void GetFrequency(uint8_t range) {
  unsigned char taste;			// set if key is pressed during measurement
 #if PROCESSOR_TYP == 644
  unsigned long freq_count;		// the counted pulses in 1 second
 #endif
  unsigned long long ext_period;
  unsigned long freq_from_per;
  uint8_t ii;
  uint8_t mm;
  /* range has set the lowest bit to use the 16:1 frequency divider permanently. */
  /* The upper bits of range specifies the input selection. */
  /* 0 = external input, 2 = channel 2, 4 = HF Quartz, 6 = LF Quartz */
  
 #if PROCESSOR_TYP == 644
  FDIV_DDR |= (1<<FDIV_PIN);		//switch to output
  if ((range & 0x01) == 0) {
     FDIV_PORT &= ~(1<<FDIV_PIN);	// switch off the 16:1 divider
  } else {
     FDIV_PORT |= (1<<FDIV_PIN);	// use frequency divider for next measurement
  }
  FINP_DDR |= (1<<FINP_P0) | (1<<FINP_P1);	// switch both pins to output

 FINP_PORT &= ~(1<<FINP_P0);		// clear lower bit of input selection
 FINP_PORT &= ~(1<<FINP_P1);		// clear higher bit of input selection
 if (range == 0) {  
    message_key_released(FREQ_str);	// Frequency: in line 1
 } else if (range == 1) { 
    message_key_released(HFREQ_str);	// High Frequency: in line 1
 } else if (range < 4) { /* 2+3 */
    FINP_PORT |= (1<<FINP_P0);		// set lower bit of input selection
    FINP_PORT &= ~(1<<FINP_P1);		// clear higher bit of input selection
 } else if (range < 6) { /* 4+5 */
    FINP_PORT &= ~(1<<FINP_P0);		// clear lower bit of input selection
    FINP_PORT |= (1<<FINP_P1);		// set higher bit of input selection
    message_key_released(H_CRYSTAL_str);	// HF Quarz: in line 1
 } else {  /* 6+7 */
    FINP_PORT |= (1<<FINP_P0);		// set lower bit of input selection
    FINP_PORT |= (1<<FINP_P1);		// set higher bit of input selection
    message_key_released(L_CRYSTAL_str);	// LF Quarz: in line 1
 }

 #else
  message_key_released(FREQ_str);	// Frequency: in line 1
 #endif
  taste = 0;				// reset flag for key pressed
  for (mm=0;mm<240;mm++) {
     // *************************************************************************
     // *********** straight frequency measurement by counting 1 second *********
     // *************************************************************************
     //set up Counter 0
     // Counter 0 is used to count the external signal connected to T0 (PD4 or PB0)
     FREQINP_DDR &= ~(1<<FREQINP_PIN);	// switch frequency pin to input
     wait1ms();				// let capacitor time to load to 2.4V input
#if PROCESSOR_TYP == 1280
     TCCR3A = 0; 			// normal operation, no output
     TCNT3 = 0;				// set counter 3 to zero
     ext_freq.dw = 0;			// set external frequency to zero
     TIFR3 = (1<<TOV3);			// clear OV interrupt of timer 3
     TIMSK3 = (1<<TOIE3);		// enable OV interrupt of timer 3
#else
     TCCR0A = 0; 			// normal operation, no output
     TCNT0 = 0;				// set counter to zero
     ext_freq.dw = 0;			// set external frequency to zero
     TIFR0 = (1<<TOV0);			// clear OV interrupt of timer 0
     TIMSK0 = (1<<TOIE0);		// enable OV interrupt of timer 0
#endif
     // start counter after starting second counter timer 1

