static void __init exc_lvl_early_init(void) { unsigned int i; for_each_possible_cpu(i) { critirq_ctx[i] = (struct thread_info *) __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); dbgirq_ctx[i] = (struct thread_info *) __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); mcheckirq_ctx[i] = (struct thread_info *) __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); } }
static void __init irqstack_early_init(void) { unsigned int i; /* interrupt stacks must be in lowmem, we get that for free on ppc32 * as the lmb is limited to lowmem by LMB_REAL_LIMIT */ for_each_possible_cpu(i) { softirq_ctx[i] = (struct thread_info *) __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); hardirq_ctx[i] = (struct thread_info *) __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); } }
static void __init exc_lvl_early_init(void) { unsigned int i; /* interrupt stacks must be in lowmem, we get that for free on ppc32 * as the lmb is limited to lowmem by LMB_REAL_LIMIT */ for_each_possible_cpu(i) { critirq_ctx[i] = (struct thread_info *) __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); #ifdef CONFIG_BOOKE dbgirq_ctx[i] = (struct thread_info *) __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); mcheckirq_ctx[i] = (struct thread_info *) __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); #endif } }
/* * Allocate DP-Ram and memory buffers. We need to allocate a transmit and * receive buffer descriptors from dual port ram, and a character * buffer area from host mem. If we are allocating for the console we need * to do it from bootmem */ int cpm_uart_allocbuf(struct uart_cpm_port *pinfo, unsigned int is_con) { int dpmemsz, memsz; u8 *dp_mem; unsigned long dp_offset; u8 *mem_addr; dma_addr_t dma_addr = 0; pr_debug("CPM uart[%d]:allocbuf\n", pinfo->port.line); dpmemsz = sizeof(cbd_t) * (pinfo->rx_nrfifos + pinfo->tx_nrfifos); dp_offset = cpm_dpalloc(dpmemsz, 8); if (IS_ERR_VALUE(dp_offset)) { printk(KERN_ERR "cpm_uart_cpm.c: could not allocate buffer descriptors\n"); return -ENOMEM; } dp_mem = cpm_dpram_addr(dp_offset); memsz = L1_CACHE_ALIGN(pinfo->rx_nrfifos * pinfo->rx_fifosize) + L1_CACHE_ALIGN(pinfo->tx_nrfifos * pinfo->tx_fifosize); if (is_con) { /* KGDB hits this before bootmem is setup */ if (init_bootmem_done) { mem_addr = alloc_bootmem(memsz); dma_addr = virt_to_bus(mem_addr); } else { dma_addr = (dma_addr_t)lmb_alloc(memsz, 8); mem_addr = __va(dma_addr); } } else mem_addr = dma_alloc_coherent(NULL, memsz, &dma_addr, GFP_KERNEL); if (mem_addr == NULL) { cpm_dpfree(dp_offset); printk(KERN_ERR "cpm_uart_cpm.c: could not allocate coherent memory\n"); return -ENOMEM; } pinfo->dp_addr = dp_offset; pinfo->mem_addr = mem_addr; pinfo->dma_addr = dma_addr; pinfo->mem_size = memsz; pinfo->rx_buf = mem_addr; pinfo->tx_buf = pinfo->rx_buf + L1_CACHE_ALIGN(pinfo->rx_nrfifos * pinfo->rx_fifosize); pinfo->rx_bd_base = (volatile cbd_t *)dp_mem; pinfo->tx_bd_base = pinfo->rx_bd_base + pinfo->rx_nrfifos; return 0; }
void __init do_init_bootmem(void) { unsigned long i; unsigned long start, bootmap_pages; unsigned long total_pages; int boot_mapsize; max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; #ifdef CONFIG_HIGHMEM total_pages = total_lowmem >> PAGE_SHIFT; #endif /* * Find an area to use for the bootmem bitmap. Calculate the size of * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. * Add 1 additional page in case the address isn't page-aligned. */ bootmap_pages = bootmem_bootmap_pages(total_pages); start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); /* Add active regions with valid PFNs */ for (i = 0; i < lmb.memory.cnt; i++) { unsigned long start_pfn, end_pfn; start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); add_active_range(0, start_pfn, end_pfn); } /* Add all physical memory to the bootmem map, mark each area * present. */ #ifdef CONFIG_HIGHMEM free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT); #else free_bootmem_with_active_regions(0, max_pfn); #endif /* reserve the sections we're already using */ for (i = 0; i < lmb.reserved.cnt; i++) reserve_bootmem(lmb.reserved.region[i].base, lmb_size_bytes(&lmb.reserved, i)); /* XXX need to clip this if using highmem? */ sparse_memory_present_with_active_regions(0); init_bootmem_done = 1; }
