEMU_NBD_OPT_OBJECT: { QemuOpts *opts; opts = qemu_opts_parse_noisily(&qemu_object_opts, optarg, true); if (!opts) { exit(EXIT_FAILURE); } } break; case QEMU_NBD_OPT_TLSCREDS: tlscredsid = optarg; break; case QEMU_NBD_OPT_IMAGE_OPTS: imageOpts = true; break; case 'T': g_free(trace_file); trace_file = trace_opt_parse(optarg); break; case QEMU_NBD_OPT_FORK: fork_process = true; break; } } if ((argc - optind) != 1) { error_report("Invalid number of arguments"); error_printf("Try `%s --help' for more information.\n", argv[0]); exit(EXIT_FAILURE); } if (qemu_opts_foreach(&qemu_object_opts, user_creatable_add_opts_foreach, NULL, NULL)) { exit(EXIT_FAILURE); } if (!trace_init_backends()) { exit(1); } trace_init_file(trace_file); qemu_set_log(LOG_TRACE); socket_activation = check_socket_activation(); if (socket_activation == 0) { setup_address_and_port(&bindto, &port); } else { /* Using socket activation - check user didn't use -p etc. */ const char *err_msg = socket_activation_validate_opts(device, sockpath, bindto, port); if (err_msg != NULL) { error_report("%s", err_msg); exit(EXIT_FAILURE); } /* qemu-nbd can only listen on a single socket. */ if (socket_activation > 1) { error_report("qemu-nbd does not support socket activation with %s > 1", "LISTEN_FDS"); exit(EXIT_FAILURE); } } if (tlscredsid) { if (sockpath) { error_report("TLS is only supported with IPv4/IPv6"); exit(EXIT_FAILURE); } if (device) { error_report("TLS is not supported with a host device"); exit(EXIT_FAILURE); } if (!export_name) { /* Set the default NBD protocol export name, since * we *must* use new style protocol for TLS */ export_name = ""; } tlscreds = nbd_get_tls_creds(tlscredsid, &local_err); if (local_err) { error_report("Failed to get TLS creds %s", error_get_pretty(local_err)); exit(EXIT_FAILURE); } } if (disconnect) { int nbdfd = open(argv[optind], O_RDWR); if (nbdfd < 0) { error_report("Cannot open %s: %s", argv[optind], strerror(errno)); exit(EXIT_FAILURE); } nbd_disconnect(nbdfd); close(nbdfd); printf("%s disconnected\n", argv[optind]); return 0; } if ((device && !verbose) || fork_process) { int stderr_fd[2]; pid_t pid; int ret; if (qemu_pipe(stderr_fd) < 0) { error_report("Error setting up communication pipe: %s", strerror(errno)); exit(EXIT_FAILURE); } /* Now daemonize, but keep a communication channel open to * print errors and exit with the proper status code. */ pid = fork(); if (pid < 0) { error_report("Failed to fork: %s", strerror(errno)); exit(EXIT_FAILURE); } else if (pid == 0) { close(stderr_fd[0]); ret = qemu_daemon(1, 0); /* Temporarily redirect stderr to the parent's pipe... */ old_stderr = dup(STDERR_FILENO); dup2(stderr_fd[1], STDERR_FILENO); if (ret < 0) { error_report("Failed to daemonize: %s", strerror(errno)); exit(EXIT_FAILURE); } /* ... close the descriptor we inherited and go on. */ close(stderr_fd[1]); } else { bool errors = false; char *buf; /* In the parent. Print error messages from the child until * it closes the pipe. */ close(stderr_fd[1]); buf = g_malloc(1024); while ((ret = read(stderr_fd[0], buf, 1024)) > 0) { errors = true; ret = qemu_write_full(STDERR_FILENO, buf, ret); if (ret < 0) { exit(EXIT_FAILURE); } } if (ret < 0) { error_report("Cannot read from daemon: %s", strerror(errno)); exit(EXIT_FAILURE); } /* Usually the daemon should not print any message. * Exit with zero status in that case. */ exit(errors); } } if (device != NULL && sockpath == NULL) { sockpath = g_malloc(128); snprintf(sockpath, 128, SOCKET_PATH, basename(device)); } if (socket_activation == 0) { server_ioc = qio_channel_socket_new(); saddr = nbd_build_socket_address(sockpath, bindto, port); if (qio_channel_socket_listen_sync(server_ioc, saddr, &local_err) < 0) { object_unref(OBJECT(server_ioc)); error_report_err(local_err); return 1; } } else { /* See comment in check_socket_activation above. */ assert(socket_activation == 1); server_ioc = qio_channel_socket_new_fd(FIRST_SOCKET_ACTIVATION_FD, &local_err); if (server_ioc == NULL) { error_report("Failed to use socket activation: %s", error_get_pretty(local_err)); exit(EXIT_FAILURE); } } if (qemu_init_main_loop(&local_err)) { error_report_err(local_err); exit(EXIT_FAILURE); } bdrv_init(); atexit(bdrv_close_all); srcpath = argv[optind]; if (imageOpts) { QemuOpts *opts; if (fmt) { error_report("--image-opts and -f are mutually exclusive"); exit(EXIT_FAILURE); } opts = qemu_opts_parse_noisily(&file_opts, srcpath, true); if (!opts) { qemu_opts_reset(&file_opts); exit(EXIT_FAILURE); } options = qemu_opts_to_qdict(opts, NULL); qemu_opts_reset(&file_opts); blk = blk_new_open(NULL, NULL, options, flags, &local_err); } else { if (fmt) { options = qdict_new(); qdict_put_str(options, "driver", fmt); } blk = blk_new_open(srcpath, NULL, options, flags, &local_err); } if (!blk) { error_reportf_err(local_err, "Failed to blk_new_open '%s': ", argv[optind]); exit(EXIT_FAILURE); } bs = blk_bs(blk); blk_set_enable_write_cache(blk, !writethrough); if (sn_opts) { ret = bdrv_snapshot_load_tmp(bs, qemu_opt_get(sn_opts, SNAPSHOT_OPT_ID), qemu_opt_get(sn_opts, SNAPSHOT_OPT_NAME), &local_err); } else if (sn_id_or_name) { ret = bdrv_snapshot_load_tmp_by_id_or_name(bs, sn_id_or_name, &local_err); } if (ret < 0) { error_reportf_err(local_err, "Failed to load snapshot: "); exit(EXIT_FAILURE); } bs->detect_zeroes = detect_zeroes; fd_size = blk_getlength(blk); if (fd_size < 0) { error_report("Failed to determine the image length: %s", strerror(-fd_size)); exit(EXIT_FAILURE); } if (dev_offset >= fd_size) { error_report("Offset (%lld) has to be smaller than the image size " "(%lld)", (long long int)dev_offset, (long long int)fd_size); exit(EXIT_FAILURE); } fd_size -= dev_offset; if (partition != -1) { ret = find_partition(blk, partition, &dev_offset, &fd_size); if (ret < 0) { error_report("Could not find partition %d: %s", partition, strerror(-ret)); exit(EXIT_FAILURE); } } exp = nbd_export_new(bs, dev_offset, fd_size, nbdflags, nbd_export_closed, writethrough, NULL, &local_err); if (!exp) { error_report_err(local_err); exit(EXIT_FAILURE); } if (export_name) { nbd_export_set_name(exp, export_name); nbd_export_set_description(exp, export_description); newproto = true; } else if (export_description) { error_report("Export description requires an export name"); exit(EXIT_FAILURE); } if (device) { int ret; ret = pthread_create(&client_thread, NULL, nbd_client_thread, device); if (ret != 0) { error_report("Failed to create client thread: %s", strerror(ret)); exit(EXIT_FAILURE); } } else { /* Shut up GCC warnings. */ memset(&client_thread, 0, sizeof(client_thread)); } nbd_update_server_watch(); /* now when the initialization is (almost) complete, chdir("/") * to free any busy filesystems */ if (chdir("/") < 0) { error_report("Could not chdir to root directory: %s", strerror(errno)); exit(EXIT_FAILURE); } if (fork_process) { dup2(old_stderr, STDERR_FILENO); close(old_stderr); } state = RUNNING; do { main_loop_wait(false); if (state == TERMINATE) { state = TERMINATING; nbd_export_close(exp); nbd_export_put(exp); exp = NULL; } } while (state != TERMINATED); blk_unref(blk); if (sockpath) { unlink(sockpath); } qemu_opts_del(sn_opts); if (device) { void *ret; pthread_join(client_thread, &ret); exit(ret != NULL); } else { exit(EXIT_SUCCESS); } }
int main(int argc, char **argv) { BlockBackend *blk; BlockDriverState *bs; off_t dev_offset = 0; uint32_t nbdflags = 0; bool disconnect = false; const char *bindto = "0.0.0.0"; const char *port = NULL; char *sockpath = NULL; char *device = NULL; off_t fd_size; QemuOpts *sn_opts = NULL; const char *sn_id_or_name = NULL; const char *sopt = "hVb:o:p:rsnP:c:dvk:e:f:tl:"; struct option lopt[] = { { "help", 0, NULL, 'h' }, { "version", 0, NULL, 'V' }, { "bind", 1, NULL, 'b' }, { "port", 1, NULL, 'p' }, { "socket", 1, NULL, 'k' }, { "offset", 1, NULL, 'o' }, { "read-only", 0, NULL, 'r' }, { "partition", 1, NULL, 'P' }, { "connect", 1, NULL, 'c' }, { "disconnect", 0, NULL, 'd' }, { "snapshot", 0, NULL, 's' }, { "load-snapshot", 1, NULL, 'l' }, { "nocache", 0, NULL, 'n' }, { "cache", 1, NULL, QEMU_NBD_OPT_CACHE }, { "aio", 1, NULL, QEMU_NBD_OPT_AIO }, { "discard", 1, NULL, QEMU_NBD_OPT_DISCARD }, { "detect-zeroes", 1, NULL, QEMU_NBD_OPT_DETECT_ZEROES }, { "shared", 1, NULL, 'e' }, { "format", 1, NULL, 'f' }, { "persistent", 0, NULL, 't' }, { "verbose", 0, NULL, 'v' }, { NULL, 0, NULL, 0 } }; int ch; int opt_ind = 0; char *end; int flags = BDRV_O_RDWR; int partition = -1; int ret = 0; int fd; bool seen_cache = false; bool seen_discard = false; bool seen_aio = false; pthread_t client_thread; const char *fmt = NULL; Error *local_err = NULL; BlockdevDetectZeroesOptions detect_zeroes = BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF; QDict *options = NULL; /* The client thread uses SIGTERM to interrupt the server. A signal * handler ensures that "qemu-nbd -v -c" exits with a nice status code. */ struct sigaction sa_sigterm; memset(&sa_sigterm, 0, sizeof(sa_sigterm)); sa_sigterm.sa_handler = termsig_handler; sigaction(SIGTERM, &sa_sigterm, NULL); qemu_init_exec_dir(argv[0]); while ((ch = getopt_long(argc, argv, sopt, lopt, &opt_ind)) != -1) { switch (ch) { case 's': flags |= BDRV_O_SNAPSHOT; break; case 'n': optarg = (char *) "none"; /* fallthrough */ case QEMU_NBD_OPT_CACHE: if (seen_cache) { errx(EXIT_FAILURE, "-n and --cache can only be specified once"); } seen_cache = true; if (bdrv_parse_cache_flags(optarg, &flags) == -1) { errx(EXIT_FAILURE, "Invalid cache mode `%s'", optarg); } break; case QEMU_NBD_OPT_AIO: if (seen_aio) { errx(EXIT_FAILURE, "--aio can only be specified once"); } seen_aio = true; if (!strcmp(optarg, "native")) { flags |= BDRV_O_NATIVE_AIO; } else if (!strcmp(optarg, "threads")) { /* this is the default */ } else { errx(EXIT_FAILURE, "invalid aio mode `%s'", optarg); } break; case QEMU_NBD_OPT_DISCARD: if (seen_discard) { errx(EXIT_FAILURE, "--discard can only be specified once"); } seen_discard = true; if (bdrv_parse_discard_flags(optarg, &flags) == -1) { errx(EXIT_FAILURE, "Invalid discard mode `%s'", optarg); } break; case QEMU_NBD_OPT_DETECT_ZEROES: detect_zeroes = qapi_enum_parse(BlockdevDetectZeroesOptions_lookup, optarg, BLOCKDEV_DETECT_ZEROES_OPTIONS_MAX, BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF, &local_err); if (local_err) { errx(EXIT_FAILURE, "Failed to parse detect_zeroes mode: %s", error_get_pretty(local_err)); } if (detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP && !(flags & BDRV_O_UNMAP)) { errx(EXIT_FAILURE, "setting detect-zeroes to unmap is not allowed " "without setting discard operation to unmap"); } break; case 'b': bindto = optarg; break; case 'p': port = optarg; break; case 'o': dev_offset = strtoll (optarg, &end, 0); if (*end) { errx(EXIT_FAILURE, "Invalid offset `%s'", optarg); } if (dev_offset < 0) { errx(EXIT_FAILURE, "Offset must be positive `%s'", optarg); } break; case 'l': if (strstart(optarg, SNAPSHOT_OPT_BASE, NULL)) { sn_opts = qemu_opts_parse_noisily(&internal_snapshot_opts, optarg, false); if (!sn_opts) { errx(EXIT_FAILURE, "Failed in parsing snapshot param `%s'", optarg); } } else { sn_id_or_name = optarg; } /* fall through */ case 'r': nbdflags |= NBD_FLAG_READ_ONLY; flags &= ~BDRV_O_RDWR; break; case 'P': partition = strtol(optarg, &end, 0); if (*end) { errx(EXIT_FAILURE, "Invalid partition `%s'", optarg); } if (partition < 1 || partition > 8) { errx(EXIT_FAILURE, "Invalid partition %d", partition); } break; case 'k': sockpath = optarg; if (sockpath[0] != '/') { errx(EXIT_FAILURE, "socket path must be absolute\n"); } break; case 'd': disconnect = true; break; case 'c': device = optarg; break; case 'e': shared = strtol(optarg, &end, 0); if (*end) { errx(EXIT_FAILURE, "Invalid shared device number '%s'", optarg); } if (shared < 1) { errx(EXIT_FAILURE, "Shared device number must be greater than 0\n"); } break; case 'f': fmt = optarg; break; case 't': persistent = 1; break; case 'v': verbose = 1; break; case 'V': version(argv[0]); exit(0); break; case 'h': usage(argv[0]); exit(0); break; case '?': errx(EXIT_FAILURE, "Try `%s --help' for more information.", argv[0]); } } if ((argc - optind) != 1) { errx(EXIT_FAILURE, "Invalid number of argument.\n" "Try `%s --help' for more information.", argv[0]); } if (disconnect) { fd = open(argv[optind], O_RDWR); if (fd < 0) { err(EXIT_FAILURE, "Cannot open %s", argv[optind]); } nbd_disconnect(fd); close(fd); printf("%s disconnected\n", argv[optind]); return 0; } if (device && !verbose) { int stderr_fd[2]; pid_t pid; int ret; if (qemu_pipe(stderr_fd) < 0) { err(EXIT_FAILURE, "Error setting up communication pipe"); } /* Now daemonize, but keep a communication channel open to * print errors and exit with the proper status code. */ pid = fork(); if (pid < 0) { err(EXIT_FAILURE, "Failed to fork"); } else if (pid == 0) { close(stderr_fd[0]); ret = qemu_daemon(1, 0); /* Temporarily redirect stderr to the parent's pipe... */ dup2(stderr_fd[1], STDERR_FILENO); if (ret < 0) { err(EXIT_FAILURE, "Failed to daemonize"); } /* ... close the descriptor we inherited and go on. */ close(stderr_fd[1]); } else { bool errors = false; char *buf; /* In the parent. Print error messages from the child until * it closes the pipe. */ close(stderr_fd[1]); buf = g_malloc(1024); while ((ret = read(stderr_fd[0], buf, 1024)) > 0) { errors = true; ret = qemu_write_full(STDERR_FILENO, buf, ret); if (ret < 0) { exit(EXIT_FAILURE); } } if (ret < 0) { err(EXIT_FAILURE, "Cannot read from daemon"); } /* Usually the daemon should not print any message. * Exit with zero status in that case. */ exit(errors); } } if (device != NULL && sockpath == NULL) { sockpath = g_malloc(128); snprintf(sockpath, 128, SOCKET_PATH, basename(device)); } saddr = nbd_build_socket_address(sockpath, bindto, port); if (qemu_init_main_loop(&local_err)) { error_report_err(local_err); exit(EXIT_FAILURE); } bdrv_init(); atexit(bdrv_close_all); if (fmt) { options = qdict_new(); qdict_put(options, "driver", qstring_from_str(fmt)); } srcpath = argv[optind]; blk = blk_new_open("hda", srcpath, NULL, options, flags, &local_err); if (!blk) { errx(EXIT_FAILURE, "Failed