/* This is to check a bug reported by bpgcrypt at itaparica.org on 2006-07-31 against libgcrypt 1.2.2. */ static void one_bit_only (int highbit) { gcry_mpi_t a; char *result; int i; wherestr = "one_bit_only"; show ("checking that set_%sbit does only set one bit\n", highbit?"high":""); a = gcry_mpi_new (0); gcry_mpi_randomize (a, 70, GCRY_WEAK_RANDOM); gcry_mpi_set_ui (a, 0); if (highbit) gcry_mpi_set_highbit (a, 42); else gcry_mpi_set_bit (a, 42); if (!gcry_mpi_test_bit (a, 42)) fail ("failed to set a bit\n"); gcry_mpi_clear_bit (a, 42); if (gcry_mpi_test_bit (a, 42)) fail ("failed to clear a bit\n"); result = mpi2bitstr (a, 70); assert (strlen (result) == 70); for (i=0; result[i]; i++) if ( result[i] != '0' ) break; if (result[i]) fail ("spurious bits detected\n"); xfree (result); gcry_mpi_release (a); }
/* Allocate a bit string consisting of '0' and '1' from the MPI A. Do not return any leading zero bits. Caller needs to xfree the result. */ static char * mpi2bitstr_nlz (gcry_mpi_t a) { char *p, *buf; size_t length = gcry_mpi_get_nbits (a); buf = p = xmalloc (length + 1); while (length-- > 1) *p++ = gcry_mpi_test_bit (a, length) ? '1':'0'; *p++ = gcry_mpi_test_bit (a, 0) ? '1':'0'; *p = 0; return buf; }
/** * Generate a random value mod n. * * @param edc ECC context * @return random value mod n. */ gcry_mpi_t GNUNET_CRYPTO_ecc_random_mod_n (struct GNUNET_CRYPTO_EccDlogContext *edc) { gcry_mpi_t n; unsigned int highbit; gcry_mpi_t r; n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1); /* check public key for number of bits, bail out if key is all zeros */ highbit = 256; /* Curve25519 */ while ( (! gcry_mpi_test_bit (n, highbit)) && (0 != highbit) ) highbit--; GNUNET_assert (0 != highbit); /* generate fact < n (without bias) */ GNUNET_assert (NULL != (r = gcry_mpi_new (0))); do { gcry_mpi_randomize (r, highbit + 1, GCRY_STRONG_RANDOM); } while (gcry_mpi_cmp (r, n) >= 0); gcry_mpi_release (n); return r; }
int point_decompress(struct affine_point *p, const gcry_mpi_t x, int yflag, const struct domain_params *dp) { gcry_mpi_t h, y; int res; h = gcry_mpi_snew(0); y = gcry_mpi_snew(0); gcry_mpi_mulm(h, x, x, dp->m); gcry_mpi_addm(h, h, dp->a, dp->m); gcry_mpi_mulm(h, h, x, dp->m); gcry_mpi_addm(h, h, dp->b, dp->m); if ((res = mod_root(y, h, dp->m))) if ((res = (gcry_mpi_cmp_ui(y, 0) || ! yflag))) { p->x = gcry_mpi_snew(0); p->y = gcry_mpi_snew(0); gcry_mpi_set(p->x, x); if (gcry_mpi_test_bit(y, 0) == yflag) gcry_mpi_set(p->y, y); else gcry_mpi_sub(p->y, dp->m, y); assert(point_on_curve(p, dp)); } gcry_mpi_release(h); gcry_mpi_release(y); return res; }
/* Allocate a bit string consisting of '0' and '1' from the MPI A. Return the LENGTH least significant bits. Caller needs to xfree the result. */ static char * mpi2bitstr (gcry_mpi_t a, size_t length) { char *p, *buf; buf = p = xmalloc (length+1); while (length--) *p++ = gcry_mpi_test_bit (a, length) ? '1':'0'; *p = 0; return buf; }
char *ssh_gcry_bn2dec(bignum bn) { bignum bndup, num, ten; char *ret; int count, count2; int size, rsize; char decnum; size = gcry_mpi_get_nbits(bn) * 3; rsize = size / 10 + size / 1000 + 2; ret = malloc(rsize + 1); if (ret == NULL) { return NULL; } if (!gcry_mpi_cmp_ui(bn, 0)) { strcpy(ret, "0"); } else { ten = bignum_new(); if (ten == NULL) { SAFE_FREE(ret); return NULL; } num = bignum_new(); if (num == NULL) { SAFE_FREE(ret); bignum_safe_free(ten); return NULL; } for (bndup = gcry_mpi_copy(bn), bignum_set_word(ten, 10), count = rsize; count; count--) { gcry_mpi_div(bndup, num, bndup, ten, 0); for (decnum = 0, count2 = gcry_mpi_get_nbits(num); count2; decnum *= 2, decnum += (gcry_mpi_test_bit(num, count2 - 1) ? 1 : 0), count2--) ; ret[count - 1] = decnum + '0'; } for (count = 0; count < rsize && ret[count] == '0'; count++) ; for (count2 = 0; count2 < rsize - count; ++count2) { ret[count2] = ret[count2 + count]; } ret[count2] = 0; bignum_safe_free(num); bignum_safe_free(bndup); bignum_safe_free(ten); } return ret; }