void __init do_init_bootmem(void) { unsigned long i; unsigned long start, bootmap_pages; unsigned long total_pages; int boot_mapsize; max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; #ifdef CONFIG_HIGHMEM total_pages = total_lowmem >> PAGE_SHIFT; #endif /* * Find an area to use for the bootmem bitmap. Calculate the size of * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. * Add 1 additional page in case the address isn't page-aligned. */ bootmap_pages = bootmem_bootmap_pages(total_pages); start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); BUG_ON(!start); boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); /* Add all physical memory to the bootmem map, mark each area * present. */ for (i = 0; i < lmb.memory.cnt; i++) { unsigned long base = lmb.memory.region[i].base; unsigned long size = lmb_size_bytes(&lmb.memory, i); #ifdef CONFIG_HIGHMEM if (base >= total_lowmem) continue; if (base + size > total_lowmem) size = total_lowmem - base; #endif free_bootmem(base, size); } /* reserve the sections we're already using */ for (i = 0; i < lmb.reserved.cnt; i++) reserve_bootmem(lmb.reserved.region[i].base, lmb_size_bytes(&lmb.reserved, i)); /* XXX need to clip this if using highmem? */ for (i = 0; i < lmb.memory.cnt; i++) memory_present(0, lmb_start_pfn(&lmb.memory, i), lmb_end_pfn(&lmb.memory, i)); init_bootmem_done = 1; }
static void * __init prom_early_alloc(unsigned long size) { unsigned long paddr = lmb_alloc(size, SMP_CACHE_BYTES); void *ret; if (!paddr) { prom_printf("prom_early_alloc(%lu) failed\n"); prom_halt(); } ret = __va(paddr); memset(ret, 0, size); prom_early_allocated += size; return ret; }
static void __init setup_nonnuma(void) { unsigned long top_of_ram = lmb_end_of_DRAM(); unsigned long total_ram = lmb_phys_mem_size(); unsigned long i; printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); printk(KERN_INFO "Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); if (!numa_memory_lookup_table) { long entries = top_of_ram >> MEMORY_INCREMENT_SHIFT; numa_memory_lookup_table = (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); for (i = 0; i < entries ; i++) numa_memory_lookup_table[i] = ARRAY_INITIALISER; }
u64 __init lmb_alloc_nid(u64 size, u64 align, int nid, u64 (*nid_range)(u64 start, u64 end, int *nid)) { struct lmb_region *mem = &lmb.memory; int i; BUG_ON(0 == size); size = lmb_align_up(size, align); for (i = 0; i < mem->cnt; i++) { u64 ret = lmb_alloc_nid_region(&mem->region[i], nid_range, size, align, nid); if (ret != ~(u64)0) return ret; } return lmb_alloc(size, align); }
/** * boot_relocate_fdt - relocate flat device tree * @lmb: pointer to lmb handle, will be used for memory mgmt * @of_flat_tree: pointer to a char* variable, will hold fdt start address * @of_size: pointer to a ulong variable, will hold fdt length * * boot_relocate_fdt() allocates a region of memory within the bootmap and * relocates the of_flat_tree into that region, even if the fdt is already in * the bootmap. It also expands the size of the fdt by CONFIG_SYS_FDT_PAD * bytes. * * of_flat_tree and of_size are set to final (after relocation) values * * returns: * 0 - success * 1 - failure */ int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size) { void *fdt_blob = *of_flat_tree; void *of_start = NULL; char *fdt_high; ulong of_len = 0; int err; int disable_relocation = 0; /* nothing to do */ if (*of_size == 0) return 0; if (fdt_check_header(fdt_blob) != 0) { fdt_error("image is not a fdt"); goto error; } /* position on a 4K boundary before the alloc_current */ /* Pad the FDT by a specified amount */ of_len = *of_size + CONFIG_SYS_FDT_PAD; /* If fdt_high is set use it to select the relocation address */ fdt_high = getenv("fdt_high"); if (fdt_high) { void *desired_addr = (void *)simple_strtoul(fdt_high, NULL, 16); if (((ulong) desired_addr) == ~0UL) { /* All ones means use fdt in place */ of_start = fdt_blob; lmb_reserve(lmb, (ulong)of_start, of_len); disable_relocation = 1; } else if (desired_addr) { of_start = (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, (ulong)desired_addr); if (of_start == NULL) { puts("Failed using fdt_high value for Device Tree"); goto error; } } else { of_start = (void *)(ulong) lmb_alloc(lmb, of_len, 0x1000); } } else { of_start = (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, getenv_bootm_mapsize() + getenv_bootm_low()); } if (of_start == NULL) { puts("device tree - allocation error\n"); goto error; } if (disable_relocation) { /* * We assume there is space after the existing fdt to use * for padding */ fdt_set_totalsize(of_start, of_len); printf(" Using Device Tree in place at %p, end %p\n", of_start, of_start + of_len - 1); } else { debug("## device tree at %p ... %p (len=%ld [0x%lX])\n", fdt_blob, fdt_blob + *of_size - 1, of_len, of_len); printf(" Loading Device Tree to %p, end %p ... ", of_start, of_start + of_len - 1); err = fdt_open_into(fdt_blob, of_start, of_len); if (err != 0) { fdt_error("fdt move failed"); goto error; } puts("OK\n"); } *of_flat_tree = of_start; *of_size = of_len; set_working_fdt_addr((ulong)*of_flat_tree); return 0; error: return 1; }
static int __init parse_numa_properties(void) { struct device_node *cpu = NULL; struct device_node *memory = NULL; int depth; int max_domain = 0; long entries = lmb_end_of_DRAM() >> MEMORY_INCREMENT_SHIFT; unsigned long i; if (strstr(saved_command_line, "numa=off")) { printk(KERN_WARNING "NUMA disabled by user\n"); return -1; } numa_memory_lookup_table = (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); for (i = 0; i < entries ; i++) numa_memory_lookup_table[i] = ARRAY_INITIALISER; depth = find_min_common_depth(); printk(KERN_INFO "NUMA associativity depth for CPU/Memory: %d\n", depth); if (depth < 0) return depth; for_each_cpu(i) { int numa_domain; cpu = find_cpu_node(i); if (cpu) { numa_domain = of_node_numa_domain(cpu, depth); of_node_put(cpu); if (numa_domain >= MAX_NUMNODES) { /* * POWER4 LPAR uses 0xffff as invalid node, * dont warn in this case. */ if (numa_domain != 0xffff) printk(KERN_ERR "WARNING: cpu %ld " "maps to invalid NUMA node %d\n", i, numa_domain); numa_domain = 0; } } else { printk(KERN_ERR "WARNING: no NUMA information for " "cpu %ld\n", i); numa_domain = 0; } node_set_online(numa_domain); if (max_domain < numa_domain) max_domain = numa_domain; map_cpu_to_node(i, numa_domain); } memory = NULL; while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { unsigned long start; unsigned long size; int numa_domain; int ranges; unsigned int *memcell_buf; unsigned int len; memcell_buf = (unsigned int *)get_property(memory, "reg", &len); if (!memcell_buf || len <= 0) continue; ranges = memory->n_addrs; new_range: /* these are order-sensitive, and modify the buffer pointer */ start = read_cell_ul(memory, &memcell_buf); size = read_cell_ul(memory, &memcell_buf); start = _ALIGN_DOWN(start, MEMORY_INCREMENT); size = _ALIGN_UP(size, MEMORY_INCREMENT); numa_domain = of_node_numa_domain(memory, depth); if (numa_domain >= MAX_NUMNODES) { if (numa_domain != 0xffff) printk(KERN_ERR "WARNING: memory at %lx maps " "to invalid NUMA node %d\n", start, numa_domain); numa_domain = 0; } node_set_online(numa_domain); if (max_domain < numa_domain) max_domain = numa_domain; /* * For backwards compatibility, OF splits the first node * into two regions (the first being 0-4GB). Check for * this simple case and complain if there is a gap in * memory */ if (node_data[numa_domain].node_spanned_pages) { unsigned long shouldstart = node_data[numa_domain].node_start_pfn + node_data[numa_domain].node_spanned_pages; if (shouldstart != (start / PAGE_SIZE)) { printk(KERN_ERR "Hole in node, disabling " "region start %lx length %lx\n", start, size); continue; } node_data[numa_domain].node_spanned_pages += size / PAGE_SIZE; } else { node_data[numa_domain].node_start_pfn = start / PAGE_SIZE; node_data[numa_domain].node_spanned_pages = size / PAGE_SIZE; } for (i = start ; i < (start+size); i += MEMORY_INCREMENT) numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = numa_domain; dbg("memory region %lx to %lx maps to domain %d\n", start, start+size, numa_domain); ranges--; if (ranges) goto new_range; } numnodes = max_domain + 1; return 0; }
