Example #1
0
void lcd_show_board_info(void)
{
	ulong dram_size, nand_size;
	int i;
	char temp[32];

	if (has_lcdc()) {
		lcd_printf("%s\n", U_BOOT_VERSION);
		lcd_printf("(C) 2012 ATMEL Corp\n");
		lcd_printf("[email protected]\n");
		lcd_printf("%s CPU at %s MHz\n",
			get_cpu_name(),
			strmhz(temp, get_cpu_clk_rate()));

		dram_size = 0;
		for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++)
			dram_size += gd->bd->bi_dram[i].size;
		nand_size = 0;
		for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
			nand_size += get_nand_dev_by_index(i)->size;
		lcd_printf("  %ld MB SDRAM, %ld MB NAND\n",
			dram_size >> 20,
			nand_size >> 20);
	}
}
Example #2
0
/*
 * The legacy NAND code saved the environment in the first NAND device i.e.,
 * nand_dev_desc + 0. This is also the behaviour using the new NAND code.
 */
static int writeenv(size_t offset, u_char *buf)
{
	size_t end = offset + CONFIG_ENV_RANGE;
	size_t amount_saved = 0;
	size_t blocksize, len;
	struct mtd_info *mtd;
	u_char *char_ptr;

	mtd = get_nand_dev_by_index(0);
	if (!mtd)
		return 1;

	blocksize = mtd->erasesize;
	len = min(blocksize, (size_t)CONFIG_ENV_SIZE);

	while (amount_saved < CONFIG_ENV_SIZE && offset < end) {
		if (nand_block_isbad(mtd, offset)) {
			offset += blocksize;
		} else {
			char_ptr = &buf[amount_saved];
			if (nand_write(mtd, offset, &len, char_ptr))
				return 1;

			offset += blocksize;
			amount_saved += len;
		}
	}
	if (amount_saved != CONFIG_ENV_SIZE)
		return 1;

	return 0;
}
Example #3
0
static int fb_nand_lookup(const char *partname,
			  struct mtd_info **mtd,
			  struct part_info **part)
{
	struct mtd_device *dev;
	int ret;
	u8 pnum;

	ret = mtdparts_init();
	if (ret) {
		error("Cannot initialize MTD partitions\n");
		fastboot_fail("cannot init mtdparts");
		return ret;
	}

	ret = find_dev_and_part(partname, &dev, &pnum, part);
	if (ret) {
		error("cannot find partition: '%s'", partname);
		fastboot_fail("cannot find partition");
		return ret;
	}

	if (dev->id->type != MTD_DEV_TYPE_NAND) {
		error("partition '%s' is not stored on a NAND device",
		      partname);
		fastboot_fail("not a NAND device");
		return -EINVAL;
	}

	*mtd = get_nand_dev_by_index(dev->id->num);

	return 0;
}
Example #4
0
static int splash_nand_read_raw(u32 bmp_load_addr, int offset, size_t read_size)
{
	struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
	return nand_read_skip_bad(mtd, offset,
				  &read_size, NULL,
				  mtd->size,
				  (u_char *)bmp_load_addr);
}
Example #5
0
int at91_video_show_board_info(void)
{
	ulong dram_size, nand_size;
	int i;
	u32 len = 0;
	char buf[255];
	char *corp = "2017 Microchip Technology Inc.\n";
	char temp[32];
	struct udevice *dev, *con;
	const char *s;
	vidinfo_t logo_info;
	int ret;

	len += sprintf(&buf[len], "%s\n", U_BOOT_VERSION);
	memcpy(&buf[len], corp, strlen(corp));
	len += strlen(corp);
	len += sprintf(&buf[len], "%s CPU at %s MHz\n", get_cpu_name(),
			strmhz(temp, get_cpu_clk_rate()));

	dram_size = 0;
	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++)
		dram_size += gd->bd->bi_dram[i].size;

	nand_size = 0;
#ifdef CONFIG_NAND_ATMEL
	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
		nand_size += get_nand_dev_by_index(i)->size;
#endif

	len += sprintf(&buf[len], "%ld MB SDRAM, %ld MB NAND\n",
		       dram_size >> 20, nand_size >> 20);

	ret = uclass_get_device(UCLASS_VIDEO, 0, &dev);
	if (ret)
		return ret;

	microchip_logo_info(&logo_info);
	ret = video_bmp_display(dev, logo_info.logo_addr,
				logo_info.logo_x_offset,
				logo_info.logo_y_offset, false);
	if (ret)
		return ret;

	ret = uclass_get_device(UCLASS_VIDEO_CONSOLE, 0, &con);
	if (ret)
		return ret;

	vidconsole_position_cursor(con, 0, logo_info.logo_height);
	for (s = buf, i = 0; i < len; s++, i++)
		vidconsole_put_char(con, *s);

	return 0;
}
Example #6
0
static int erase_and_write_env(const struct nand_env_location *location,
		u_char *env_new)
{
	struct mtd_info *mtd;
	int ret = 0;

	mtd = get_nand_dev_by_index(0);
	if (!mtd)
		return 1;

	printf("Erasing %s...\n", location->name);
	if (nand_erase_opts(mtd, &location->erase_opts))
		return 1;

	printf("Writing to %s... ", location->name);
	ret = writeenv(location->erase_opts.offset, env_new);
	puts(ret ? "FAILED!\n" : "OK\n");

	return ret;
}
Example #7
0
static int load_devicetree(void)
{
	int rc;
	loff_t dtbsize;
	u32 dtbaddr = env_get_ulong("dtbaddr", 16, 0UL);

