void tmp68301_device::device_start() { int i; for (i = 0; i < 3; i++) m_tmp68301_timer[i] = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(tmp68301_device::timer_callback), this)); }
void isa8_device::install_bank(offs_t start, offs_t end, offs_t mask, offs_t mirror, const char *tag, UINT8 *data) { m_prgspace->install_readwrite_bank(start, end, mask, mirror, tag ); machine().root_device().membank(tag)->set_base(data); }
void ddealer_state::video_start() { m_flipscreen = 0; m_back_tilemap = &machine().tilemap().create(tilemap_get_info_delegate(FUNC(ddealer_state::get_back_tile_info),this), TILEMAP_SCAN_COLS, 8, 8, 64, 32); }
void good_state::video_start() { m_bg_tilemap = &machine().tilemap().create(tilemap_get_info_delegate(FUNC(good_state::get_bg_tile_info),this), TILEMAP_SCAN_ROWS, 16, 16, 32, 32); m_fg_tilemap = &machine().tilemap().create(tilemap_get_info_delegate(FUNC(good_state::get_fg_tile_info),this), TILEMAP_SCAN_ROWS, 16, 16, 32, 32); m_fg_tilemap->set_transparent_pen(0xf); }
if (!(m_input & 0x04)) return ioport("IN2")->read(); if (!(m_input & 0x08)) return ioport("IN3")->read(); if (!(m_input & 0x10)) return ioport("IN4")->read(); logerror("%s: warning, unknown input bits read, input = %02x\n", machine().describe_context(), m_input); return 0xff; } WRITE8_MEMBER(dunhuang_state::dunhuang_rombank_w) { // ? data & 0x01 // ? data & 0x02 membank("bank1")->set_entry(((data >> 2) & 0x7)); // COIN OUT: data & 0x20 coin_counter_w(machine(), 0, data & 0x40); m_hopper = data & 0x80; } #ifdef UNUSED_FUNCTION WRITE8_MEMBER(dunhuang_state::dunhuang_82_w) { // popmessage("82 = %02x",dunhuang_82); } #endif static ADDRESS_MAP_START( dunhuang_io_map, AS_IO, 8, dunhuang_state ) AM_RANGE( 0x0000, 0x0000 ) AM_WRITE(dunhuang_pos_x_w ) AM_RANGE( 0x0001, 0x0001 ) AM_WRITE(dunhuang_pos_y_w ) AM_RANGE( 0x0002, 0x0004 ) AM_WRITE(dunhuang_tile_w )
void video_manager::update_throttle(attotime emutime) { /* Throttling theory: This routine is called periodically with an up-to-date emulated time. The idea is to synchronize real time with emulated time. We do this by "throttling", or waiting for real time to catch up with emulated time. In an ideal world, it will take less real time to emulate and render each frame than the emulated time, so we need to slow things down to get both times in sync. There are many complications to this model: * some games run too slow, so each frame we get further and further behind real time; our only choice here is to not throttle * some games have very uneven frame rates; one frame will take a long time to emulate, and the next frame may be very fast * we run on top of multitasking OSes; sometimes execution time is taken away from us, and this means we may not get enough time to emulate one frame * we may be paused, and emulated time may not be marching forward * emulated time could jump due to resetting the machine or restoring from a saved state */ static const UINT8 popcount[256] = { 0,1,1,2,1,2,2,3, 1,2,2,3,2,3,3,4, 1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5, 1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7, 1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7, 3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7, 4,5,5,6,5,6,6,7, 5,6,6,7,6,7,7,8 }; // outer scope so we can break out in case of a resync while (1) { // apply speed factor to emu time if (m_speed != 0 && m_speed != 1000) { // multiply emutime by 1000, then divide by the global speed factor emutime = (emutime * 1000) / m_speed; } // compute conversion factors up front osd_ticks_t ticks_per_second = osd_ticks_per_second(); attoseconds_t attoseconds_per_tick = ATTOSECONDS_PER_SECOND / ticks_per_second; // if we're paused, emutime will not advance; instead, we subtract a fixed // amount of time (1/60th of a second) from the emulated time that was passed in, // and explicitly reset our tracked real and emulated timers to that value ... // this means we pretend that the last update was exactly 1/60th of a second // ago, and was in sync in both real and emulated time if (machine().paused()) { m_throttle_emutime = emutime - attotime(0, ATTOSECONDS_PER_SECOND / PAUSED_REFRESH_RATE); m_throttle_realtime = m_throttle_emutime; } // attempt to detect anomalies in the emulated time