Exemplo n.º 1
0
/* This is to check a bug reported by bpgcrypt at itaparica.org on
   2006-07-31 against libgcrypt 1.2.2.  */
static void
one_bit_only (int highbit)
{
  gcry_mpi_t a;
  char *result;
  int i;

  wherestr = "one_bit_only";
  show ("checking that set_%sbit does only set one bit\n", highbit?"high":"");

  a = gcry_mpi_new (0);
  gcry_mpi_randomize (a, 70, GCRY_WEAK_RANDOM);
  gcry_mpi_set_ui (a, 0);

  if (highbit)
    gcry_mpi_set_highbit (a, 42);
  else
    gcry_mpi_set_bit (a, 42);
  if (!gcry_mpi_test_bit (a, 42))
    fail ("failed to set a bit\n");
  gcry_mpi_clear_bit (a, 42);
  if (gcry_mpi_test_bit (a, 42))
    fail ("failed to clear a bit\n");
  result = mpi2bitstr (a, 70);
  assert (strlen (result) == 70);
  for (i=0; result[i]; i++)
    if ( result[i] != '0' )
      break;
  if (result[i])
    fail ("spurious bits detected\n");
  xfree (result);
  gcry_mpi_release (a);
}
Exemplo n.º 2
0
/* Allocate a bit string consisting of '0' and '1' from the MPI A.  Do
   not return any leading zero bits. Caller needs to xfree the
   result. */
static char *
mpi2bitstr_nlz (gcry_mpi_t a)
{
  char *p, *buf;
  size_t length = gcry_mpi_get_nbits (a);
  
  buf = p = xmalloc (length + 1);
  while (length-- > 1)
    *p++ = gcry_mpi_test_bit (a, length) ? '1':'0';
  *p++ = gcry_mpi_test_bit (a, 0) ? '1':'0';
  *p = 0;

  return buf;
}
Exemplo n.º 3
0
/**
 * Generate a random value mod n.
 *
 * @param edc ECC context
 * @return random value mod n.
 */
gcry_mpi_t
GNUNET_CRYPTO_ecc_random_mod_n (struct GNUNET_CRYPTO_EccDlogContext *edc)
{
  gcry_mpi_t n;
  unsigned int highbit;
  gcry_mpi_t r;

  n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1);

  /* check public key for number of bits, bail out if key is all zeros */
  highbit = 256; /* Curve25519 */
  while ( (! gcry_mpi_test_bit (n, highbit)) &&
          (0 != highbit) )
    highbit--;
  GNUNET_assert (0 != highbit);
  /* generate fact < n (without bias) */
  GNUNET_assert (NULL != (r = gcry_mpi_new (0)));
  do {
    gcry_mpi_randomize (r,
			highbit + 1,
			GCRY_STRONG_RANDOM);
  }
  while (gcry_mpi_cmp (r, n) >= 0);
  gcry_mpi_release (n);
  return r;
}
Exemplo n.º 4
0
int point_decompress(struct affine_point *p, const gcry_mpi_t x, int yflag, 
		     const struct domain_params *dp)
{
  gcry_mpi_t h, y;
  int res;
  h = gcry_mpi_snew(0);
  y = gcry_mpi_snew(0);
  gcry_mpi_mulm(h, x, x, dp->m);
  gcry_mpi_addm(h, h, dp->a, dp->m);
  gcry_mpi_mulm(h, h, x, dp->m);
  gcry_mpi_addm(h, h, dp->b, dp->m);
  if ((res = mod_root(y, h, dp->m)))
    if ((res = (gcry_mpi_cmp_ui(y, 0) || ! yflag))) {
      p->x = gcry_mpi_snew(0);
      p->y = gcry_mpi_snew(0);
      gcry_mpi_set(p->x, x);
      if (gcry_mpi_test_bit(y, 0) == yflag)
	gcry_mpi_set(p->y, y);
      else
	gcry_mpi_sub(p->y, dp->m, y);
      assert(point_on_curve(p, dp));
    }
  gcry_mpi_release(h);
  gcry_mpi_release(y);
  return res;
}
Exemplo n.º 5
0
/* Allocate a bit string consisting of '0' and '1' from the MPI
   A. Return the LENGTH least significant bits. Caller needs to xfree
   the result. */
static char *
mpi2bitstr (gcry_mpi_t a, size_t length)
{
  char *p, *buf;
  