     // set up counter 1 to measure one second
     TCCR1A = 0;			// normal operation
#define CNT1_END_VAL ((F_CPU / 256UL) + 1)
#define CNT1_DIVIDER (1<<CS12)
#if CNT1_END_VAL > 0xffff
 #undef CNT1_END_VAL
 #undef CNT1_DIVIDER
 #define CNT1_END_VAL ((F_CPU / 1024UL) + 1)
 #define CNT1_DIVIDER ((1<<CS12) | (1<<CS10))
 #if F_CPU != ((F_CPU / 1024UL) * 1024UL)
  #warning F_CPU can not be divided by 1024, measured frequency is wrong!
 #endif
#else 
 #if F_CPU != ((F_CPU / 256UL) * 256UL)
  #warning F_CPU can not be divided by 256, measured frequency is wrong!
 #endif
#endif
     OCR1B = CNT1_END_VAL;		// set to 1 second  (counter 0 is started with 1)
     OCR1A = 1;				// start counter 0 with first count
     TCNT1 = 0;				// set counter to zero
     GTCCR  |= (1<<PSRSYNC);		// reset clock precounter
     TIFR1 = (1<<OCF1B) | (1<<OCF1A);	// clear Output compare match
     TIMSK1 = (1<<OCIE1B) | (1<<OCIE1A);	// enable the Compare A match and Compare B match interrupt
     sei();				// set interrupt enable
     TCCR1B = CNT1_DIVIDER;		// divide CPU clock by 256, start counter
     // both counter are running now, wait for counter 1 reach OCR1A
     for (ii=0;ii<50;ii++) {
        wait20ms();			// first count of counter 1 (<32us) has started the counter 0
        wdt_reset();
        if (!(RST_PIN_REG & (1<<RST_PIN))) taste = 1;	// user request stop of operation
#if PROCESSOR_TYP == 1280
        if (TCCR3B == 0) break;		// timer 3 is stopped by interrupt
#else
        if (TCCR0B == 0) break;		// timer 0 is stopped by interrupt
#endif
     }
     // one second is counted
#if PROCESSOR_TYP == 1280
     TCCR3B = 0;		// stop timer 3, if not stopped by timer 1 compare interrupt
     ext_freq.w[0] = TCNT3;	// add lower 16 bit to get total counts
#else
     TCCR0B = 0;		// stop timer 0, if not stopped by timer 1 compare interrupt
     ext_freq.b[0] = TCNT0;	// add lower 8 bit to get total counts
#endif
 #if PROCESSOR_TYP == 644
     freq_count = ext_freq.dw;	// save the frequency counter
 #endif
 #if (LCD_LINES > 3)
     lcd_line3();
     lcd_clear_line();
     lcd_line4();
     lcd_clear_line();
     lcd_clear_line2();
 #else
     lcd_clear();		// clear total display
 #endif
     lcd_data('f');
     lcd_equal();		// lcd_data('=');
 #if PROCESSOR_TYP == 644
     if ((FDIV_PORT&(1<<FDIV_PIN)) == 0) {
        Display_Hz(ext_freq.dw, 7);
     } else {
        // frequency divider is activ
        Display_Hz(ext_freq.dw*FREQ_DIV, 7);
     }
 #else
     Display_Hz(ext_freq.dw, 7);
 #endif
 #if PROCESSOR_TYP == 644
     lcd_space();
     if ((FDIV_PORT&(1<<FDIV_PIN)) != 0) {
        lcd_data('/');		// Frequency divider is activ
     } else {
        lcd_space();		// Frequency divider is not activ
     }
 #endif
     FREQINP_DDR &= ~(1<<FREQINP_PIN);	// switch frequency pin to input
     if (TCCR1B != 0) {
       // Exact 1000ms period is only with "end of period" from timer1 interrupt.
       // When stopped with the for loop, the time is too long because wait call does not
       // respect CPU time used for interrupts and loop itself.
       // For this case show ? behind the Hz. 
       lcd_data('?');
     }
     TCCR1B = 0;		// stop timer 1
     TIMSK1 = 0;		// disable all timer 1 interrupts
     if ((ext_freq.dw < FMAX_PERIOD) && (ext_freq.dw > 0)) {
     // *************************************************************************
     // ******** Period measurement by counting some periods ******************** 
     // *************************************************************************
        pinchange_max = ((10 * (unsigned long)ext_freq.dw) + MHZ_CPU) / MHZ_CPU;	// about 10000000 clock tics
        pinchange_max += pinchange_max;	// * 2 for up and down change
        FREQINP_DDR &= ~(1<<FREQINP_PIN);	// switch frequency pin to input
        wait1ms();			// let capacitor time to load to 2.4V input
#if PROCESSOR_TYP == 1280
        TCNT3 = 0;			// set counter 3 to zero
        ext_freq.dw = 0;		// reset counter to zero
        TIFR3 = (1<<TOV3);		// clear OV interrupt
        TIMSK3 = (1<<TOIE3);		// enable OV interrupt
        // counter 3 ist started with first pin change interrupt
        pinchange_count = 0;
	EICRB = (0<<ISC61) | (1<<ISC60); // set int6 pin change
        EIFR  |= (1<<INTF6);		// clear interrupt 6 flag
        PCMSK_FREQ |= (1<<PCINT_FREQ); // enable int6
#else
        TCNT0 = 0;			// set counter 0 to zero
        ext_freq.dw = 0;		// reset counter to zero
        TIFR0 = (1<<TOV0);		// clear OV interrupt
        TIMSK0 = (1<<TOIE0);		// enable OV interrupt
        // counter 0 ist started with first pin change interrupt
        pinchange_count = 0;
        PCIFR  = (1<<PCI_CLEAR_BIT);		// clear Pin Change Status
        PCICR  |= (1<<PCI_ENABLE_BIT);		// enable pin change interrupt
#endif
        sei();
        PCMSK_FREQ |= (1<<PCINT_FREQ);	// monitor PD4 PCINT20 or PB0 PCINT8 pin change
        for (ii=0;ii<250;ii++) {
           wait20ms();
           wdt_reset();
           if (!(RST_PIN_REG & (1<<RST_PIN))) taste = 1;	// user request stop of operation
           if ((PCMSK_FREQ & (1<<PCINT_FREQ)) == 0) break;		// monitoring is disabled by interrupt
        } /* end for ii */
#if PROCESSOR_TYP == 1280
        TCCR3B = 0;		// stop counter 3
        PCMSK_FREQ &= ~(1<<PCINT_FREQ); // disable int6
        ext_freq.w[0] = TCNT3;		// add lower 16 bit to get total counts
#else
        TCCR0B = 0;		// stop counter 0
        PCMSK_FREQ &= ~(1<<PCINT_FREQ);		// stop monitor PD4 PCINT20 or PB0 PCINT8 pin change
        PCICR &= ~(1<<PCI_ENABLE_BIT);	// disable the interrupt
        ext_freq.b[0] = TCNT0;		// add lower 8 bit to get total counts
#endif
//        lcd_clear_line2();
//        wait50ms();		// let LCD flicker to 
 #if (LCD_LINES > 3)
        lcd_line3();		// use line3 to report the period with 4-line LCD
 #else
        lcd_line2();		// report period on line 2 of 2-line LCD
 #endif
        lcd_data('T');
        lcd_equal();		// lcd_data('=');
        ext_period = ((unsigned long long)ext_freq.dw * (200000/MHZ_CPU)) / pinchange_max;
 #if PROCESSOR_TYP == 644
        if ((FDIV_PORT&(1<<FDIV_PIN)) != 0) {
           // frequency divider is activ, period is measured too long
           ext_period = ext_period / FREQ_DIV;
        }
 #endif
        if (pinchange_max > 127) {
           DisplayValue(ext_period,-11,'s',7);	// show period converted to 0.01ns units
        } else {
           //prevent overflow of 32-Bit
           DisplayValue((unsigned long)(ext_period/100),-9,'s',7);	// show period converted to 1ns units
        }
        if (ii == 250) {
           lcd_data('?');		// wait loop has regular finished
        } else {
           if (ext_period > 249500) {
 #if (LCD_LINES > 3)
              lcd_line4();		// use line 4 of 4-line LCD to report the computed frequency
 #else
              lcd_line1();		// overwrite line 1 of 2-line LCD to report the computed frequency
 #endif
              lcd_data('f');
              lcd_equal();		// lcd_data('=');
              if (ext_period > 1000000000) {
                 // frequency in 0.000001Hz (1e11*1e6)/(0.01ns count)
                 freq_from_per = (unsigned long long)(100000000000000000) / ext_period;
                 DisplayValue(freq_from_per,-6,'H',7);  // display with  0.000001 Hz resolution
              } else {
                 // prevent unsigned long overflow, scale to 0.0001 Hz
                 // frequency in 0.0001Hz (1e11*1e4)/(0.01ns count)
                 freq_from_per = (unsigned long long)(1000000000000000) / ext_period;
                 DisplayValue(freq_from_per,-4,'H',7);  // display with  0.0001 Hz resolution
              }
              lcd_data('z');
              FREQINP_DDR &= ~(1<<FREQINP_PIN);	// switch frequency pin to input
           }
        }
     }  /* end if 1 < ext_freq < FMAX_PERIOD */
 #if PROCESSOR_TYP == 644
     if ((FDIV_PORT & (1<<FDIV_PIN)) == 0) {
        // frequency divider is not activ
        if ( ((freq_count >= FMAX_PERIOD) && (freq_count < ((unsigned long)FMAX_PERIOD*FREQ_DIV))) ||
            (freq_count > FMAX_INPUT) ){
           FDIV_PORT |= (1<<FDIV_PIN);			// use frequency divider for next measurement
        }
     } else {
        // frequency divider is activ
        if ((freq_count < (FMAX_PERIOD/FREQ_DIV)) && ((range & 0x01) == 0)) {
           FDIV_PORT &= ~(1<<FDIV_PIN);			// switch off the 16:1 divider
        }
     }
 #endif
//     taste += wait_for_key_ms(SHORT_WAIT_TIME/2);
     TIMSK0 = 0;		// disable all timer 0 interrupts
     taste += wait_for_key_ms(2000);
 #ifdef WITH_ROTARY_SWITCH
     if ((taste != 0) || (rotary.incre > 2)) break;
 #else
     if (taste != 0) break;
 #endif
  }  /* end for mm  */
 