/** * boot_ramdisk_high - relocate init ramdisk * @lmb: pointer to lmb handle, will be used for memory mgmt * @rd_data: ramdisk data start address * @rd_len: ramdisk data length * @initrd_start: pointer to a ulong variable, will hold final init ramdisk * start address (after possible relocation) * @initrd_end: pointer to a ulong variable, will hold final init ramdisk * end address (after possible relocation) * * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment * variable and if requested ramdisk data is moved to a specified location. * * Initrd_start and initrd_end are set to final (after relocation) ramdisk * start/end addresses if ramdisk image start and len were provided, * otherwise set initrd_start and initrd_end set to zeros. * * returns: * 0 - success * -1 - failure */ int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, ulong *initrd_start, ulong *initrd_end) { char *s; ulong initrd_high; int initrd_copy_to_ram = 1; if ((s = getenv("initrd_high")) != NULL) { /* a value of "no" or a similar string will act like 0, * turning the "load high" feature off. This is intentional. */ initrd_high = simple_strtoul(s, NULL, 16); if (initrd_high == ~0) initrd_copy_to_ram = 0; } else { /* not set, no restrictions to load high */ initrd_high = ~0; } #ifdef CONFIG_LOGBUFFER /* Prevent initrd from overwriting logbuffer */ lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE); #endif debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", initrd_high, initrd_copy_to_ram); if (rd_data) { if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ debug(" in-place initrd\n"); *initrd_start = rd_data; *initrd_end = rd_data + rd_len; lmb_reserve(lmb, rd_data, rd_len); } else { if (initrd_high) *initrd_start = (ulong)lmb_alloc_base(lmb, rd_len, 0x1000, initrd_high); else *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 0x1000); if (*initrd_start == 0) { puts("ramdisk - allocation error\n"); goto error; } bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); *initrd_end = *initrd_start + rd_len; printf(" Loading Ramdisk to %08lx, end %08lx ... ", *initrd_start, *initrd_end); memmove_wd((void *)*initrd_start, (void *)rd_data, rd_len, CHUNKSZ); #ifdef CONFIG_MP /* * Ensure the image is flushed to memory to handle * AMP boot scenarios in which we might not be * HW cache coherent */ flush_cache((unsigned long)*initrd_start, rd_len); #endif puts("OK\n"); } } else { *initrd_start = 0; *initrd_end = 0; } debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", *initrd_start, *initrd_end); return 0; error: return -1; }
void htab_initialize(void) { unsigned long table, htab_size_bytes; unsigned long pteg_count; unsigned long mode_rw, mask; #if 0 /* Can't really do the call below since it calls the normal RTAS * entry point and we're still relocate off at the moment. * Temporarily diabling until it can call through the relocate off * RTAS entry point. -Peter */ ppc64_boot_msg(0x05, "htab init"); #endif /* * Calculate the required size of the htab. We want the number of * PTEGs to equal one half the number of real pages. */ htab_size_bytes = 1UL << naca->pftSize; pteg_count = htab_size_bytes >> 7; /* For debug, make the HTAB 1/8 as big as it normally would be. */ ifppcdebug(PPCDBG_HTABSIZE) { pteg_count >>= 3; htab_size_bytes = pteg_count << 7; } htab_data.htab_num_ptegs = pteg_count; htab_data.htab_hash_mask = pteg_count - 1; if(naca->platform == PLATFORM_PSERIES) { /* Find storage for the HPT. Must be contiguous in * the absolute address space. */ table = lmb_alloc(htab_size_bytes, htab_size_bytes); if ( !table ) { ppc64_terminate_msg(0x20, "hpt space"); loop_forever(); } htab_data.htab = (HPTE *)__a2v(table); /* htab absolute addr + encoded htabsize */ _SDR1 = table + __ilog2(pteg_count) - 11; /* Initialize the HPT with no entries */ memset((void *)table, 