void GBMemorySerialize(const struct GB* gb, struct GBSerializedState* state) { const struct GBMemory* memory = &gb->memory; memcpy(state->wram, memory->wram, GB_SIZE_WORKING_RAM); memcpy(state->hram, memory->hram, GB_SIZE_HRAM); STORE_16LE(memory->currentBank, 0, &state->memory.currentBank); state->memory.wramCurrentBank = memory->wramCurrentBank; state->memory.sramCurrentBank = memory->sramCurrentBank; STORE_16LE(memory->dmaSource, 0, &state->memory.dmaSource); STORE_16LE(memory->dmaDest, 0, &state->memory.dmaDest); STORE_16LE(memory->hdmaSource, 0, &state->memory.hdmaSource); STORE_16LE(memory->hdmaDest, 0, &state->memory.hdmaDest); STORE_16LE(memory->hdmaRemaining, 0, &state->memory.hdmaRemaining); state->memory.dmaRemaining = memory->dmaRemaining; memcpy(state->memory.rtcRegs, memory->rtcRegs, sizeof(state->memory.rtcRegs)); STORE_32LE(memory->dmaEvent.when - mTimingCurrentTime(&gb->timing), 0, &state->memory.dmaNext); STORE_32LE(memory->hdmaEvent.when - mTimingCurrentTime(&gb->timing), 0, &state->memory.hdmaNext); GBSerializedMemoryFlags flags = 0; flags = GBSerializedMemoryFlagsSetSramAccess(flags, memory->sramAccess); flags = GBSerializedMemoryFlagsSetRtcAccess(flags, memory->rtcAccess); flags = GBSerializedMemoryFlagsSetRtcLatched(flags, memory->rtcLatched); flags = GBSerializedMemoryFlagsSetIme(flags, memory->ime); flags = GBSerializedMemoryFlagsSetIsHdma(flags, memory->isHdma); flags = GBSerializedMemoryFlagsSetActiveRtcReg(flags, memory->activeRtcReg); STORE_16LE(flags, 0, &state->memory.flags); switch (memory->mbcType) { case GB_MBC1: state->memory.mbc1.mode = memory->mbcState.mbc1.mode; state->memory.mbc1.multicartStride = memory->mbcState.mbc1.multicartStride; break; case GB_MBC3_RTC: STORE_64LE(gb->memory.rtcLastLatch, 0, &state->memory.rtc.lastLatch); break; case GB_MBC7: state->memory.mbc7.state = memory->mbcState.mbc7.state; state->memory.mbc7.eeprom = memory->mbcState.mbc7.eeprom; state->memory.mbc7.address = memory->mbcState.mbc7.address; state->memory.mbc7.access = memory->mbcState.mbc7.access; state->memory.mbc7.latch = memory->mbcState.mbc7.latch; state->memory.mbc7.srBits = memory->mbcState.mbc7.srBits; STORE_16LE(memory->mbcState.mbc7.sr, 0, &state->memory.mbc7.sr); STORE_32LE(memory->mbcState.mbc7.writable, 0, &state->memory.mbc7.writable); break; default: break; } }
void GBSerialize(struct GB* gb, struct GBSerializedState* state) { STORE_32LE(GB_SAVESTATE_MAGIC + GB_SAVESTATE_VERSION, 0, &state->versionMagic); STORE_32LE(gb->romCrc32, 0, &state->romCrc32); STORE_32LE(gb->timing.masterCycles, 0, &state->masterCycles); if (gb->memory.rom) { memcpy(state->title, ((struct GBCartridge*) &gb->memory.rom[0x100])->titleLong, sizeof(state->title)); } else { memset(state->title, 0, sizeof(state->title)); } state->model = gb->model; state->cpu.a = gb->cpu->a; state->cpu.f = gb->cpu->f.packed; state->cpu.b = gb->cpu->b; state->cpu.c = gb->cpu->c; state->cpu.d = gb->cpu->d; state->cpu.e = gb->cpu->e; state->cpu.h = gb->cpu->h; state->cpu.l = gb->cpu->l; STORE_16LE(gb->cpu->sp, 0, &state->cpu.sp); STORE_16LE(gb->cpu->pc, 0, &state->cpu.pc); STORE_32LE(gb->cpu->cycles, 0, &state->cpu.cycles); STORE_32LE(gb->cpu->nextEvent, 0, &state->cpu.nextEvent); STORE_16LE(gb->cpu->index, 0, &state->cpu.index); state->cpu.bus = gb->cpu->bus; state->cpu.executionState = gb->cpu->executionState; GBSerializedCpuFlags flags = 0; flags = GBSerializedCpuFlagsSetCondition(flags, gb->cpu->condition); flags = GBSerializedCpuFlagsSetIrqPending(flags, gb->cpu->irqPending); flags = GBSerializedCpuFlagsSetDoubleSpeed(flags, gb->doubleSpeed); flags = GBSerializedCpuFlagsSetEiPending(flags, mTimingIsScheduled(&gb->timing, &gb->eiPending)); STORE_32LE(flags, 0, &state->cpu.flags); STORE_32LE(gb->eiPending.when - mTimingCurrentTime(&gb->timing), 0, &state->cpu.eiPending); GBMemorySerialize(gb, state); GBIOSerialize(gb, state); GBVideoSerialize(&gb->video, state); GBTimerSerialize(&gb->timer, state); GBAudioSerialize(&gb->audio, state); if (gb->model & GB_MODEL_SGB) { GBSGBSerialize(gb, state); } }
void _endMode2(struct mTiming* timing, void* context, uint32_t cyclesLate) { struct GBVideo* video = context; _cleanOAM(video, video->ly); video->x = -(video->p->memory.io[REG_SCX] & 7); video->dotClock = mTimingCurrentTime(timing) - cyclesLate + 5 - (video->x << video->p->doubleSpeed); int32_t next = GB_VIDEO_MODE_3_LENGTH_BASE + video->objMax * 6 - video->x; video->mode = 3; video->modeEvent.callback = _endMode3; GBRegisterSTAT oldStat = video->stat; video->stat = GBRegisterSTATSetMode(video->stat, video->mode); if (!_statIRQAsserted(video, oldStat) && _statIRQAsserted(video, video->stat)) { video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT); GBUpdateIRQs(video->p); } video->p->memory.io[REG_STAT] = video->stat; mTimingSchedule(timing, &video->modeEvent, (next << video->p->doubleSpeed) - cyclesLate); }
void GBVideoProcessDots(struct GBVideo* video, uint32_t cyclesLate) { if (video->mode != 3) { return; } int oldX = video->x; video->x = (int32_t) (mTimingCurrentTime(&video->p->timing) - cyclesLate - video->dotClock) >> video->p->doubleSpeed; if (video->x > GB_VIDEO_HORIZONTAL_PIXELS) { video->x = GB_VIDEO_HORIZONTAL_PIXELS; } else if (video->x < 0) { return; } if (oldX < 0) { oldX = 0; } if (video->frameskipCounter <= 0) { video->renderer->drawRange(video->renderer, oldX, video->x, video->ly, video->objThisLine, video->objMax); } }