  return;
 } // end GetFrequency()
/* ****************************************************************** */
void show_C_ESR() {
  uint8_t key_pressed;
  message_key_released(C_ESR_str);
#ifdef POWER_OFF
  uint8_t times;
  for (times=0;times<250;) 
#else
  while (1)		/* wait endless without the POWER_OFF option */
#endif
  {
        PartFound = PART_NONE;
        ReadBigCap(TP3,TP1);
        if (PartFound == PART_CAPACITOR) {
#if LCD_LINES > 2
           lcd_line2(); 	// set to line2 
#else
           lcd_line1(); 	// set to line1 
#endif
           lcd_data('C');
           lcd_equal();		// lcd_data('=');
           DisplayValue(cap.cval_max,cap.cpre_max,'F',3);
           lcd_clear_line();	// clear to end of line 1
           cap.esr = GetESR(cap.cb,cap.ca);
#if LCD_LINES > 2
	   lcd_line3();		// use line 3 
#else
           lcd_line2();		// use line 2 
#endif
           lcd_MEM_string(&ESR_str[1]);
           if (cap.esr < 65530) {
              DisplayValue16(cap.esr,-2,LCD_CHAR_OMEGA,2);
           } else {
              lcd_data('?');		// too big
           }
           lcd_clear_line();		// clear to end of line
        } else { // no cap found
#if LCD_LINES > 2
           lcd_clear_line2(); 	// clear C value 
           lcd_line3();
	   lcd_clear_line();	// clear old ESR value
#else
           lcd_line1();	//  
           lcd_MEM2_string(C_ESR_str);
           lcd_clear_line();
           lcd_clear_line2(); 	// clear old ESR value 
#endif
        }
#if defined(POWER_OFF) && defined(BAT_CHECK)
     Bat_update(times);
#endif
     key_pressed = wait_for_key_ms(1000);
#ifdef WITH_ROTARY_SWITCH
     if ((key_pressed != 0) || (rotary.incre > 3)) break;
#else
     if (key_pressed != 0) break;
#endif
#ifdef POWER_OFF
     times = Pwr_mode_check(times);	// no time limit with DC_Pwr_mode
#endif
  }  /* end for times */
} /* end show_C_ESR() */
Example #3
0
void AutoCheck(uint8_t test_mode) {
  /* (test_mode & 0x0f) == 0 , only calibration without T1-T7 */
  /* (test_mode & 0x0f) == 1 , calibration and additional T1-T7 */
  /* (test_mode & 0xf0) == 0 , check for shorted probes, if unshorted, return */
  /* (test_mode & 0xf0) == 0x10 , ask for shorted probes */

 uint8_t ww;		// counter for repeating the tests
 int  adcmv[7];
 #ifdef EXTENDED_TESTS
  uint16_t u680;	// 3 * (Voltage at 680 Ohm)
  uint8_t taste;	// ist key pressed? 0 = no
 #else
  #ifndef NO_TEST_T1_T7
  #warning "Selftest without extended tests T1 to T7!"
  #endif
 #endif
 #if defined(EXTENDED_TESTS) || defined(WITH_MENU)
  uint8_t tt;		// number of running test
 #endif