to blk_new_open '%s': %s", argv[optind], error_get_pretty(local_err)); } bs = blk_bs(blk); if (sn_opts) { ret = bdrv_snapshot_load_tmp(bs, qemu_opt_get(sn_opts, SNAPSHOT_OPT_ID), qemu_opt_get(sn_opts, SNAPSHOT_OPT_NAME), &local_err); } else if (sn_id_or_name) { ret = bdrv_snapshot_load_tmp_by_id_or_name(bs, sn_id_or_name, &local_err); } if (ret < 0) { errno = -ret; err(EXIT_FAILURE, "Failed to load snapshot: %s", error_get_pretty(local_err)); } bs->detect_zeroes = detect_zeroes; fd_size = blk_getlength(blk); if (fd_size < 0) { errx(EXIT_FAILURE, "Failed to determine the image length: %s", strerror(-fd_size)); } if (partition != -1) { ret = find_partition(blk, partition, &dev_offset, &fd_size); if (ret < 0) { errno = -ret; err(EXIT_FAILURE, "Could not find partition %d", partition); } } exp = nbd_export_new(blk, dev_offset, fd_size, nbdflags, nbd_export_closed, &local_err); if (!exp) { errx(EXIT_FAILURE, "%s", error_get_pretty(local_err)); } fd = socket_listen(saddr, &local_err); if (fd < 0) { error_report_err(local_err); return 1; } if (device) { int ret; ret = pthread_create(&client_thread, NULL, nbd_client_thread, device); if (ret != 0) { errx(EXIT_FAILURE, "Failed to create client thread: %s", strerror(ret)); } } else { /* Shut up GCC warnings. */ memset(&client_thread, 0, sizeof(client_thread)); } server_fd = fd; nbd_update_server_fd_handler(fd); /* now when the initialization is (almost) complete, chdir("/") * to free any busy filesystems */ if (chdir("/") < 0) { err(EXIT_FAILURE, "Could not chdir to root directory"); } state = RUNNING; do { main_loop_wait(false); if (state == TERMINATE) { state = TERMINATING; nbd_export_close(exp); nbd_export_put(exp); exp = NULL; } } while (state != TERMINATED); blk_unref(blk); if (sockpath) { unlink(sockpath); } qemu_opts_del(sn_opts); if (device) { void *ret; pthread_join(client_thread, &ret); exit(ret != NULL); } else { exit(EXIT_SUCCESS); } }
int initNbd(char* filename) { BlockDriverState *bs; off_t dev_offset = 0; uint32_t nbdflags = 0; bool disconnect = false; const char *bindto = "0.0.0.0"; char *device = NULL; int port = NBD_DEFAULT_PORT; off_t fd_size; const char *sopt = "hVb:o:p:rsnP:c:dvk:e:t"; struct option lopt[] = { { "help", 0, NULL, 'h' }, { "version", 0, NULL, 'V' }, { "bind", 1, NULL, 'b' }, { "port", 1, NULL, 'p' }, { "socket", 1, NULL, 'k' }, { "offset", 1, NULL, 'o' }, { "read-only", 0, NULL, 'r' }, { "partition", 1, NULL, 'P' }, { "connect", 1, NULL, 'c' }, { "disconnect", 0, NULL, 'd' }, { "snapshot", 0, NULL, 's' }, { "nocache", 0, NULL, 'n' }, { "shared", 1, NULL, 'e' }, { "persistent", 0, NULL, 't' }, { "verbose", 0, NULL, 'v' }, { NULL, 0, NULL, 0 } }; int ch; int opt_ind = 0; int li; char *end; int flags = BDRV_O_RDWR; int partition = -1; int ret; int fd; int persistent = 0; pthread_t client_thread; /* The client thread uses SIGTERM to interrupt the server. A signal * handler ensures that "qemu-nbd -v -c" exits with a nice status code. */ struct sigaction sa_sigterm; memset(&sa_sigterm, 0, sizeof(sa_sigterm)); sa_sigterm.sa_handler = termsig_handler; sigaction(SIGTERM, &sa_sigterm, NULL); // while ((ch = getopt_long(argc, argv, sopt, lopt, &opt_ind)) != -1) { // switch (ch) { // case 's': // flags |= BDRV_O_SNAPSHOT; // break; // case 'n': // flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; // break; // case 'b': // bindto = optarg; // break; // case 'p': // li = strtol(optarg, &end, 0); // if (*end) { // errx(EXIT_FAILURE, "Invalid port `%s'", optarg); // } // if (li < 1 || li > 65535) { // errx(EXIT_FAILURE, "Port out of range `%s'", optarg); // } // port = (uint16_t)li; // break; // case 'o': // dev_offset = strtoll (optarg, &end, 0); // if (*end) { // errx(EXIT_FAILURE, "Invalid offset `%s'", optarg); // } // if (dev_offset < 0) { // errx(EXIT_FAILURE, "Offset must be positive `%s'", optarg); // } // break; // case 'r': // nbdflags |= NBD_FLAG_READ_ONLY; // flags &= ~BDRV_O_RDWR; // break; // case 'P': // partition = strtol(optarg, &end, 0); // if (*end) // errx(EXIT_FAILURE, "Invalid partition `%s'", optarg); // if (partition < 1 || partition > 8) // errx(EXIT_FAILURE, "Invalid partition %d", partition); // break; // case 'k': // sockpath = optarg; // if (sockpath[0] != '/') // errx(EXIT_FAILURE, "socket path must be absolute\n"); // break; // case 'd': // disconnect = true; // break; // case 'c': // device = optarg; // break; // case 'e': // shared = strtol(optarg, &end, 0); // if (*end) { // errx(EXIT_FAILURE, "Invalid shared device number '%s'", optarg); // } // if (shared < 1) { // errx(EXIT_FAILURE, "Shared device number must be greater than 0\n"); // } // break; // case 't': // persistent = 1; // break; // case 'v': // verbose = 1; // break; // case 'V': // version(argv[0]); // exit(0); // break; // case 'h': // usage(argv[0]); // exit(0); // break; // case '?': // errx(EXIT_FAILURE, "Try `%s --help' for more information.", // argv[0]); // } // } // if ((argc - optind) != 1) { // errx(EXIT_FAILURE, "Invalid number of argument.