by subtracting the previously // reported value from our current value; this should be a small value somewhere // between 0 and 1/10th of a second ... anything outside of this range is obviously // wrong and requires a resync attoseconds_t emu_delta_attoseconds = (emutime - m_throttle_emutime).as_attoseconds(); if (emu_delta_attoseconds < 0 || emu_delta_attoseconds > ATTOSECONDS_PER_SECOND / 10) { if (LOG_THROTTLE) logerror("Resync due to weird emutime delta: %s\n", attotime(0, emu_delta_attoseconds).as_string(18)); break; } // now determine the current real time in OSD-specified ticks; we have to be careful // here because counters can wrap, so we only use the difference between the last // read value and the current value in our computations osd_ticks_t diff_ticks = osd_ticks() - m_throttle_last_ticks; m_throttle_last_ticks += diff_ticks; // if it has been more than a full second of real time since the last call to this // function, we just need to resynchronize if (diff_ticks >= ticks_per_second) { if (LOG_THROTTLE) logerror("Resync due to real time advancing by more than 1 second\n"); break; } // convert this value into attoseconds for easier comparison attoseconds_t real_delta_attoseconds = diff_ticks * attoseconds_per_tick; // now update our real and emulated timers with the current values m_throttle_emutime = emutime; m_throttle_realtime += attotime(0, real_delta_attoseconds); // keep a history of whether or not emulated time beat real time over the last few // updates; this can be used for future heuristics m_throttle_history = (m_throttle_history << 1) | (emu_delta_attoseconds > real_delta_attoseconds); // determine how far ahead real time is versus emulated time; note that we use the // accumulated times for this instead of the deltas for the current update because // we want to track time over a longer duration than a single update attoseconds_t real_is_ahead_attoseconds = (m_throttle_emutime - m_throttle_realtime).as_attoseconds(); // if we're more than 1/10th of a second out, or if we are behind at all and emulation // is taking longer than the real frame, we just need to resync if (real_is_ahead_attoseconds < -ATTOSECONDS_PER_SECOND / 10 || (real_is_ahead_attoseconds < 0 && popcount[m_throttle_history & 0xff] < 6)) { if (LOG_THROTTLE) logerror("Resync due to being behind: %s (history=%08X)\n", attotime(0, -real_is_ahead_attoseconds).as_string(18), m_throttle_history); break; } // if we're behind, it's time to just get out if (real_is_ahead_attoseconds < 0) return; // compute the target real time, in ticks, where we want to be osd_ticks_t target_ticks = m_throttle_last_ticks + real_is_ahead_attoseconds / attoseconds_per_tick; // throttle until we read the target, and update real time to match the final time diff_ticks = throttle_until_ticks(target_ticks) - m_throttle_last_ticks; m_throttle_last_ticks += diff_ticks; m_throttle_realtime += attotime(0, diff_ticks * attoseconds_per_tick); return; } // reset realtime and emutime to the same value m_throttle_realtime = m_throttle_emutime = emutime; }
void neogeo_state::create_interrupt_timers() { m_display_position_interrupt_timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(neogeo_state::display_position_interrupt_callback),this)); m_display_position_vblank_timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(neogeo_state::display_position_vblank_callback),this)); m_vblank_interrupt_timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(neogeo_state::vblank_interrupt_callback),this)); }
void osborne1_state::video_start() { machine().first_screen()->register_screen_bitmap(m_bitmap); }
int osborne1_daisy_device::z80daisy_irq_state() { osborne1_state *state = machine().driver_data<osborne1_state>(); return ( state->m_pia_1_irq_state ? Z80_DAISY_INT : 0 ); }