  buf = p = xmalloc (length+1);
  while (length--)
    *p++ = gcry_mpi_test_bit (a, length) ? '1':'0';
  *p = 0;

  return buf;
}
Exemplo n.º 6
0
char *ssh_gcry_bn2dec(bignum bn) {
  bignum bndup, num, ten;
  char *ret;
  int count, count2;
  int size, rsize;
  char decnum;

  size = gcry_mpi_get_nbits(bn) * 3;
  rsize = size / 10 + size / 1000 + 2;

  ret = malloc(rsize + 1);
  if (ret == NULL) {
    return NULL;
  }

  if (!gcry_mpi_cmp_ui(bn, 0)) {
    strcpy(ret, "0");
  } else {
    ten = bignum_new();
    if (ten == NULL) {
      SAFE_FREE(ret);
      return NULL;
    }

    num = bignum_new();
    if (num == NULL) {
      SAFE_FREE(ret);
      bignum_safe_free(ten);
      return NULL;
    }

    for (bndup = gcry_mpi_copy(bn), bignum_set_word(ten, 10), count = rsize;
        count; count--) {
      gcry_mpi_div(bndup, num, bndup, ten, 0);
      for (decnum = 0, count2 = gcry_mpi_get_nbits(num); count2;
          decnum *= 2, decnum += (gcry_mpi_test_bit(num, count2 - 1) ? 1 : 0),
          count2--)
        ;
      ret[count - 1] = decnum + '0';
    }
    for (count = 0; count < rsize && ret[count] == '0'; count++)
      ;
    for (count2 = 0; count2 < rsize - count; ++count2) {
      ret[count2] = ret[count2 + count];
    }
    ret[count2] = 0;
    bignum_safe_free(num);
    bignum_safe_free(bndup);
    bignum_safe_free(ten);
  }

  return ret;
}
Exemplo n.º 7
0
static unsigned long
mpz_trailing_zeroes (gcry_mpi_t n)
{
  unsigned int idx, cnt;

  cnt = gcry_mpi_get_nbits (n);
  for (idx = 0; idx < cnt; idx++)
  {
    if (gcry_mpi_test_bit (n, idx) == 0)
      return idx;
  }

  return ULONG_MAX;
}
Exemplo n.º 8
0
struct affine_point pointmul(const struct affine_point *p,
			     const gcry_mpi_t exp, 
			     const struct domain_params *dp)
{
  struct affine_point r = point_new();
  int n = gcry_mpi_get_nbits(exp);
  while (n) {
    point_double(&r, dp);
    if (gcry_mpi_test_bit(exp, --n))
      point_add(&r, p, dp);
  }
  assert(point_on_curve(&r, dp));
  return r;
}
Exemplo n.º 9
0
struct affine_point pointmul(const struct affine_point *p,
			     const gcry_mpi_t exp, 
			     const struct domain_params *dp)
{
  struct jacobian_point r = jacobian_new();
  struct affine_point R;
  int n = gcry_mpi_get_nbits(exp);
  while (n) {
    jacobian_double(&r, dp);
    if (gcry_mpi_test_bit(exp, --n))
      jacobian_affine_point_add(&r, p, dp);
  }
  R = jacobian_to_affine(&r, dp);
  jacobian_release(&r);
  assert(point_on_curve(&R, dp));
  return R;
}
Exemplo n.º 10
0
static void
gen_prime (gcry_mpi_t * ptest, unsigned int nbits, struct GNUNET_HashCode * hc)
{
  /* Note: 2 is not included because it can be tested more easily by
   * looking at bit 0. The last entry in this list is marked by a zero */
  static const uint16_t small_prime_numbers[] = {
    3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
    47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
    103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
    157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
    211, 223, 227, 229, 233, 239, 241, 251, 257, 263,
    269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
    331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
    389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
    449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
    509, 521, 523, 541, 547, 557, 563, 569, 571, 577,
    587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
    643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
    709, 719, 727, 733, 739, 743, 751, 757, 761, 769,
    773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
    853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
    919, 929, 937, 941, 947, 953, 967, 971, 977, 983,
    991, 997, 1009, 1013, 1019, 1021, 1031, 1033,
    1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,
    1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151,
    1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,
    1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277,
    1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307,
    1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
    1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
    1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493,
    1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,
    1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609,
    1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667,
    1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,
    1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
    1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871,
    1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,
    1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997,
    1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053,
    2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111,
    2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161,
    2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243,
    2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,
    2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
    2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411,
    2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473,
    2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,
    2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633,
    2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687,
    2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729,
    2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791,
    2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851,
    2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917,
    2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,
    3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061,
    3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137,
    3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209,
    3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,
    3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,
    3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391,
    3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467,
    3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533,
    3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583,
    3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643,
    3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,
    3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779,
    3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851,
    3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917,
    3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989,
    4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049,
    4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111,
    4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,
    4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243,
    4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,
    4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391,
    4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457,
    4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519,
    4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597,
    4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,
    4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729,
    4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799,
    4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,
    4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951,
    4957, 4967, 4969, 4973, 4987, 4993, 4999,
    0
  };
#define DIM(v) (sizeof(v)/sizeof((v)[0]))
  static int no_of_small_prime_numbers = DIM (small_prime_numbers) - 1;