\n" // "Try `%s --help' for more information.", // argv[0]); // } /* Start a daemon! Use client thread to start daemon and write errors; Use parent thread to wait for and write error messages. */ // if (device && !verbose) { // int stderr_fd[2]; // pid_t pid; // int ret; // // //Setting up Pipe, close after succeeded. // if (qemu_pipe(stderr_fd) < 0) { // err(EXIT_FAILURE, "Error setting up communication pipe"); // } // // /* Now daemonize, but keep a communication channel open to // * print errors and exit with the proper status code. // */ // //Fork returns 0 for child process and the pid of child process for the parent process // pid = fork(); // if (pid == 0) { // close(stderr_fd[0]); // ret = qemu_daemon(1, 0); // // /* Temporarily redirect stderr to the parent's pipe... */ // dup2(stderr_fd[1], STDERR_FILENO); // if (ret < 0) { // err(EXIT_FAILURE, "Failed to daemonize"); // } // // /* ... close the descriptor we inherited and go on. */ // close(stderr_fd[1]); // } else { // bool errors = false; // char *buf; // // /* In the parent. Print error messages from the child until // * it closes the pipe. // */ // close(stderr_fd[1]); // buf = g_malloc(1024); // while ((ret = read(stderr_fd[0], buf, 1024)) > 0) { // errors = true; // ret = qemu_write_full(STDERR_FILENO, buf, ret); // if (ret < 0) { // exit(EXIT_FAILURE); // } // } // if (ret < 0) { // err(EXIT_FAILURE, "Cannot read from daemon"); // } // // /* Usually the daemon should not print any message. // * Exit with zero status in that case. // */ // exit(errors); // } // } // // //Set sock path... But what is sock path??? // if (device != NULL && sockpath == NULL) { // sockpath = g_malloc(128); // snprintf(sockpath, 128, SOCKET_PATH, basename(device)); // } //Init a block device! bdrv_init(); atexit(bdrv_close_all); //Malloc a new block device state bs = bdrv_new("hda"); srcpath = filename; if ((ret = bdrv_open(bs, srcpath, flags, NULL)) < 0) { errno = -ret; err(EXIT_FAILURE, "Failed to bdrv_open '%s'", srcpath); } fd_size = bdrv_getlength(bs); if (partition != -1) { ret = find_partition(bs, partition, &dev_offset, &fd_size); if (ret < 0) { errno = -ret; err(EXIT_FAILURE, "Could not find partition %d", partition); } } exp = nbd_export_new(bs, dev_offset, fd_size, nbdflags); if (sockpath) { fd = unix_socket_incoming(sockpath); fprintf(stderr, "NBD device running on sock path :%s\n", sockpath); } else { fd = tcp_socket_incoming(bindto, port); fprintf(stderr, "NBD device running on port :%i\n", port); } if (fd < 0) { return 1; } if (device) { int ret; ret = pthread_create(&client_thread, NULL, nbd_client_thread, device); if (ret != 0) { errx(EXIT_FAILURE, "Failed to create client thread: %s", strerror(ret)); } } else { /* Shut up GCC warnings. */ memset(&client_thread, 0, sizeof(client_thread)); } qemu_init_main_loop(); qemu_set_fd_handler2(fd, nbd_can_accept, nbd_accept, NULL, (void *)(uintptr_t)fd); /* now when the initialization is (almost) complete, chdir("/") * to free any busy filesystems */ if (chdir("/") < 0) { err(EXIT_FAILURE, "Could not chdir to root directory"); } do { main_loop_wait(false); } while (!sigterm_reported && (persistent || !nbd_started || nb_fds > 0)); nbd_export_close(exp); if (sockpath) { unlink(sockpath); } if (device) { void *ret; pthread_join(client_thread, &ret); exit(ret != NULL); } else { exit(EXIT_SUCCESS); } }
int main(int argc, char *argv[]) { char buf[4096]; char zerobuf[512]; FILE *f; size_t n; size_t nsectors; int i; int bootsector_special = 1; #if defined(_MSDOS) || defined(_WIN32) // As our output file is binary, we must set its file mode to binary. diskfd = _fileno(stdout); _setmode(diskfd, _O_BINARY); #else diskfd = fileno(stdout); #endif // Check for a partition if (argc >= 2 && strcmp(argv[1], "-p") == 0) { if (argc < 3) usage(); if ((diskfd = open(argv[2], O_RDWR)) < 0) { fprintf(stderr, "%s: %s\n", argv[2], strerror(errno)); usage(); } if (find_partition(0, 0, 0) <= 0) { fprintf(stderr, "%s: no JOS partition (type 0x27) found!