 #ifdef FREQUENCY_50HZ
  uint8_t ff50;		// loop counter for 2s
 #endif

// define the maximum count of repetitions MAX_REP
#define MAX_REP 4

 #ifdef AUTO_CAL
uint8_t cap_found;	// counter for found capacitor
  #ifdef AUTOSCALE_ADC
int8_t udiff;		// difference between ADC Voltage with VCC or Bandgap reference
int8_t udiff2;
  #endif
 #endif
PartFound = PART_NONE;		// no part found before
if ((test_mode & 0xf0) == 0) {
  // probed should be shorted already to begin selftest
  if (AllProbesShorted() != 3) return;
  lcd_clear();
  lcd_MEM_string(SELFTEST);		// "Selftest mode.."
  lcd_line2();
  lcd_data('?');			// wait for key pressed for confirmation
  if (wait_for_key_ms(2000) > 10) goto begin_selftest;	// key is pressed again
 #ifdef WITH_MENU
} else {
  // report to user, that probes should be shorted
  ww = 0;
  for (tt=0;tt<150;tt++) {	/* wait about 30 seconds for shorted probes */
    lcd_clear();
    lcd_MEM2_string(SHORT_PROBES_str);	// message "Short probes!" to LCD
    if (AllProbesShorted() == 3) {
       ww++;	// all probes now shorted
    } else {
       ww = 0;	// connection not stable, retry
    }
    if (ww > 3) break;	// connection seems to be stable
    lcd_refresh();		// write the pixels to display, ST7920 only
    wait_about200ms();			// wait 200ms and try again
  }  /* end for (tt...) */
  if (tt < 150) goto begin_selftest;		// is shorted before time limit
  goto no_zero_resistance;			// skip measuring of the zero resistance
 #endif
}
// no key pressed for 2s
lcd_clear();
lcd_MEM_string(VERSION_str);	//"Version ..."
return;

begin_selftest:
lcd_line2();
lcd_MEM2_string(R0_str);		// "R0="
eeprom_write_byte((uint8_t *)(&EE_ESR_ZEROtab[2]), (uint8_t)0);	// clear zero offset
eeprom_write_byte((uint8_t *)(&EE_ESR_ZEROtab[3]), (uint8_t)0);	// clear zero offset
eeprom_write_byte((uint8_t *)(&EE_ESR_ZEROtab[1]), (uint8_t)0);	// clear zero offset

adcmv[0] = GetESR(TP3, TP1);
adcmv[1] = GetESR(TP3, TP2);
adcmv[2] = GetESR(TP2, TP1);
DisplayValue16(adcmv[0],-2,' ',3);
DisplayValue16(adcmv[1],-2,' ',3);
DisplayValue16(adcmv[2],-2,LCD_CHAR_OMEGA,3);
if (adcmv[0] >= 90) {
  adcmv[0] = ESR_ZERO;	// set back to default value
}
eeprom_write_byte((uint8_t *)(&EE_ESR_ZEROtab[2]), (uint8_t)adcmv[0]);	// fix zero offset
if (adcmv[1] >= 90) {
  adcmv[1] = ESR_ZERO;	// set back to default value
}
eeprom_write_byte((uint8_t *)(&EE_ESR_ZEROtab[3]), (uint8_t)adcmv[1]);	// fix zero offset
if (adcmv[2] >= 90) {
  adcmv[2] = ESR_ZERO;	// set back to default value
}
eeprom_write_byte((uint8_t *)(&EE_ESR_ZEROtab[1]), (uint8_t)adcmv[2]);	// fix zero offset
last_line_used = 2;
wait_for_key_5s_line2();		// wait up to 5 seconds and clear line 2

 #ifdef WITH_MENU
no_zero_resistance:
 #endif
 #ifdef EXTENDED_TESTS
#define TEST_COUNT 8
if((test_mode & 0x0f) == 1) {  /* full test requested */

for(tt=1;tt<TEST_COUNT;tt++) {		// loop for all Tests
for(ww=0;ww<MAX_REP;ww++) {	// repeat the test MAX_REP times
   lcd_clear_line2();		// clear total line 2
   lcd_clear_line1();		// clear total line 1
   lcd_data('T');			//output the Testmode "T"
   u2lcd(tt);		//lcd_string(utoa(tt, outval, 10));	//output Test number
   lcd_space();
				//############################################
   if (tt == 1) {   // output of reference voltage and factors for capacity measurement
      lcd_MEM2_string(URef_str);	//"URef="
      Calibrate_UR();		// get Reference voltage, Pin resistance
      Display_mV(ref_mv,4);
      lcd_line2();			//Cursor to column 1, row 2
      lcd_MEM2_string(RHfakt_str);	//"RHf="
      u2lcd(RHmultip);	//lcd_string(utoa(RHmultip, outval, 10));
      ADCconfig.Samples = R_ANZ_MESS;	// set number of ADC reads near to maximum
   }
				//############################################
   if (tt == 2) { // how equal are the RL resistors? 
      u680 = ((long)ADCconfig.U_AVCC * (PIN_RM + R_L_VAL) / (PIN_RM + R_L_VAL + R_L_VAL + PIN_RP));
      R_PORT = 1<<PIN_RL1;		//RL1 to VCC
      R_DDR = (1<<PIN_RL1) | (1<<PIN_RL2);	//RL2 to -
      adcmv[0] = W20msReadADC(TP1);
      adcmv[0] -= u680;
      R_DDR = (1<<PIN_RL1) | (1<<PIN_RL3);	//RL3 to -
      adcmv[1] = W20msReadADC(TP1);
      adcmv[1] -= u680;
      R_PORT = 1<<PIN_RL2;		//RL2 to VCC
      R_DDR = (1<<PIN_RL2) | (1<<PIN_RL3);	//RL3 to -
      adcmv[2] = W20msReadADC(TP2);
      adcmv[2] -= u680;
      lcd_MEM_string(RLRL_str);	// "RLRL"
   }
				//############################################
   if (tt == 3) { // how equal are the RH resistors
      R_PORT = 1<<PIN_RH1;		//RH1 to VCC
      R_DDR = (1<<PIN_RH1) | (1<<PIN_RH2);	//RH2 to -
      adcmv[0] = W20msReadADC(TP1);
      adcmv[3] = ADCconfig.U_AVCC / 2;
      adcmv[0] -= adcmv[3];
      R_DDR = (1<<PIN_RH1) | (1<<PIN_RH3);	//RH3 to -
      adcmv[1] = W20msReadADC(TP1);
      adcmv[1] -= adcmv[3];
      R_PORT = 1<<PIN_RH2;		//RH2 to VCC
      R_DDR = (1<<PIN_RH2) | (1<<PIN_RH3);	//RH3 to -
      adcmv[2] = W20msReadADC(TP2);
      adcmv[2] -= adcmv[3];
      lcd_MEM_string(RHRH_str);	// "RHRH"
   }
				//############################################
   if (tt == 4) { // Text release probes
      lcd_MEM_string(RELPROBE);	// "Release Probes"
      if (AllProbesShorted() != 0) ww = MAX_REP-2;
   }
				//############################################
   if (tt == 5) { // can we switch the ADC pins to GND across R_H resistor?
      R_PORT = 0;
      R_DDR = 1<<PIN_RH1;		//Pin 1 over R_H to GND
      adcmv[0] = W20msReadADC(TP1);