0, htab_size_bytes); } else { /* Using a hypervisor which owns the htab */ htab_data.htab = NULL; _SDR1 = 0; } mode_rw = _PAGE_ACCESSED | _PAGE_COHERENT | PP_RWXX; mask = pteg_count-1; /* XXX we currently map kernel text rw, should fix this */ if ((naca->platform & PLATFORM_PSERIES) && cpu_has_largepage() && (naca->physicalMemorySize > 256*MB)) { create_pte_mapping((unsigned long)KERNELBASE, KERNELBASE + 256*MB, mode_rw, mask, 0); create_pte_mapping((unsigned long)KERNELBASE + 256*MB, KERNELBASE + (naca->physicalMemorySize), mode_rw, mask, 1); } else { create_pte_mapping((unsigned long)KERNELBASE, KERNELBASE+(naca->physicalMemorySize), mode_rw, mask, 0); } #if 0 /* Can't really do the call below since it calls the normal RTAS * entry point and we're still relocate off at the moment. * Temporarily diabling until it can call through the relocate off * RTAS entry point. -Peter */ ppc64_boot_msg(0x06, "htab done"); #endif }
void __init htab_initialize(void) { unsigned long table; unsigned long pteg_count; unsigned long mode_rw; unsigned long base = 0, size = 0; int i; extern unsigned long tce_alloc_start, tce_alloc_end; DBG(" -> htab_initialize()\n"); /* Initialize page sizes */ htab_init_page_sizes(); /* * Calculate the required size of the htab. We want the number of * PTEGs to equal one half the number of real pages. */ htab_size_bytes = htab_get_table_size(); pteg_count = htab_size_bytes >> 7; htab_hash_mask = pteg_count - 1; if (firmware_has_feature(FW_FEATURE_LPAR)) { /* Using a hypervisor which owns the htab */ htab_address = NULL; _SDR1 = 0; } else { /* Find storage for the HPT. Must be contiguous in * the absolute address space. */ table = lmb_alloc(htab_size_bytes, htab_size_bytes); DBG("Hash table allocated at %lx, size: %lx\n", table, htab_size_bytes); htab_address = abs_to_virt(table); /* htab absolute addr + encoded htabsize */ _SDR1 = table + __ilog2(pteg_count) - 11; /* Initialize the HPT with no entries */ memset((void *)table, 0, htab_size_bytes); /* Set SDR1 */ mtspr(SPRN_SDR1, _SDR1); } mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX; /* On U3 based machines, we need to reserve the DART area and * _NOT_ map it to avoid cache paradoxes as it's remapped non * cacheable later on */ /* create bolted the linear mapping in the hash table */ for (i=0; i < lmb.memory.cnt; i++) { base = (unsigned long)__va(lmb.memory.region[i].base); size = lmb.memory.region[i].size; DBG("creating mapping for region: %lx : %lx\n", base, size); #ifdef CONFIG_U3_DART /* Do not map the DART space. Fortunately, it will be aligned * in such a way that it will not cross two lmb regions and * will fit within a single 16Mb page. * The DART space is assumed to be a full 16Mb region even if * we only use 2Mb of that space. We will use more of it later * for AGP GART. We have to use a full 16Mb large page. */ DBG("DART base: %lx\n", dart_tablebase); if (dart_tablebase != 0 && dart_tablebase >= base && dart_tablebase < (base + size)) { unsigned long dart_table_end = dart_tablebase + 16 * MB; if (base != dart_tablebase) BUG_ON(htab_bolt_mapping(base, dart_tablebase, __pa(base), mode_rw, mmu_linear_psize)); if ((base + size) > dart_table_end) BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB, base + size, __pa(dart_table_end), mode_rw, mmu_linear_psize)); continue; } #endif /* CONFIG_U3_DART */ BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), mode_rw, mmu_linear_psize)); } /* * If we have a memory_limit and we've allocated TCEs then we need to * explicitly map the TCE area at the top of RAM. We also cope with the * case that the TCEs start below memory_limit. * tce_alloc_start/end are 16MB aligned so the mapping should work * for either 4K or 16MB pages. */ if (tce_alloc_start) { tce_alloc_start = (unsigned long)__va(tce_alloc_start); tce_alloc_end = (unsigned long)__va(tce_alloc_end); if (base + size >= tce_alloc_start) tce_alloc_start = base + size + 1; BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end, __pa(tce_alloc_start), mode_rw, mmu_linear_psize)); } htab_finish_init(); DBG(" <- htab_initialize()\n"); }