void mm1_state::machine_start() { address_space *program = m_maincpu->memory().space(AS_PROGRAM); /* find memory regions */ m_key_rom = machine().region("keyboard")->base(); /* setup memory banking */ program->install_read_bank(0x0000, 0x0fff, "bank1"); program->unmap_write(0x0000, 0x0fff); memory_configure_bank(machine(), "bank1", 0, 1, machine().region("bios")->base(), 0); memory_configure_bank(machine(), "bank1", 1, 1, ram_get_ptr(machine().device(RAM_TAG)), 0); memory_set_bank(machine(), "bank1", 0); /* register for state saving */ state_save_register_global(machine(), m_sense); state_save_register_global(machine(), m_drive); state_save_register_global(machine(), m_llen); state_save_register_global(machine(), m_intc); state_save_register_global(machine(), m_rx21); state_save_register_global(machine(), m_tx21); state_save_register_global(machine(), m_rcl); state_save_register_global(machine(), m_recall); state_save_register_global(machine(), m_dack3); }
~debug_area() { //this->target->debug_free(*this->container); machine().debug_view().free_view(*this->view); }
void z88_32k_rom_device::device_start() { m_rom = machine().memory().region_alloc(tag(), get_cart_size(), 1, ENDIANNESS_LITTLE)->base(); }
UINT32 gcpinbal_state::screen_update_gcpinbal(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect) { int i; UINT16 tile_sets = 0; UINT8 layer[3]; #ifdef MAME_DEBUG if (machine().input().code_pressed_once(KEYCODE_V)) { m_dislayer[0] ^= 1; popmessage("bg0: %01x", m_dislayer[0]); } if (machine().input().code_pressed_once(KEYCODE_B)) { m_dislayer[1] ^= 1; popmessage("bg1: %01x", m_dislayer[1]); } if (machine().input().code_pressed_once(KEYCODE_N)) { m_dislayer[2] ^= 1; popmessage("fg: %01x", m_dislayer[2]); } #endif m_scrollx[0] = m_ioc_ram[0x14 / 2]; m_scrolly[0] = m_ioc_ram[0x16 / 2]; m_scrollx[1] = m_ioc_ram[0x18 / 2]; m_scrolly[1] = m_ioc_ram[0x1a / 2]; m_scrollx[2] = m_ioc_ram[0x1c / 2]; m_scrolly[2] = m_ioc_ram[0x1e / 2]; tile_sets = m_ioc_ram[0x88 / 2]; m_bg0_gfxset = (tile_sets & 0x400) ? 0x1000 : 0; m_bg1_gfxset = (tile_sets & 0x800) ? 0x1000 : 0; for (i = 0; i < 3; i++) { m_tilemap[i]->set_scrollx(0, m_scrollx[i]); m_tilemap[i]->set_scrolly(0, m_scrolly[i]); } screen.priority().fill(0, cliprect); bitmap.fill(0, cliprect); layer[0] = 0; layer[1] = 1; layer[2] = 2; #ifdef MAME_DEBUG if (m_dislayer[layer[0]] == 0) #endif m_tilemap[layer[0]]->draw(screen, bitmap, cliprect, TILEMAP_DRAW_OPAQUE, 1); #ifdef MAME_DEBUG if (m_dislayer[layer[1]] == 0) #endif m_tilemap[layer[1]]->draw(screen, bitmap, cliprect, 0, 2); #ifdef MAME_DEBUG if (m_dislayer[layer[2]] == 0) #endif m_tilemap[layer[2]]->draw(screen, bitmap, cliprect, 0, 4); int sprpri = (m_ioc_ram[0x68 / 2] & 0x8800) ? 0 : 1; m_sprgen->gcpinbal_draw_sprites(screen, bitmap, cliprect, m_gfxdecode, 16, sprpri); #if 0 { // char buf[80]; sprintf(buf,"bg0_gfx: %04x bg1_gfx: %04x ", m_bg0_gfxset, m_bg1_gfxset); popmessage(buf); } #endif return 0; }
void sbugger_state::video_start() { m_tilemap = &machine().tilemap().create(*m_gfxdecode, tilemap_get_info_delegate(FUNC(sbugger_state::get_tile_info),this), TILEMAP_SCAN_ROWS, 8, 16, 64, 16); }
void video_manager::postload() { m_movie_next_frame_time = machine().time(); }
osd_font sdl_osd_interface::font_open(const char *_name, int &height) { #if !(SDLMAME_SDL2) TTF_Font *font = (TTF_Font *)NULL; bool bakedstyles = false; int style = 0; // accept qualifiers from the name astring name(_name); if (name == "default") { name = "Liberation Sans"; } bool bold = (name.replace(0, "[B]", "") + name.replace(0, "[b]", "") > 0); bool italic = (name.replace(0, "[I]", "") + name.replace(0, "[i]", "") > 0); bool underline = (name.replace(0, "[U]", "") + name.replace(0, "[u]", "") > 0); bool strike = (name.replace(0, "[S]", "") + name.replace(0, "[s]", "") > 0); // first up, try it as a filename font = TTF_OpenFont_Magic(name, POINT_SIZE); // if no success, try the font path if (!font) { mame_printf_verbose("Searching font %s in -%s\n", name.cstr(), OPTION_FONTPATH); emu_file file(machine().options().font_path(), OPEN_FLAG_READ); if (file.open(name) == FILERR_NONE) { astring full_name = file.fullpath(); font = TTF_OpenFont_Magic(full_name, POINT_SIZE); if (font) mame_printf_verbose("Found font %s\n", full_name.cstr()); } } // if that didn't work, crank up the FontConfig database #ifndef SDLMAME_HAIKU if (!font) { font = search_font_config(name, bold, italic, underline, bakedstyles); } #endif if (!font) { if (!BDF_Check_Magic(name)) { printf("WARNING: font %s, is not TrueType or BDF, using MAME default\n", name.cstr()); } return NULL; } // apply styles if (!bakedstyles) { style |= bold ? TTF_STYLE_BOLD : 0; style |= italic ? TTF_STYLE_ITALIC : 0; } style |= underline ? TTF_STYLE_UNDERLINE : 0; // SDL_ttf 2.0.9 and earlier does not define TTF_STYLE_STRIKETHROUGH #if SDL_VERSIONNUM(TTF_MAJOR_VERSION, TTF_MINOR_VERSION, TTF_PATCHLEVEL) > SDL_VERSIONNUM(2,0,9) style |= strike ? TTF_STYLE_STRIKETHROUGH : 0; #else if (strike) mame_printf_warning("Ignoring strikethrough for SDL_TTF with version less 2.0.10\n"); #endif // PATCHLEVEL TTF_SetFontStyle(font, style); height = TTF_FontLineSkip(font); return (osd_font)font; #else return (osd_font)NULL; #endif }