      R_DDR = 1<<PIN_RH2;		//Pin 2 over R_H to GND
      adcmv[1] = W20msReadADC(TP2);

      R_DDR = 1<<PIN_RH3;		//Pin 3 over R_H to GND
      adcmv[2] = W20msReadADC(TP3);
      lcd_MEM_string(RH1L_str);	// "RH_Lo="
   }
				//############################################
   if (tt == 6) { // can we switch the ADC pins to VCC across the R_H resistor?
      R_DDR = 1<<PIN_RH1;		//Pin 1 over R_H to VCC
      R_PORT = 1<<PIN_RH1;
      adcmv[0] = W20msReadADC(TP1) - ADCconfig.U_AVCC;
      R_DDR = 1<<PIN_RH2;		//Pin 2 over R_H to VCC
      R_PORT = 1<<PIN_RH2;
      adcmv[1] = W20msReadADC(TP2) - ADCconfig.U_AVCC;
      R_DDR = 1<<PIN_RH3;		//Pin 3 over R_H to VCC
      R_PORT = 1<<PIN_RH3;
      adcmv[2] = W20msReadADC(TP3) - ADCconfig.U_AVCC;
      lcd_MEM_string(RH1H_str);	// "RH_Hi="
   }
   if (tt == 7) { // is the voltage of all R_H / R_L dividers correct?
      u680 = ((long)ADCconfig.U_AVCC * (PIN_RM + R_L_VAL) / (PIN_RM + R_L_VAL + (unsigned long)R_H_VAL*100));
      R_PORT = 1<<PIN_RH1;		//RH1 to VCC
      R_DDR = (1<<PIN_RH1) | (1<<PIN_RL1);	//RH1 to +, RL1 to -
      adcmv[0] = W20msReadADC(TP1);
      adcmv[0] -= u680;
      R_PORT = 1<<PIN_RH2;		//RH2 to VCC
      R_DDR = (1<<PIN_RH2) | (1<<PIN_RL2);	//RH2 to +, RL2 to -
      adcmv[1] = W20msReadADC(TP2);
      adcmv[1] -= u680;
      R_PORT = 1<<PIN_RH3;		//RH3 to VCC
      R_DDR = (1<<PIN_RH3) | (1<<PIN_RL3);	//RH3 to +, RL3 to -
      adcmv[2] = W20msReadADC(TP3);
      adcmv[2] -= u680;
      lcd_MEM_string(RHRL_str);	// "RH/RL"
   }
				//############################################
   if (tt > 1) {	// output 3 voltages 
      lcd_line2();			//Cursor to column 1, row 2
      i2lcd(adcmv[0]);		// lcd_string(itoa(adcmv[0], outval, 10));	//output voltage 1
      lcd_space();
      i2lcd(adcmv[1]);		// lcd_string(itoa(adcmv[1], outval, 10));	//output voltage 2
      lcd_space();
      i2lcd(adcmv[2]);		// lcd_string(itoa(adcmv[2], outval, 10));	//output voltage 3
   }
   ADC_DDR =  TXD_MSK;		// all-Pins to Input
   ADC_PORT = TXD_VAL;		// all ADC-Ports to GND
   R_DDR = 0;			// all R-Ports to Input
   R_PORT = 0;
   taste = wait_for_key_ms(1000);	// wait up to 1 second or key is pressed
   if ((tt != 4) && (taste > 10)) {
      // don't finish repetition  for T4 with pressed key
      break; // if key is pressed, don't repeat
   }
} //end for ww
wait_for_key_ms(1000);	// wait up to 1 second or key is pressed
} //end for tt
  #if PROCESSOR_TYP == 1280
lcd_clear();
lcd_testpin(TP1);
lcd_data('L');
lcd_equal();			// lcd_data('=');
ADC_PORT = TXD_VAL;
ADC_DDR = (1<<TP1) | TXD_MSK;
R_PORT = (1<<PIN_RL1);
R_DDR = (1<<PIN_RL1);
adcmv[0] = W5msReadADC(TP1);
ADCSRB = (1<<MUX5);		// switch to upper 8 MUX inputs
adcmv[1] = ReadADC(PIN_RL1);
ADCSRB = 0;			// switch back to lower 8 MUX inputs
ResistorVal[0] = (adcmv[0] * (unsigned long)R_L_VAL) / (adcmv[1] - adcmv[0]);
DisplayValue(ResistorVal[0],-1,LCD_CHAR_OMEGA,3);
lcd_space();
lcd_data('H');
lcd_equal();			// lcd_data('=');
ResistorVal[1] = ((ADCconfig.U_AVCC - adcmv[1]) * (unsigned long)R_L_VAL) / (adcmv[1] - adcmv[0]);
DisplayValue(ResistorVal[1],-1,LCD_CHAR_OMEGA,3);
lcd_line2();
lcd_testpin(TP1);
lcd_space();
lcd_data('H');
lcd_equal();			// lcd_data('=');
ADC_PORT = (1<<TP1) | TXD_VAL;
R_PORT = 0;
adcmv[0] = W5msReadADC(TP1);
ADCSRB = (1<<MUX5);		// switch to upper 8 MUX inputs
adcmv[1] = ReadADC(PIN_RL1);
ADCSRB = 0;			// switch back to lower 8 MUX inputs
ResistorVal[1] = ((ADCconfig.U_AVCC - adcmv[0]) * (unsigned long)R_L_VAL) / (adcmv[0] - adcmv[1]);
DisplayValue(ResistorVal[1],-1,LCD_CHAR_OMEGA,3);
lcd_space();
lcd_data('L');
lcd_equal();			// lcd_data('=');
ResistorVal[0] = (adcmv[1] * (unsigned long)R_L_VAL) / (adcmv[0] - adcmv[1]);