\n", argv[2]); usage(); } argc -= 2; argv += 2; bootsector_special = 0; } // Check for multiboot option if (argc >= 2 && strcmp(argv[1], "-m") == 0) { if (argc < 3) usage(); do_multiboot(argv[2]); } // Read files if (argc < 2) usage(); // Read boot sector if (bootsector_special) { f = fopencheck(argv[1]); n = fread(buf, 1, 4096, f); if (n > 510) { fprintf(stderr, "%s: boot block too large: %s%u bytes (max 510)\n", argv[1], (n == 4096 ? ">= " : ""), (unsigned) n); usage(); } fclose(f); // Append signature and write modified boot sector memset(buf + n, 0, 510 - n); buf[510] = 0x55; buf[511] = 0xAA; diskwrite(buf, 512); nsectors = 1; argc--; argv++; } else nsectors = 0; // Read any succeeding files, then write them out memset(zerobuf, 0, 512); for (i = 1; i < argc; i++) { size_t pos; char *str; unsigned long skipto_sector; // An argument like "@X" means "skip to sector X". if (argv[i][0] == '@' && isdigit(argv[i][1]) && ((skipto_sector = strtoul(argv[i] + 1, &str, 0)), *str == 0)) { if (nsectors > skipto_sector) { fprintf(stderr, "mkbootdisk: can't skip to sector %u, already at sector %u\n", (unsigned) skipto_sector, (unsigned) nsectors); usage(); } while (nsectors < skipto_sector) { diskwrite(zerobuf, 512); nsectors++; } continue; } // Otherwise, read the file. f = fopencheck(argv[i]); pos = 0; while ((n = fread(buf, 1, 4096, f)) > 0) { diskwrite(buf, n); pos += n; } if (pos % 512 != 0) { diskwrite(zerobuf, 512 - (pos % 512)); pos += 512 - (pos % 512); } nsectors += pos / 512; fclose(f); } // Fill out to 1024 sectors with 0 blocks while (nsectors < 1024) { diskwrite(zerobuf, 512); nsectors++; } return 0; }
static void ask(uval deflist, uval ofd) { int i; char inbuf[17]; uval sz; uval chunks = 1; uval lpalgn = LOG_CHUNKSIZE; for (i = 0; i < 4; i++) { uval def; def = deflist & (0xffUL << (8 * i)); def >>= 8 * i; if (def == 0 || def >= image_cnt) { continue; } if (image_names[def - 1] != NULL) { uval mem = get_pages_aligned(&logical_pa, CHUNK_SIZE, LOG_CHUNKSIZE); assert(mem != PAGE_ALLOC_ERROR, "no memory for partition\n"); launch_image(mem, CHUNK_SIZE, image_names[def - 1], ofd); yield(1); } } for (;;) { const char *iostr; uval iolpid = iohost_lpid; i = 0; hputs("Choose one of the following images\n"); while (image_names[i] != NULL) { hprintf(" %02d: %s\n", i + 1, image_names[i]); ++i; } switch (iohost_lpid) { case 0: iostr = "Next"; break; case 1: iostr = "Unavailable"; break; case IOHOST_NONE: iostr = "None"; iolpid = 0; break; default: i = find_partition(iohost_lpid); iostr = partitions[i].name; break; } hprintf(" i: IOHost Selection: 0x%lx: %s\n", iolpid, iostr); #ifdef USE_OPENFIRMWARE hputs(" o: Dump OF master device tree (if available)\n"); #endif if (rags_state != NULL) { hputs(" R: Resource Allocation Management: "); if (rags_state()) { hputs("ON\n"); } else { hputs("OFF\n"); } } hputs(" d: destroy a partition\n"); hputs(" b: trigger breakpoint\n"); hputs(" B: trigger HV Core breakpoint\n"); hputs(" H: set HV debug verbosity level\n"); hprintf(" A: set default partition boot arguments\n\t%s\n", default_bootargs); hputs(" s: schedule partitions\n"); hputs(" h: halt machine\n"); hputs(" y: yield forever\n"); hprintf(" M: partition size (%ld x CHUNK_SIZE) (1..9)\n", chunks); hputs("Choice [1]: "); sz = get_input(inbuf); inbuf[16] = '\0'; if (sz == 0) { continue; } hprintf("Got command: %s %ld\n",inbuf,sz); uval val; switch (inbuf[0]) { case 'y': hcall_yield(NULL, 0); break; case 'b': breakpoint(); break; case 'H': ask_debug_flags(); break; case 'A': ask_boot_args(); break; case 'B': hcall_debug(NULL, H_BREAKPOINT, 0, 0, 0, 0); break; case 'h': controller_halt(); break; case 'd': ask_destroy_partition(); break; case 's': ask_schedule_partition(); break; case 'M':{ uval x = 1; while (inbuf[x]) { if (inbuf[x]>='1' && inbuf[x]<='9') { chunks = inbuf[x] - '0'; break; } ++x; } break; } case 'i': switch (iohost_lpid) { case IOHOST_NONE: iohost_lpid = 0; break; case 0: iohost_lpid = IOHOST_NONE; break; case 1: break; default: i = find_partition(iohost_lpid); assert (i >= 0, "bad iohost_lpid?\n"); hprintf("IO Host already selected: " "0x%lx: %s\n", partitions[i].lpid, partitions[i].name); break; } break; #ifdef USE_OPENFIRMWARE case 'o': if (ofd > 0) { ofd_walk((void *)ofd, OFD_ROOT, ofd_dump_props, OFD_DUMP_ALL); } else { hputs("sorry no Of tree available\n"); } break; #endif case 'R': if (rags_ask) { rags_ask(); } break; case '0' ... '9': val = strtoul(inbuf, NULL, 0) - 1; if (val < image_cnt) { uval mem; mem = get_pages_aligned(&logical_pa, chunks * CHUNK_SIZE, lpalgn); if (mem == PAGE_ALLOC_ERROR) { /* So what do we do here? */ assert(0, "no memory for partition\n"); } if (mem != PAGE_ALLOC_ERROR) { launch_image(mem, chunks * CHUNK_SIZE, image_names[val], ofd); } } break; default: hprintf("invalid entry: %s\n", inbuf); break; } } }