inline int video_manager::original_speed_setting() const { return machine().options().speed() * 1000.0 + 0.5; }
void bsktball_state::video_start() { m_bg_tilemap = &machine().tilemap().create(tilemap_get_info_delegate(FUNC(bsktball_state::get_bg_tile_info),this), TILEMAP_SCAN_ROWS, 8, 8, 32, 32); }
void aquarius_state::video_start() { m_tilemap = &machine().tilemap().create(*m_gfxdecode, tilemap_get_info_delegate(FUNC(aquarius_state::aquarius_gettileinfo),this), TILEMAP_SCAN_ROWS, 8, 8, 40, 25); }
void k053247_device::k053247_sprites_draw_common( _BitmapClass &bitmap, const rectangle &cliprect ) { #define NUM_SPRITES 256 int code, color, x, y, shadow, shdmask, count, temp, primask; int sortedlist[NUM_SPRITES]; int offs,zcode; UINT8 drawmode_table[256]; UINT8 shadowmode_table[256]; memset(drawmode_table, DRAWMODE_SOURCE, sizeof(drawmode_table)); drawmode_table[0] = DRAWMODE_NONE; memset(shadowmode_table, DRAWMODE_SHADOW, sizeof(shadowmode_table)); shadowmode_table[0] = DRAWMODE_NONE; /* safeguard older drivers missing any of the following video attributes: VIDEO_HAS_SHADOWS | VIDEO_HAS_HIGHLIGHTS */ if (m_palette->shadows_enabled()) { if (sizeof(typename _BitmapClass::pixel_t) == 4 && (m_palette->hilights_enabled())) shdmask = 3; // enable all shadows and highlights else shdmask = 0; // enable default shadows } else shdmask = -1; // disable everything /* The k053247 does not draw pixels on top of those with equal or smaller Z-values regardless of priority. Embedded shadows inherit Z-values from their host sprites but do not assume host priorities unless explicitly told. In other words shadows can have priorities different from that of normal pens in the same sprite, in addition to the ability of masking themselves from specific layers or pixels on the other sprites. In front-to-back rendering, sprites cannot sandwich between alpha blended layers or the draw code will have to figure out the percentage opacities of what is on top and beneath each sprite pixel and blend the target accordingly. The process is overly demanding for realtime software and is thus another shortcoming of pdrawgfx and pixel based mixers. Even mahjong games with straight forward video subsystems are feeling the impact by which the girls cannot appear under translucent dialogue boxes. These are a small part of the k053247's feature set but many games expect them to be the minimum compliances. The specification will undoubtedly require redesigning the priority system from the ground up. Drawgfx.c and tilemap.c must also undergo heavy facelifts but in the end the changes could hurt simpler games more than they help complex systems; therefore the new engine should remain completely stand alone and self-contained. Implementation details are being hammered down but too early to make propositions. */ // Prebuild a sorted table by descending Z-order. zcode = m_z_rejection; offs = count = 0; if (zcode == -1) { for (; offs < 0x800; offs += 8) if (m_ram[offs] & 0x8000) sortedlist[count++] = offs; } else { for (; offs < 0x800; offs += 8) if ((m_ram[offs] & 0x8000) && ((m_ram[offs] & 0xff) != zcode)) sortedlist[count++] = offs; } int w = count; count--; int h = count; if (!(m_kx47_regs[0xc / 2] & 0x10)) { // sort objects in decending order(smaller z closer) when OPSET PRI is clear for (y = 0; y < h; y++) { offs = sortedlist[y]; zcode = m_ram[offs] & 0xff; for (x = y + 1; x < w; x++) { temp = sortedlist[x]; code = m_ram[temp] & 0xff; if (zcode <= code) { zcode = code; sortedlist[x] = offs; sortedlist[y] = offs = temp; } } } } else { // sort objects in ascending order(bigger z closer) when OPSET PRI is set for (y = 0; y < h; y++) { offs = sortedlist[y]; zcode = m_ram[offs] & 0xff; for (x = y + 1; x < w; x++) { temp = sortedlist[x]; code = m_ram[temp] & 0xff; if (zcode >= code) { zcode = code; sortedlist[x] = offs; sortedlist[y] = offs = temp; } } } } for (; count >= 0; count--) { offs = sortedlist[count]; code = m_ram[offs + 1]; shadow = color = m_ram[offs + 6]; primask = 0; m_callback(machine(), &code, &color, &primask); k053247_draw_single_sprite_gxcore( bitmap, cliprect, NULL, NULL, code, m_ram, offs, color, /* gx only */ 0, 0, 0, 0, /* non-gx only */ primask,shadow,drawmode_table,shadowmode_table,shdmask ); } // end of sprite-list loop #undef NUM_SPRITES }