DisplayValue(ResistorVal[0],-1,LCD_CHAR_OMEGA,3);
wait_about1s();			// only for mega1280
last_line_used = 2;
wait_for_key_5s_line2();		// wait up to 5 seconds and clear line 2
// 
lcd_clear();
lcd_testpin(TP2);
lcd_data('L');
lcd_equal();			// lcd_data('=');
ADC_PORT = TXD_VAL;
ADC_DDR = (1<<TP2) | TXD_MSK;
R_PORT = (1<<PIN_RL2);
R_DDR = (1<<PIN_RL2);
adcmv[0] = W5msReadADC(TP2);
ADCSRB = (1<<MUX5);		// switch to upper 8 MUX inputs
adcmv[1] = ReadADC(PIN_RL2);
ADCSRB = 0;			// switch back to lower 8 MUX inputs
ResistorVal[0] = (adcmv[0] * (unsigned long)R_L_VAL) / (adcmv[1] - adcmv[0]);
DisplayValue(ResistorVal[0],-1,LCD_CHAR_OMEGA,3);
lcd_space();
lcd_data('H');
lcd_equal();			// lcd_data('=');
ResistorVal[1] = ((ADCconfig.U_AVCC - adcmv[1]) * (unsigned long)R_L_VAL) / (adcmv[1] - adcmv[0]);
DisplayValue(ResistorVal[1],-1,LCD_CHAR_OMEGA,3);
lcd_line2();
lcd_testpin(TP2);
lcd_data('H');
lcd_equal();			// lcd_data('=');
ADC_PORT = (1<<TP2) | TXD_VAL;
R_PORT = 0;
adcmv[0] = W5msReadADC(TP2);
ADCSRB = (1<<MUX5);		// switch to upper 8 MUX inputs
adcmv[1] = ReadADC(PIN_RL2);
ADCSRB = 0;			// switch back to lower 8 MUX inputs
ResistorVal[1] = ((ADCconfig.U_AVCC - adcmv[0]) * (unsigned long)R_L_VAL) / (adcmv[0] - adcmv[1]);
DisplayValue(ResistorVal[1],-1,LCD_CHAR_OMEGA,3);
lcd_space();
lcd_data('L');
lcd_equal();			// lcd_data('=');
ResistorVal[0] = (adcmv[1] * (unsigned long)R_L_VAL) / (adcmv[0] - adcmv[1]);
DisplayValue(ResistorVal[0],-1,LCD_CHAR_OMEGA,3);
wait_about1s();			// only for mega1280
last_line_used = 2;
wait_for_key_5s_line2();		// wait up to 5 seconds and clear line 2
//
lcd_clear();
lcd_testpin(TP3);
lcd_data('L');
lcd_equal();			// lcd_data('=');
ADC_DDR = (1<<TP3) | TXD_MSK;
R_PORT = (1<<PIN_RL3);
R_DDR = (1<<PIN_RL3);
adcmv[0] = W5msReadADC(TP3);
ADCSRB = (1<<MUX5);		// switch to upper 8 MUX inputs
adcmv[1] = ReadADC(PIN_RL3);
ADCSRB = 0;
ResistorVal[0] = (adcmv[0] * (unsigned long)R_L_VAL) / (adcmv[1] - adcmv[0]);
DisplayValue(ResistorVal[0],-1,LCD_CHAR_OMEGA,3);
lcd_space();
lcd_data('H');
lcd_equal();			// lcd_data('=');
ResistorVal[1] = ((ADCconfig.U_AVCC - adcmv[1]) * (unsigned long)R_L_VAL) / (adcmv[1] - adcmv[0]);
DisplayValue(ResistorVal[1],-1,LCD_CHAR_OMEGA,3);
lcd_line2();
lcd_testpin(TP3);
lcd_data('H');
lcd_equal();			// lcd_data('=');
ADC_PORT = (1<<TP3) | TXD_VAL;
R_PORT = 0;
adcmv[0] = W5msReadADC(TP3);
ADCSRB = (1<<MUX5);		// switch to upper 8 MUX inputs
adcmv[1] = ReadADC(PIN_RL3);
ADCSRB = 0;			// switch back to lower 8 MUX inputs
ResistorVal[1] = ((ADCconfig.U_AVCC - adcmv[0]) * (unsigned long)R_L_VAL) / (adcmv[0] - adcmv[1]);
DisplayValue(ResistorVal[1],-1,LCD_CHAR_OMEGA,3);
lcd_space();
lcd_data('L');
lcd_equal();			// lcd_data('=');
ResistorVal[0] = (adcmv[1] * (unsigned long)R_L_VAL) / (adcmv[0] - adcmv[1]);
DisplayValue(ResistorVal[0],-1,LCD_CHAR_OMEGA,3);
wait_about1s();			// only for mega1280
last_line_used = 2;
wait_for_key_5s_line2();		// wait up to 5 seconds and clear line 2
  #endif	/* PROCESSOR_TYP == 1280 */
}	/* end if((test_mode & 0x0f) == 1) */
 #endif		/* end EXTENDED_TESTS */

for (ww=0;ww<120;ww++) {
  // wait up to 1 minute for releasing the probes
  if (AllProbesShorted() == 0) break;
  lcd_clear_line2();		// clear total line2
  lcd_MEM_string(RELPROBE);	// "Release Probes"
  lcd_refresh();		// write the pixels to display, ST7920 only
  wait_about500ms();
}



lcd_clear();
lcd_MEM_string(RIHI_str);	// "RiHi="
DisplayValue16(RRpinPL,-1,LCD_CHAR_OMEGA,3);
lcd_line2();
lcd_MEM_string(RILO_str);	// "RiLo="
DisplayValue16(RRpinMI,-1,LCD_CHAR_OMEGA,3);
last_line_used = 2;
wait_for_key_5s_line2();		// wait up to 5 seconds and clear line 2