	if (dtbaddr == 0) {
		printf("%s: don't have a valid <dtbaddr> in env!\n", __func__);
		return -1;
	}
#ifdef CONFIG_NAND
	dtbsize = 0x20000;
	rc = nand_read_skip_bad(get_nand_dev_by_index(0), 0x40000,
				(size_t *)&dtbsize,
				NULL, 0x20000, (u_char *)dtbaddr);
#else
	char *dtbname = env_get("dtb");
	char *dtbdev = env_get("dtbdev");
	char *dtbpart = env_get("dtbpart");
	if (!dtbdev || !dtbpart || !dtbname) {
		printf("%s: <dtbdev>/<dtbpart>/<dtb> missing.\n", __func__);
		return -1;
	}

	if (fs_set_blk_dev(dtbdev, dtbpart, FS_TYPE_EXT)) {
		puts("load_devicetree: set_blk_dev failed.\n");
		return -1;
	}
	rc = fs_read(dtbname, (u32)dtbaddr, 0, 0, &dtbsize);
#endif
	if (rc == 0) {
		gd->fdt_blob = (void *)dtbaddr;
		gd->fdt_size = dtbsize;
		debug("loaded %d bytes of dtb onto 0x%08x\n",
		      (u32)dtbsize, (u32)gd->fdt_blob);
		return dtbsize;
	}

	printf("%s: load dtb failed!\n", __func__);
	return -1;
}
Example #8
0
void cs4340_upload_firmware(struct phy_device *phydev)
{
	char line_temp[0x50] = {0};
	char reg_addr[0x50] = {0};
	char reg_data[0x50] = {0};
	int i, line_cnt = 0, column_cnt = 0;
	struct cortina_reg_config fw_temp;
	char *addr = NULL;

#if defined(CONFIG_SYS_CORTINA_FW_IN_NOR) || \
	defined(CONFIG_SYS_CORTINA_FW_IN_REMOTE)

	addr = (char *)CONFIG_CORTINA_FW_ADDR;
#elif defined(CONFIG_SYS_CORTINA_FW_IN_NAND)
	int ret;
	size_t fw_length = CONFIG_CORTINA_FW_LENGTH;

	addr = malloc(CONFIG_CORTINA_FW_LENGTH);
	ret = nand_read(get_nand_dev_by_index(0),
			(loff_t)CONFIG_CORTINA_FW_ADDR,
			&fw_length, (u_char *)addr);
	if (ret == -EUCLEAN) {
		printf("NAND read of Cortina firmware at 0x%x failed %d\n",
		       CONFIG_CORTINA_FW_ADDR, ret);
	}
#elif defined(CONFIG_SYS_CORTINA_FW_IN_SPIFLASH)
	int ret;
	struct spi_flash *ucode_flash;

	addr = malloc(CONFIG_CORTINA_FW_LENGTH);
	ucode_flash = spi_flash_probe(CONFIG_ENV_SPI_BUS, CONFIG_ENV_SPI_CS,
				CONFIG_ENV_SPI_MAX_HZ, CONFIG_ENV_SPI_MODE);
	if (!ucode_flash) {
		puts("SF: probe for Cortina ucode failed\n");
	} else {
		ret = spi_flash_read(ucode_flash, CONFIG_CORTINA_FW_ADDR,
				     CONFIG_CORTINA_FW_LENGTH, addr);
		if (ret)
			puts("SF: read for Cortina ucode failed\n");
		spi_flash_free(ucode_flash);
	}
#elif defined(CONFIG_SYS_CORTINA_FW_IN_MMC)
	int dev = CONFIG_SYS_MMC_ENV_DEV;
	u32 cnt = CONFIG_CORTINA_FW_LENGTH / 512;
	u32 blk = CONFIG_CORTINA_FW_ADDR / 512;
	struct mmc *mmc = find_mmc_device(CONFIG_SYS_MMC_ENV_DEV);

	if (!mmc) {
		puts("Failed to find MMC device for Cortina ucode\n");
	} else {
		addr = malloc(CONFIG_CORTINA_FW_LENGTH);
		printf("MMC read: dev # %u, block # %u, count %u ...\n",
		       dev, blk, cnt);
		mmc_init(mmc);
		(void)mmc->block_dev.block_read(&mmc->block_dev, blk, cnt,
						addr);
	}
#endif

	while (*addr != 'Q') {
		i = 0;

		while (*addr != 0x0a) {
			line_temp[i++] = *addr++;
			if (0x50 < i) {
				printf("Not found Cortina PHY ucode at 0x%p\n",
				       (char *)CONFIG_CORTINA_FW_ADDR);
				return;
			}
		}

		addr++;  /* skip '\n' */
		line_cnt++;
		column_cnt = i;
		line_temp[column_cnt] = '\0';

		if (CONFIG_CORTINA_FW_LENGTH < line_cnt)
			return;

		for (i = 0; i < column_cnt; i++) {
			if (isspace(line_temp[i++]))
				break;
		}

		memcpy(reg_addr, line_temp, i);
		memcpy(reg_data, &line_temp[i], column_cnt - i);
		strim(reg_addr);
		strim(reg_data);
		fw_temp.reg_addr = (simple_strtoul(reg_addr, NULL, 0)) & 0xffff;
		fw_temp.reg_value = (simple_strtoul(reg_data, NULL, 0)) &
				     0xffff;
		phy_write(phydev, 0x00, fw_temp.reg_addr, fw_temp.reg_value);
	}
}