  gcry_mpi_t prime, pminus1, val_2, val_3, result;
  unsigned int i;
  unsigned int step;
  unsigned int mods[no_of_small_prime_numbers];
  gcry_mpi_t tmp;
  gcry_mpi_t sp;

  GNUNET_assert (nbits >= 16);

  /* Make nbits fit into mpz_t implementation. */
  val_2 = gcry_mpi_set_ui (NULL, 2);
  val_3 = gcry_mpi_set_ui (NULL, 3);
  prime = gcry_mpi_snew (0);
  result = gcry_mpi_new (0);
  pminus1 = gcry_mpi_new (0);
  *ptest = gcry_mpi_new (0);
  tmp = gcry_mpi_new (0);
  sp = gcry_mpi_new (0);
  while (1)
  {
    /* generate a random number */
    mpz_randomize (prime, nbits, hc);
    /* Set high order bit to 1, set low order bit to 1.  If we are
     * generating a secret prime we are most probably doing that
     * for RSA, to make sure that the modulus does have the
     * requested key size we set the 2 high order bits. */
    gcry_mpi_set_bit (prime, nbits - 1);
    gcry_mpi_set_bit (prime, nbits - 2);
    gcry_mpi_set_bit (prime, 0);

    /* Calculate all remainders. */
    for (i = 0; i < no_of_small_prime_numbers; i++)
    {
      size_t written;

      gcry_mpi_set_ui (sp, small_prime_numbers[i]);
      gcry_mpi_div (NULL, tmp, prime, sp, -1);
      mods[i] = 0;
      written = sizeof (unsigned int);
      GNUNET_assert (0 ==
                     gcry_mpi_print (GCRYMPI_FMT_USG,
                                     (unsigned char *) &mods[i], written,
                                     &written, tmp));
      adjust ((unsigned char *) &mods[i], written, sizeof (unsigned int));
      mods[i] = ntohl (mods[i]);
    }
    /* Now try some primes starting with prime. */
    for (step = 0; step < 20000; step += 2)
    {
      /* Check against all the small primes we have in mods. */
      for (i = 0; i < no_of_small_prime_numbers; i++)
      {
        uint16_t x = small_prime_numbers[i];

        while (mods[i] + step >= x)
          mods[i] -= x;
        if (!(mods[i] + step))
          break;
      }
      if (i < no_of_small_prime_numbers)
        continue;               /* Found a multiple of an already known prime. */

      gcry_mpi_add_ui (*ptest, prime, step);
      if (!gcry_mpi_test_bit (*ptest, nbits - 2))
        break;

      /* Do a fast Fermat test now. */
      gcry_mpi_sub_ui (pminus1, *ptest, 1);
      gcry_mpi_powm (result, val_2, pminus1, *ptest);
      if ((!gcry_mpi_cmp_ui (result, 1)) && (is_prime (*ptest, 5, hc)))
      {
        /* Got it. */
        gcry_mpi_release (sp);
        gcry_mpi_release (tmp);
        gcry_mpi_release (val_2);
        gcry_mpi_release (val_3);
        gcry_mpi_release (result);
        gcry_mpi_release (pminus1);
        gcry_mpi_release (prime);
        return;
      }
    }
  }
}
Exemplo n.º 11
0
int point_compress(const struct affine_point *p)
{
  return gcry_mpi_test_bit(p->y, 0);
}