inline void ieee488_device::set_signal(device_t *device, int signal, int state) { bool changed = false; if (device == this) { if (m_line[signal] != state) { if (LOG) logerror("%s IEEE488: '%s' %s %u\n", machine().describe_context(), tag(), SIGNAL_NAME[signal], state); m_line[signal] = state; changed = true; } } else { daisy_entry *entry = m_device_list.first(); while (entry) { if (!strcmp(entry->m_device->tag(), device->tag())) { if (entry->m_line[signal] != state) { if (LOG) logerror("%s IEEE488: '%s' %s %u\n", machine().describe_context(), device->tag(), SIGNAL_NAME[signal], state); entry->m_line[signal] = state; changed = true; } } entry = entry->next(); } } if (changed) { switch (signal) { case EOI: m_out_eoi_func(state); break; case DAV: m_out_dav_func(state); break; case NRFD: m_out_nrfd_func(state); break; case NDAC: m_out_ndac_func(state); break; case IFC: m_out_ifc_func(state); break; case SRQ: m_out_srq_func(state); break; case ATN: m_out_atn_func(state); break; case REN: m_out_ren_func(state); break; } daisy_entry *entry = m_device_list.first(); while (entry) { switch (signal) { case EOI: entry->m_interface->ieee488_eoi(state); break; case DAV: entry->m_interface->ieee488_dav(state); break; case NRFD: entry->m_interface->ieee488_nrfd(state); break; case NDAC: entry->m_interface->ieee488_ndac(state); break; case IFC: entry->m_interface->ieee488_ifc(state); break; case SRQ: entry->m_interface->ieee488_srq(state); break; case ATN: entry->m_interface->ieee488_atn(state); break; case REN: entry->m_interface->ieee488_ren(state); break; } entry = entry->next(); } if (LOG) logerror("IEEE488: EOI %u DAV %u NRFD %u NDAC %u IFC %u SRQ %u ATN %u REN %u DIO %02x\n", get_signal(EOI), get_signal(DAV), get_signal(NRFD), get_signal(NDAC), get_signal(IFC), get_signal(SRQ), get_signal(ATN), get_signal(REN), get_data()); } }
void triplhnt_state::video_start() { m_screen->register_screen_bitmap(m_helper); m_bg_tilemap = &machine().tilemap().create(m_gfxdecode, tilemap_get_info_delegate(FUNC(triplhnt_state::get_tile_info),this), TILEMAP_SCAN_ROWS, 16, 16, 16, 16); }
/******************************************************************/ void galastrm_state::galastrm_exit() { poly_free(m_poly); } void galastrm_state::video_start() { m_spritelist = auto_alloc_array(machine(), struct gs_tempsprite, 0x4000); m_screen->register_screen_bitmap(m_tmpbitmaps); m_screen->register_screen_bitmap(m_polybitmap); m_poly = poly_alloc(machine(), 16, sizeof(gs_poly_extra_data), POLYFLAG_ALLOW_QUADS); machine().add_notifier(MACHINE_NOTIFY_EXIT, machine_notify_delegate(FUNC(galastrm_state::galastrm_exit), this)); } /************************************************************ SPRITE DRAW ROUTINES We draw a series of small tiles ("chunks") together to create each big sprite. The spritemap rom provides the lookup table for this. The game hardware looks up 16x16 sprite chunks from the spritemap rom, creating a 64x64 sprite like this: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
file_error video_manager::open_next(emu_file &file, const char *extension) { UINT32 origflags = file.openflags(); // handle defaults const char *snapname = machine().options().snap_name(); if (snapname == NULL || snapname[0] == 0) snapname = "%g/%i"; astring snapstr(snapname); // strip any extension in the provided name int index = snapstr.rchr(0, '.'); if (index != -1) snapstr.substr(0, index); // handle %d in the template (for image devices) astring snapdev("%d_"); int pos = snapstr.find(0, snapdev); if (pos != -1) { // if more %d are found, revert to default and ignore them all if (snapstr.find(pos + 3, snapdev) != -1) snapstr.cpy("%g/%i"); // else if there is a single %d, try to create the correct snapname