//measure Zero offset for Capacity measurement
PartFound = PART_NONE;
lcd_clear();
lcd_MEM_string(C0_str);			//output "C0 "
ReadCapacity(TP3, TP1);
adcmv[5] = (unsigned int) cap.cval_uncorrected.dw;	//save capacity value of empty Pin 1:3
ReadCapacity(TP3, TP2);
adcmv[6] = (unsigned int) cap.cval_uncorrected.dw;	//save capacity value of empty Pin 2:3
ReadCapacity(TP2, TP1);
adcmv[2] = (unsigned int) cap.cval_uncorrected.dw;	//save capacity value of empty Pin 1:2
ReadCapacity(TP1, TP3);
adcmv[1] = (unsigned int) cap.cval_uncorrected.dw;	//save capacity value of empty Pin 3:1
ReadCapacity(TP2, TP3);
adcmv[4] = (unsigned int) cap.cval_uncorrected.dw;	//save capacity value of empty Pin 3:2
ReadCapacity(TP1, TP2);
adcmv[0] = (unsigned int) cap.cval_uncorrected.dw;	//save capacity value of empty Pin 2:1
 #ifdef WITH_MENU
if (((test_mode & 0x0f) == 1) || (UnCalibrated == 2))
 #else
if (UnCalibrated == 2)
 #endif
{
  adcmv[3] = adcmv[0] + 2;		// mark as uncalibrated until Cap > 100nF has success
} else {
  adcmv[3] = adcmv[0];			// mark as calibrated, short calibration is finished
  UnCalibrated = 0;			// clear the UnCalibrated Flag
  lcd_cursor_off();			// switch cursor off
}
u2lcd_space(adcmv[5]);	//DisplayValue(adcmv[5],0,' ',3);		//output cap0 1:3
u2lcd_space(adcmv[6]);	//DisplayValue(adcmv[6],0,' ',3);		//output cap0 2:3
DisplayValue(adcmv[2],-12,'F',3);		//output cap0 1:2
 #ifdef AUTO_CAL
for (ww=0;ww<7;ww++) {			//checking loop
if ((adcmv[ww] > 190) || (adcmv[ww] < 10)) goto no_c0save;
}
for (ww=0;ww<7;ww++) {
  // write all zero offsets to the EEprom 
  (void) eeprom_write_byte((uint8_t *)(&c_zero_tab[ww]),adcmv[ww]+(COMP_SLEW1 / (CC0 + CABLE_CAP + COMP_SLEW2)));
}
lcd_line2();
lcd_MEM_string(OK_str);		// output "OK"
no_c0save:
 #endif
last_line_used = 2;
wait_for_key_5s_line2();		// wait up to 5 seconds and clear line 2

#ifdef SamplingADC
  sampling_cap_calibrate();		// measure zero capacity for samplingADC
#endif