struct super_block *ps2fs_read_super(struct super_block *sb, void *data, int silent) { kdev_t dev = sb->s_dev; int blocksize; struct buffer_head *bh; struct ps2fs_super_block *ps2sb; struct ps2fs_sb_info *sbinfo = PS2FS_SB(sb); char opt_partition[PS2_PART_IDMAX+2] = ""; int opt_tzoffset = 0; int i; char *s; /* Parse options */ if (!parse_options((char *)data, opt_partition, &opt_tzoffset)) return NULL; /* Get the hardware block size */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) blocksize = get_hardsect_size(dev); #else blocksize = get_hardblocksize(dev); if (blocksize < BLOCK_SIZE) blocksize = BLOCK_SIZE; #endif /* Locate the partition given by the "partition=" option, if any */ if (*opt_partition) s = opt_partition; else s = NULL; i = find_partition(dev, blocksize, s, sbinfo->first_sector, sbinfo->size); if (i < 0) return NULL; sbinfo->n_subparts = i; /* Read the super block from address 0x400000 in the first subpart */ bh = bread(dev, sbinfo->first_sector[0] + (0x400000/blocksize), blocksize); if (!bh) { printk("ps2fs: unable to read superblock\n"); return NULL; } ps2sb = (struct ps2fs_super_block *)(bh->b_data); /* Check the magic value and save other values */ if (le32_to_cpu(ps2sb->magic) != PS2FS_SUPER_MAGIC) { printk("ps2fs: bad magic number in superblock\n"); brelse(bh); return NULL; } i = le32_to_cpu(ps2sb->blocksize) / blocksize; sbinfo->block_shift = 0; while (i > 1) { sbinfo->block_shift++; i >>= 1; } sbinfo->root_inode = le32_to_cpu(ps2sb->rootdir); if (sbinfo->root_inode < (0x400000 / le32_to_cpu(ps2sb->blocksize)) + 2) { ps2fs_warning(sb, "ps2fs_read_super", "root inode number (%d) too" " small", sbinfo->root_inode); } sbinfo->tzoffset = opt_tzoffset*60; /* Free the superblock data */ brelse(bh); /* Set various superblock entries */ sb->s_blocksize = blocksize; sb->s_blocksize_bits = 0; i = blocksize; while (i > 1) { sb->s_blocksize_bits++; i >>= 1; } /* Retrieve root inode */ sb->s_op = &ps2fs_sops; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) sb->s_root = d_alloc_root(iget(sb, sbinfo->root_inode)); #else sb->s_root = d_alloc_root(iget(sb, sbinfo->root_inode), NULL); #endif if (!sb->s_root || !S_ISDIR(sb->s_root->d_inode->i_mode) || !sb->s_root->d_inode->i_blocks || !sb->s_root->d_inode->i_size ) { if (sb->s_root) { ps2fs_error(sb, "ps2fs_read_super", "root inode corrupt!" " (mode=0%o blocks=%d size=%ld)", sb->s_root->d_inode->i_mode, sb->s_root->d_inode->i_blocks, sb->s_root->d_inode->i_size); dput(sb->s_root); sb->s_root = NULL; } else { ps2fs_error(sb, "ps2fs_read_super", "unable to read root inode"); } return NULL; } /* Successful completion */ return sb; }
int main(int argc, char **argv) { BlockDriverState *bs; off_t dev_offset = 0; off_t offset = 0; uint32_t nbdflags = 0; bool disconnect = false; const char *bindto = "0.0.0.0"; int port = NBD_DEFAULT_PORT; struct sockaddr_in addr; socklen_t addr_len = sizeof(addr); off_t fd_size; const char *sopt = "hVb:o:p:rsnP:c:dvk:e:t"; struct option lopt[] = { { "help", 0, NULL, 'h' }, { "version", 0, NULL, 'V' }, { "bind", 1, NULL, 'b' }, { "port", 1, NULL, 'p' }, { "socket", 1, NULL, 'k' }, { "offset", 1, NULL, 'o' }, { "read-only", 0, NULL, 'r' }, { "partition", 1, NULL, 'P' }, { "connect", 1, NULL, 'c' }, { "disconnect", 0, NULL, 'd' }, { "snapshot", 0, NULL, 's' }, { "nocache", 0, NULL, 'n' }, { "shared", 1, NULL, 'e' }, { "persistent", 0, NULL, 't' }, { "verbose", 0, NULL, 'v' }, { NULL, 0, NULL, 0 } }; int ch; int opt_ind = 0; int li; char *end; int flags = BDRV_O_RDWR; int partition = -1; int ret; int shared = 1; uint8_t *data; fd_set fds; int *sharing_fds; int fd; int i; int nb_fds = 0; int max_fd; int persistent = 0; pthread_t client_thread; /* The client thread uses SIGTERM to interrupt the server. A signal * handler ensures that "qemu-nbd -v -c" exits with a nice status code. */ struct sigaction sa_sigterm; int sigterm_fd[2]; if (qemu_pipe(sigterm_fd) == -1) { err(EXIT_FAILURE, "Error setting up communication pipe"); } sigterm_wfd = sigterm_fd[1]; memset(&sa_sigterm, 0, sizeof(sa_sigterm)); sa_sigterm.sa_handler = termsig_handler; sigaction(SIGTERM, &sa_sigterm, NULL); while ((ch = getopt_long(argc, argv, sopt, lopt, &opt_ind)) != -1) { switch (ch) { case 's': flags |= BDRV_O_SNAPSHOT; break; case 'n': flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; break; case 'b': bindto = optarg; break; case 'p': li = strtol(optarg, &end, 0); if (*end) { errx(EXIT_FAILURE, "Invalid port `%s'", optarg); } if (li < 1 || li > 65535) { errx(EXIT_FAILURE, "Port out of range `%s'", optarg); } port = (uint16_t)li; break; case 'o': dev_offset = strtoll (optarg, &end, 0); if (*end) { errx(EXIT_FAILURE, "Invalid offset `%s'", optarg); } if (dev_offset < 0) { errx(EXIT_FAILURE, "Offset must be positive `%s'", optarg); } break; case 'r': nbdflags |= NBD_FLAG_READ_ONLY; flags &= ~BDRV_O_RDWR; break; case 'P': partition = strtol(optarg, &end, 0); if (*end) errx(EXIT_FAILURE, "Invalid