else { int name_found = 0; // find length of the device name int end1 = snapstr.find(pos + 3, "/"); int end2 = snapstr.find(pos + 3, "%"); int end = -1; if ((end1 != -1) && (end2 != -1)) end = MIN(end1, end2); else if (end1 != -1) end = end1; else if (end2 != -1) end = end2; else end = snapstr.len(); if (end - pos < 3) fatalerror("Something very wrong is going on!!!"); // copy the device name to an astring astring snapdevname; snapdevname.cpysubstr(snapstr, pos + 3, end - pos - 3); //printf("check template: %s\n", snapdevname.cstr()); // verify that there is such a device for this system device_image_interface *image = NULL; for (bool gotone = machine().devicelist().first(image); gotone; gotone = image->next(image)) { // get the device name astring tempdevname(image->brief_instance_name()); //printf("check device: %s\n", tempdevname.cstr()); if (snapdevname.cmp(tempdevname) == 0) { // verify that such a device has an image mounted if (image->basename() != NULL) { astring filename(image->basename()); // strip extension filename.substr(0, filename.rchr(0, '.')); // setup snapname and remove the %d_ snapstr.replace(0, snapdevname, filename); snapstr.del(pos, 3); //printf("check image: %s\n", filename.cstr()); name_found = 1; } } } // or fallback to default if (name_found == 0) snapstr.cpy("%g/%i"); } } // add our own extension snapstr.cat(".").cat(extension); // substitute path and gamename up front snapstr.replace(0, "/", PATH_SEPARATOR); snapstr.replace(0, "%g", machine().basename()); // determine if the template has an index; if not, we always use the same name astring fname; if (snapstr.find(0, "%i") == -1) fname.cpy(snapstr); // otherwise, we scan for the next available filename else { // try until we succeed astring seqtext; file.set_openflags(OPEN_FLAG_READ); for (int seq = 0; ; seq++) { // build up the filename fname.cpy(snapstr).replace(0, "%i", seqtext.format("%04d", seq).cstr()); // try to open the file; stop when we fail file_error filerr = file.open(fname); if (filerr != FILERR_NONE) break; } } // create the final file file.set_openflags(origflags); return file.open(fname); }
void atarisy4_state::video_start() { m_poly = poly_alloc(machine(), 1024, sizeof(poly_extra_data), POLYFLAG_NO_WORK_QUEUE); }
void video_manager::frame_update(bool debug) { // only render sound and video if we're in the running phase int phase = machine().phase(); bool skipped_it = m_skipping_this_frame; if (phase == MACHINE_PHASE_RUNNING && (!machine().paused() || machine().options().update_in_pause())) { bool anything_changed = finish_screen_updates(); // if none of the screens changed and we haven't skipped too many frames in a row, // mark this frame as skipped to prevent throttling; this helps for games that // don't update their screen at the monitor refresh rate if (!anything_changed && !m_auto_frameskip && m_frameskip_level == 0 && m_empty_skip_count++ < 3) skipped_it = true; else m_empty_skip_count = 0; } // draw the user interface ui_update_and_render(machine(), &machine().render().ui_container()); // update the internal render debugger debugint_update_during_game(machine()); // if we're throttling, synchronize before rendering attotime current_time = machine().time(); if (!debug && !skipped_it && effective_throttle()) update_throttle(current_time); // ask the OSD to update g_profiler.start(PROFILER_BLIT); machine().osd().update(!debug && skipped_it); g_profiler.stop(); // perform tasks for this frame if (!debug) machine().call_notifiers(MACHINE_NOTIFY_FRAME); // update frameskipping if (!debug) update_frameskip(); // update speed computations if (!debug && !skipped_it) recompute_speed(current_time); // call the end-of-frame callback if (phase == MACHINE_PHASE_RUNNING) { // reset partial updates if we're paused or if the debugger is active if (machine().primary_screen != NULL && (machine().paused() || debug || debugger_within_instruction_hook(machine()))) machine().primary_screen->scanline0_callback(); // otherwise, call the video EOF callback else { g_profiler.start(PROFILER_VIDEO); for (screen_device *screen = machine().first_screen(); screen != NULL; screen = screen->next_screen()) screen->screen_eof(); g_profiler.stop(); } } }