static unsigned long mpz_trailing_zeroes (gcry_mpi_t n) { unsigned int idx, cnt; cnt = gcry_mpi_get_nbits (n); for (idx = 0; idx < cnt; idx++) { if (gcry_mpi_test_bit (n, idx) == 0) return idx; } return ULONG_MAX; }
struct affine_point pointmul(const struct affine_point *p, const gcry_mpi_t exp, const struct domain_params *dp) { struct affine_point r = point_new(); int n = gcry_mpi_get_nbits(exp); while (n) { point_double(&r, dp); if (gcry_mpi_test_bit(exp, --n)) point_add(&r, p, dp); } assert(point_on_curve(&r, dp)); return r; }
struct affine_point pointmul(const struct affine_point *p, const gcry_mpi_t exp, const struct domain_params *dp) { struct jacobian_point r = jacobian_new(); struct affine_point R; int n = gcry_mpi_get_nbits(exp); while (n) { jacobian_double(&r, dp); if (gcry_mpi_test_bit(exp, --n)) jacobian_affine_point_add(&r, p, dp); } R = jacobian_to_affine(&r, dp); jacobian_release(&r); assert(point_on_curve(&R, dp)); return R; }
static void gen_prime (gcry_mpi_t * ptest, unsigned int nbits, struct GNUNET_HashCode * hc) { /* Note: 2 is not included because it can be tested more easily by * looking at bit 0. The last entry in this list is marked by a zero */ static const uint16_t small_prime_numbers[] = { 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 0 }; #define DIM(v) (sizeof(v)/sizeof((v)[0])) static int no_of_small_prime_numbers = DIM (small_prime_numbers) - 1; gcry_mpi_t prime, pminus1, val_2, val_3, result; unsigned int i; unsigned int step; unsigned int mods[no_of_small_prime_numbers]; gcry_mpi_t tmp; gcry_mpi_t sp; GNUNET_assert (nbits >= 16); /* Make nbits fit into mpz_t implementation. */ val_2 = gcry_mpi_set_ui (NULL, 2); val_3 = gcry_mpi_set_ui (NULL, 3); prime = gcry_mpi_snew (0); result = gcry_mpi_new (0); pminus1 = gcry_mpi_new (0); *ptest = gcry_mpi_new (0); tmp = gcry_mpi_new (0); sp = gcry_mpi_new (0); while (1) { /* generate a random number */ mpz_randomize (prime, nbits, hc); /* Set high order bit to 1, set low order bit to 1. If we are * generating a secret prime we are most probably doing that * for RSA, to make sure that the modulus does have the * requested key size we set the 2 high order bits. */ gcry_mpi_set_bit (prime, nbits - 1); gcry_mpi_set_bit (prime, nbits - 2); gcry_mpi_set_bit (prime, 0); /* Calculate all remainders. */ for (i = 0; i < no_of_small_prime_numbers; i++) { size_t written; gcry_mpi_set_ui (sp, small_prime_numbers[i]); gcry_mpi_div (NULL, tmp, prime, sp, -1); mods[i] = 0; written = sizeof (unsigned int); GNUNET_assert (0 == gcry_mpi_print (GCRYMPI_FMT_USG, (unsigned char *) &mods[i], written, &written, tmp)); adjust ((unsigned char *) &mods[i], written, sizeof (unsigned int)); mods[i] = ntohl (mods[i]); } /* Now try some primes starting with prime. */ for (step = 0; step < 20000; step += 2) { /* Check against all the small primes we have in mods. */ for (i = 0; i < no_of_small_prime_numbers; i++) { uint16_t x = small_prime_numbers[i]; while (mods[i] + step >= x) mods[i] -= x; if (!(mods[i] + step)) break; } if (i < no_of_small_prime_numbers) continue; /* Found a multiple of an already known prime. */ gcry_mpi_add_ui (*ptest, prime, step); if (!gcry_mpi_test_bit (*ptest, nbits - 2)) break; /* Do a fast Fermat test now. */ gcry_mpi_sub_ui (pminus1, *ptest, 1); gcry_mpi_powm (result, val_2, pminus1, *ptest); if ((!gcry_mpi_cmp_ui (result, 1)) && (is_prime (*ptest, 5, hc))) { /* Got it. */ gcry_mpi_release (sp); gcry_mpi_release (tmp); gcry_mpi_release (val_2); gcry_mpi_release (val_3); gcry_mpi_release (result); gcry_mpi_release (pminus1); gcry_mpi_release (prime); return; } } } }
int point_compress(const struct affine_point *p) { return gcry_mpi_test_bit(p->y, 0); }