 #ifdef AUTO_CAL
  #ifdef WITH_MENU
if (((test_mode & 0x0f) == 1) || (UnCalibrated == 2))
  #endif
// without menu function the capacitor is requested every time,
// because there is no way to request recaltbration again
// With menu function the capacitor is only requested for first time 
// calibration (UnCalibrated = 2) or for the full selftest call (test_mode = 1) 
// of the menu function, not with the automatically call (test_mode = 1).
{
// for full test or first time calibration, use external capacitor
// Message C > 100nF at TP1 and TP3
cap_found = 0;
for (ww=0;ww<64;ww++) {
  init_parts();
  #if (TPCAP >= 0)
  CalibrationCap();	// measure with internal calibration capacitor
  #else
  lcd_clear();
  lcd_testpin(TP1);
  lcd_MEM_string(CapZeich);	// "-||-"
  lcd_testpin(TP3);
  lcd_MEM2_string(MinCap_str); // " >100nF!"
  PartFound = PART_NONE;
  ReadCapacity(TP3, TP1);	// look for capacitor > 100nF
  #endif
  while (cap.cpre < -9) {
   cap.cpre++;
   cap.cval /= 10;
  }
  if ((cap.cpre == -9) && (cap.cval > 95) && (cap.cval < 22000) &&
    (load_diff > -150) && (load_diff < 150)) {
   cap_found++;
  } else {
   cap_found = 0;		// wait for stable connection
  }
  if (cap_found > 4) {
     // value of capacitor is correct
     (void) eeprom_write_word((uint16_t *)(&ref_offset), load_diff);	// hold zero offset + slew rate dependend offset
     lcd_clear();
     lcd_MEM2_string(REF_C_str);	// "REF_C="
     i2lcd(load_diff);		// lcd_string(itoa(load_diff, outval, 10));	//output REF_C_KORR
     RefVoltage();			// new ref_mv_offs and RHmultip
  #if 0
//#######################################
   // Test for switching level of the digital input of port TP3
   for (tt=0;tt<8;tt++) {
     ADC_PORT =  TXD_VAL;	//ADC-Port 1 to GND
     ADC_DDR = 1<<TP1 | TXD_MSK;	//ADC-Pin  1 to output 0V
     R_PORT = 1<<PIN_RH3;		//Pin 3 over R_H to VCC
     R_DDR = 1<<PIN_RH3;		//Pin 3 over R_H to VCC
     while (1) {
        wdt_reset();
        if ((ADC_PIN&(1<<TP3)) == (1<<TP3)) break;
     }
     R_DDR = 0;		//Pin 3 without current
     R_PORT = 0;
     adcmv[0] = ReadADC(TP3);
     lcd_line3();
     Display_mV(adcmv[0],4);
     R_DDR = 1<<PIN_RH3;		//Pin 3 over R_H to GND
     while (1) {
        wdt_reset();
        if ((ADC_PIN&(1<<TP3)) != (1<<TP3)) break;
     }
     R_DDR = 0;		//Pin 3 without current
     lcd_line4();
     adcmv[0] = ReadADC(TP3);
     Display_mV(adcmv[0],4);
     last_line_used = 2;
     wait_for_key_5s_line2();		// wait up to 5 seconds and clear line 2
   }
//#######################################
  #endif
  #ifdef AUTOSCALE_ADC
   #if (TPCAP >= 0)
    #define CAP_ADC TPCAP	/* Cap >100nF is integrated at TPCAP */
   TCAP_PORT &= ~(1<<TCAP_RH);	// 470k resistor to GND
   TCAP_DDR |= (1<<TCAP_RH);	// enable output
   #else
    #define CAP_ADC TP3		/* Cap >100nF at TP3 */
   ADC_PORT =  TXD_VAL;	//ADC-Port 1 to GND
   ADC_DDR = 1<<TP1 | TXD_MSK;	//ADC-Pin  1 to output 0V
   R_DDR = 1<<PIN_RH3;		//Pin 3 over R_H to GND
   #endif
   do {
      adcmv[0] = ReadADC(CAP_ADC);
   } while (adcmv[0] > 980);
   #if (TPCAP >= 0)
   TCAP_DDR &= ~(1<<TCAP_RH);	// 470k resistor port to input mode
   #else
   R_DDR = 0;		//all Pins to input 
   #endif
   ADCconfig.U_Bandgap = 0;	// do not use internal Ref
   adcmv[0] = ReadADC(CAP_ADC);  // get cap voltage with VCC reference
   ADCconfig.U_Bandgap = adc_internal_reference;
   adcmv[1] = ReadADC(CAP_ADC);	// get cap voltage with internal reference
   adcmv[1] += adcmv[1];		// double the value
   ADCconfig.U_Bandgap = 0;	// do not use internal Ref
   adcmv[2] = ReadADC(CAP_ADC);  // get cap voltage with VCC reference
   ADCconfig.U_Bandgap = adc_internal_reference;
   udiff = (int8_t)(((signed long)(adcmv[0] + adcmv[2] - adcmv[1])) * adc_internal_reference / adcmv[1])+REF_R_KORR;
   lcd_line2();
   lcd_MEM2_string(REF_R_str);	// "REF_R="
   udiff2 = udiff + (int8_t)eeprom_read_byte((uint8_t *)(&RefDiff));
   (void) eeprom_write_byte((uint8_t *)(&RefDiff), (uint8_t)udiff2);	// hold offset for true reference Voltage
   i2lcd(udiff2);		// output correction voltage
   RefVoltage();			// set new ADCconfig.U_Bandgap
  #endif	/* end AUTOSCALE_ADC */
   last_line_used = 2;
   wait_for_key_5s_line2();		// wait up to 5 seconds and clear line 2
   UnCalibrated = 0;		// clear the UnCalibrated Flag
   lcd_cursor_off();		// switch cursor off
   cap_found = eeprom_read_byte((uint8_t *)&c_zero_tab[0]);	// read first capacity zero offset
   eeprom_write_byte((uint8_t *)&c_zero_tab[3], cap_found);	// mark as calibrated permanent
   break;			// leave the ww for loop
  }  /* end if (cap_found > 4) */
  lcd_line2();
  DisplayValue(cap.cval,cap.cpre,'F',4);
  lcd_refresh();		// write the pixels to display, ST7920 only
  wait_about200ms();			// wait additional time
} // end for ww
}	/* end if((test_mode & 0x0f) == 1) */
 #endif  /* end AUTO_CAL */

ADCconfig.Samples = ANZ_MESS;	// set to configured number of ADC samples

#ifdef SamplingADC
  sampling_lc_calibrate();	// Cap for L-meas
#endif


 #ifdef FREQUENCY_50HZ
//#define TEST_SLEEP_MODE	/* only select for checking the sleep delay */
 lcd_clear();
 lcd_MEM_string(T50HZ);	//" 50Hz"
 lcd_refresh();		// write the pixels to display, ST7920 only
 ADC_PORT = TXD_VAL;
 ADC_DDR = 1<<TP1 | TXD_MSK;	// Pin 1 to GND
 R_DDR = (1<<PIN_RL3) | (1<<PIN_RL2);
 for(ww=0;ww<30;ww++) {	// repeat the signal up to 30 times (1 minute)
   for (ff50=0;ff50<100;ff50++) {	// for 2 s generate 50 Hz
      R_PORT = (1<<PIN_RL2);	// Pin 2 over R_L to VCC, Pin 3 over R_L to GND
  #ifdef TEST_SLEEP_MODE
      sleep_5ms(2); 		// test of timing of sleep mode call 
  #else
      wait10ms();		// normal delay
  #endif
      R_PORT = (1<<PIN_RL3);	// Pin 3 over R_L to VCC, Pin 2 over R_L to GND
  #ifdef TEST_SLEEP_MODE
      sleep_5ms(2); 		// test of timing of sleep mode call 
  #else
      wait10ms();		// normal delay
  #endif
      wdt_reset();
   } /* end for ff50 */
   if (!(RST_PIN_REG & (1<<RST_PIN))) {
      // if key is pressed, don't repeat
      break;
   }
 } /* end for ww */
 #endif		/* end FREQUENCY_50HZ */
lcd_clear();
lcd_MEM_string(VERSION_str);	//"Version ..."
lcd_line2();
lcd_MEM_string(ATE);		//"Selftest End"
PartFound = PART_NONE;
     last_line_used = 2;
wait_for_key_5s_line2();		// wait up to 5 seconds and clear line 2
} /* end AutoCheck */