void esripsys_state::video_start() { struct line_buffer_t *line_buffer = m_line_buffer; int i; /* Allocate memory for the two 512-pixel line buffers */ line_buffer[0].colour_buf = auto_alloc_array(machine(), UINT8, 512); line_buffer[0].intensity_buf = auto_alloc_array(machine(), UINT8, 512); line_buffer[0].priority_buf = auto_alloc_array(machine(), UINT8, 512); line_buffer[1].colour_buf = auto_alloc_array(machine(), UINT8, 512); line_buffer[1].intensity_buf = auto_alloc_array(machine(), UINT8, 512); line_buffer[1].priority_buf = auto_alloc_array(machine(), UINT8, 512); /* Create and initialise the HBLANK timers */ m_hblank_start_timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(esripsys_state::hblank_start_callback),this)); m_hblank_end_timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(esripsys_state::hblank_end_callback),this)); m_hblank_start_timer->adjust(m_screen->time_until_pos(0, ESRIPSYS_HBLANK_START)); /* Create the sprite scaling table */ m_scale_table = auto_alloc_array(machine(), UINT8, 64 * 64); for (i = 0; i < 64; ++i) { int j; for (j = 1; j < 65; ++j) { int p0 = 0; int p1 = 0; int p2 = 0; int p3 = 0; int p4 = 0; int p5 = 0; if (i & 0x1) p0 = BIT(j, 5) && !BIT(j, 4) && !BIT(j,3) && !BIT(j, 2) && !BIT(j, 1) && !BIT(j, 0); if (i & 0x2) p1 = BIT(j, 4) && !BIT(j, 3) && !BIT(j, 2) && !BIT(j, 1) && !BIT(j, 0); if (i & 0x4) p2 = BIT(j,3) && !BIT(j, 2) && !BIT(j, 1) && !BIT(j, 0); if (i & 0x8) p3 = BIT(j, 2) && !BIT(j,1) && !BIT(j,0); if (i & 0x10) p4 = BIT(j, 1) && !BIT(j, 0); if (i & 0x20) p5 = BIT(j, 0); m_scale_table[i * 64 + j - 1] = p0 | p1 | p2 | p3 | p4 | p5; } } /* Now create a lookup table for scaling the sprite 'fig' value */ m_fig_scale_table = auto_alloc_array(machine(), UINT8, 1024 * 64); for (i = 0; i < 1024; ++i) { int scale; for (scale = 0; scale < 64; ++scale) { int input_pixels = i + 1; int scaled_pixels = 0; while (input_pixels) { if (m_scale_table[scale * 64 + (scaled_pixels & 0x3f)] == 0) input_pixels--; scaled_pixels++; } m_fig_scale_table[i * 64 + scale] = scaled_pixels - 1; } } /* Register stuff for state saving */ save_pointer(NAME(line_buffer[0].colour_buf), 512); save_pointer(NAME(line_buffer[0].intensity_buf), 512); save_pointer(NAME(line_buffer[0].priority_buf), 512); save_pointer(NAME(line_buffer[1].colour_buf), 512); save_pointer(NAME(line_buffer[1].intensity_buf), 512); save_pointer(NAME(line_buffer[1].priority_buf), 512); save_item(NAME(m_video_firq)); save_item(NAME(m_bg_intensity)); save_item(NAME(m_hblank)); save_item(NAME(m_video_firq_en)); save_item(NAME(m_frame_vbl)); save_item(NAME(m_12sel)); }
void video_manager::begin_recording(const char *name, movie_format format) { // stop any existign recording end_recording(); // create a snapshot bitmap so we know what the target size is create_snapshot_bitmap(NULL); // reset the state m_movie_frame = 0; m_movie_next_frame_time = machine().time(); // start up an AVI recording if (format == MF_AVI) { // build up information about this new movie avi_movie_info info; info.video_format = 0; info.video_timescale = 1000 * ((machine().primary_screen != NULL) ? ATTOSECONDS_TO_HZ(machine().primary_screen->frame_period().attoseconds) : screen_device::DEFAULT_FRAME_RATE); info.video_sampletime = 1000; info.video_numsamples = 0; info.video_width = m_snap_bitmap->width; info.video_height = m_snap_bitmap->height; info.video_depth = 24; info.audio_format = 0; info.audio_timescale = machine().sample_rate(); info.audio_sampletime = 1; info.audio_numsamples = 0; info.audio_channels = 2; info.audio_samplebits = 16; info.audio_samplerate = machine().sample_rate(); // create a new temporary movie file file_error filerr; astring fullpath; { emu_file tempfile(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS); if (name != NULL) filerr = tempfile.open(name); else filerr = open_next(tempfile, "avi"); // compute the frame time m_movie_frame_period = attotime::from_seconds(1000) / info.video_timescale; // if we succeeded, make a copy of the name and create the real file over top if (filerr == FILERR_NONE) fullpath = tempfile.fullpath(); } if (filerr == FILERR_NONE) { // create the file and free the string avi_error avierr = avi_create(fullpath, &info, &m_avifile); if (avierr != AVIERR_NONE) mame_printf_error("Error creating AVI: %s\n", avi_error_string(avierr)); } } // start