partition `%s'", optarg); if (partition < 1 || partition > 8) errx(EXIT_FAILURE, "Invalid partition %d", partition); break; case 'k': sockpath = optarg; if (sockpath[0] != '/') errx(EXIT_FAILURE, "socket path must be absolute\n"); break; case 'd': disconnect = true; break; case 'c': device = optarg; break; case 'e': shared = strtol(optarg, &end, 0); if (*end) { errx(EXIT_FAILURE, "Invalid shared device number '%s'", optarg); } if (shared < 1) { errx(EXIT_FAILURE, "Shared device number must be greater than 0\n"); } break; case 't': persistent = 1; break; case 'v': verbose = 1; break; case 'V': version(argv[0]); exit(0); break; case 'h': usage(argv[0]); exit(0); break; case '?': errx(EXIT_FAILURE, "Try `%s --help' for more information.", argv[0]); } } if ((argc - optind) != 1) { errx(EXIT_FAILURE, "Invalid number of argument.\n" "Try `%s --help' for more information.", argv[0]); } if (disconnect) { fd = open(argv[optind], O_RDWR); if (fd == -1) err(EXIT_FAILURE, "Cannot open %s", argv[optind]); nbd_disconnect(fd); close(fd); printf("%s disconnected\n", argv[optind]); return 0; } if (device && !verbose) { int stderr_fd[2]; pid_t pid; int ret; if (qemu_pipe(stderr_fd) == -1) { err(EXIT_FAILURE, "Error setting up communication pipe"); } /* Now daemonize, but keep a communication channel open to * print errors and exit with the proper status code. */ pid = fork(); if (pid == 0) { close(stderr_fd[0]); ret = qemu_daemon(0, 0); /* Temporarily redirect stderr to the parent's pipe... */ dup2(stderr_fd[1], STDERR_FILENO); if (ret == -1) { err(EXIT_FAILURE, "Failed to daemonize"); } /* ... close the descriptor we inherited and go on. */ close(stderr_fd[1]); } else { bool errors = false; char *buf; /* In the parent. Print error messages from the child until * it closes the pipe. */ close(stderr_fd[1]); buf = g_malloc(1024); while ((ret = read(stderr_fd[0], buf, 1024)) > 0) { errors = true; ret = qemu_write_full(STDERR_FILENO, buf, ret); if (ret == -1) { exit(EXIT_FAILURE); } } if (ret == -1) { err(EXIT_FAILURE, "Cannot read from daemon"); } /* Usually the daemon should not print any message. * Exit with zero status in that case. */ exit(errors); } } if (device) { /* Open before spawning new threads. In the future, we may * drop privileges after opening. */ fd = open(device, O_RDWR); if (fd == -1) { err(EXIT_FAILURE, "Failed to open %s", device); } if (sockpath == NULL) { sockpath = g_malloc(128); snprintf(sockpath, 128, SOCKET_PATH, basename(device)); } } bdrv_init(); atexit(bdrv_close_all); bs = bdrv_new("hda"); srcpath = argv[optind]; if ((ret = bdrv_open(bs, srcpath, flags, NULL)) < 0) { errno = -ret; err(EXIT_FAILURE, "Failed to bdrv_open '%s'", argv[optind]); } fd_size = bs->total_sectors * 512; if (partition != -1 && find_partition(bs, partition, &dev_offset, &fd_size)) { err(EXIT_FAILURE, "Could not find partition %d", partition); } sharing_fds = g_malloc((shared + 1) * sizeof(int)); if (sockpath) { sharing_fds[0] = unix_socket_incoming(sockpath); } else { sharing_fds[0] = tcp_socket_incoming(bindto, port); } if (sharing_fds[0] == -1) return 1; if (device) { int ret; ret = pthread_create(&client_thread, NULL, nbd_client_thread, &fd); if (ret != 0) { errx(EXIT_FAILURE, "Failed to create client thread: %s", strerror(ret)); } } else { /* Shut up GCC warnings. */ memset(&client_thread, 0, sizeof(client_thread)); } max_fd = sharing_fds[0]; nb_fds++; data = qemu_blockalign(bs, NBD_BUFFER_SIZE); if (data == NULL) { errx(EXIT_FAILURE, "Cannot allocate data buffer"); } do { FD_ZERO(&fds); FD_SET(sigterm_fd[0], &fds); for (i = 0; i < nb_fds; i++) FD_SET(sharing_fds[i], &fds); do { ret = select(max_fd + 1, &fds, NULL, NULL, NULL); } while (ret == -1 && errno == EINTR); if (ret == -1 || FD_ISSET(sigterm_fd[0], &fds)) { break; } if (FD_ISSET(sharing_fds[0], &fds)) ret--; for (i = 1; i < nb_fds && ret; i++) { if (FD_ISSET(sharing_fds[i], &fds)) { if (nbd_trip(bs, sharing_fds[i], fd_size, dev_offset, &offset, nbdflags, data, NBD_BUFFER_SIZE) != 0) { close(sharing_fds[i]); nb_fds--; sharing_fds[i] = sharing_fds[nb_fds]; i--; } ret--; } } /* new connection ? */ if (FD_ISSET(sharing_fds[0], &fds)) { if (nb_fds < shared + 1) { sharing_fds[nb_fds] = accept(sharing_fds[0], (struct sockaddr *)&addr, &addr_len); if (sharing_fds[nb_fds] != -1 && nbd_negotiate(sharing_fds[nb_fds], fd_size, nbdflags) != -1) { if (sharing_fds[nb_fds] > max_fd) max_fd = sharing_fds[nb_fds]; nb_fds++; } } } } while (persistent || nb_fds > 1); qemu_vfree(data); close(sharing_fds[0]); g_free(sharing_fds); if (sockpath) { unlink(sockpath); } if (device) { void *ret; pthread_join(client_thread, &ret); exit(ret != NULL); } else { exit(EXIT_SUCCESS); } }