up a MNG recording else if (format == MF_MNG) { // create a new movie file and start recording m_mngfile = auto_alloc(machine(), emu_file(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS)); file_error filerr; if (name != NULL) filerr = m_mngfile->open(name); else filerr = open_next(*m_mngfile, "mng"); if (filerr == FILERR_NONE) { // start the capture int rate = (machine().primary_screen != NULL) ? ATTOSECONDS_TO_HZ(machine().primary_screen->frame_period().attoseconds) : screen_device::DEFAULT_FRAME_RATE; png_error pngerr = mng_capture_start(*m_mngfile, m_snap_bitmap, rate); if (pngerr != PNGERR_NONE) return end_recording(); // compute the frame time m_movie_frame_period = attotime::from_hz(rate); } else { mame_printf_error("Error creating MNG\n"); global_free(m_mngfile); m_mngfile = NULL; } } }
void menu_software_list::handle() { const entry_info *entry; const entry_info *selected_entry = nullptr; int bestmatch = 0; // process the menu const event *event = process(0); if (event && event->itemref) { if ((FPTR)event->itemref == 1 && event->iptkey == IPT_UI_SELECT) { m_ordered_by_shortname = !m_ordered_by_shortname; m_entrylist = nullptr; // reset the char buffer if we change ordering criterion memset(m_filename_buffer, '\0', ARRAY_LENGTH(m_filename_buffer)); // reload the menu with the new order reset(reset_options::REMEMBER_REF); machine().popmessage(_("Switched Order: entries now ordered by %s"), m_ordered_by_shortname ? _("shortname") : _("description")); } // handle selections else if (event->iptkey == IPT_UI_SELECT) { entry_info *info = (entry_info *) event->itemref; m_result = info->short_name; menu::stack_pop(machine()); } else if (event->iptkey == IPT_SPECIAL) { auto const buflen = std::strlen(m_filename_buffer); bool update_selected = false; if ((event->unichar == 8) || (event->unichar == 0x7f)) { // if it's a backspace and we can handle it, do so if (0 < buflen) { *const_cast<char *>(utf8_previous_char(&m_filename_buffer[buflen])) = 0; update_selected = true; ui().popup_time(ERROR_MESSAGE_TIME, "%s", m_filename_buffer); } } else if (event->is_char_printable()) { // if it's any other key and we're not maxed out, update if (event->append_char(m_filename_buffer, buflen)) { update_selected = true; ui().popup_time(ERROR_MESSAGE_TIME, "%s", m_filename_buffer); } } if (update_selected) { const entry_info *cur_selected; // if the current selection is a software entry, start search from here if ((FPTR)event->itemref != 1) cur_selected= (const entry_info *)get_selection(); // else (if we are on the 'Switch Order' entry) start from the beginning else cur_selected = m_entrylist; // check for entries which matches our filename_buffer: // from current entry to the end for (entry = cur_selected; entry != nullptr; entry = entry->next) { const char *compare_name = m_ordered_by_shortname ? entry->short_name : entry->long_name; if (compare_name != nullptr && m_filename_buffer != nullptr) { int match = 0; for (int i = 0; i < ARRAY_LENGTH(m_filename_buffer); i++) { if (core_strnicmp(compare_name, m_filename_buffer, i) == 0) match = i; } if (match > bestmatch) { bestmatch = match; selected_entry = entry; } } } // and from the first entry to current one for (entry = m_entrylist; entry != cur_selected; entry = entry->next) { const char *compare_name = m_ordered_by_shortname ? entry->short_name : entry->long_name; if (compare_name != nullptr && m_filename_buffer != nullptr) { int match = 0; for (int i = 0; i < ARRAY_LENGTH(m_filename_buffer); i++) { if (core_strnicmp(compare_name, m_filename_buffer, i) == 0) match = i; } if (match > bestmatch) { bestmatch = match; selected_entry = entry; } } } if (selected_entry != nullptr && selected_entry != cur_selected) { set_selection((void *)selected_entry); top_line = selected - (visible_lines / 2); } } } else if (event->iptkey == IPT_UI_CANCEL) { // reset the char buffer also in this case if (m_filename_buffer[0] != '\0') memset(m_filename_buffer, '\0', ARRAY_LENGTH(m_filename_buffer)); m_result = m_filename_buffer; menu::stack_pop(machine()); } } }
void hvyunit_state::video_start() { m_bg_tilemap = &machine().tilemap().create(tilemap_get_info_delegate(FUNC(hvyunit_state::get_bg_tile_info),this), TILEMAP_SCAN_ROWS, 16, 16, 32, 32); }