Example #1
0
void BX_CPU_C::real_mode_int(Bit8u vector, bx_bool push_error, Bit16u error_code)
{
  if ((vector*4+3) > BX_CPU_THIS_PTR idtr.limit) {
    BX_ERROR(("interrupt(real mode) vector > idtr.limit"));
    exception(BX_GP_EXCEPTION, 0);
  }

  push_16((Bit16u) read_eflags());
  push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
  push_16(IP);

  Bit16u new_ip = system_read_word(BX_CPU_THIS_PTR idtr.base + 4 * vector);
  // CS.LIMIT can't change when in real/v8086 mode
  if (new_ip > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
    BX_ERROR(("interrupt(real mode): instruction pointer not within code segment limits"));
    exception(BX_GP_EXCEPTION, 0);
  }

  Bit16u cs_selector = system_read_word(BX_CPU_THIS_PTR idtr.base + 4 * vector + 2);
  load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_selector);
  EIP = new_ip;

  /* INT affects the following flags: I,T */
  BX_CPU_THIS_PTR clear_IF();
  BX_CPU_THIS_PTR clear_TF();
#if BX_CPU_LEVEL >= 4
  BX_CPU_THIS_PTR clear_AC();
#endif
  BX_CPU_THIS_PTR clear_RF();
}
Example #2
0
void BX_CPU_C::real_mode_int(Bit8u vector, bx_bool is_INT, bx_bool is_error_code, Bit16u error_code)
{
  // real mode interrupt
  Bit16u cs_selector, ip;

  if ((vector*4+3) > BX_CPU_THIS_PTR idtr.limit) {
    BX_ERROR(("interrupt(real mode) vector > idtr.limit"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  push_16((Bit16u) read_eflags());

  cs_selector = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
  push_16(cs_selector);
  ip = EIP;
  push_16(ip);

  access_read_linear(BX_CPU_THIS_PTR idtr.base + 4 * vector,     2, 0, BX_READ, &ip);
  EIP = (Bit32u) ip;
  access_read_linear(BX_CPU_THIS_PTR idtr.base + 4 * vector + 2, 2, 0, BX_READ, &cs_selector);
  load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_selector);

  /* INT affects the following flags: I,T */
  BX_CPU_THIS_PTR clear_IF();
  BX_CPU_THIS_PTR clear_TF();
#if BX_CPU_LEVEL >= 4
  BX_CPU_THIS_PTR clear_AC();
#endif
  BX_CPU_THIS_PTR clear_RF();
}
Example #3
0
File: vm8086.cpp Project: iver6/BA
int BX_CPU_C::v86_redirect_interrupt(Bit8u vector)
{
#if BX_CPU_LEVEL >= 5
  if (BX_CPU_THIS_PTR cr4.get_VME())
  {
    bx_address tr_base = BX_CPU_THIS_PTR tr.cache.u.segment.base;
    if (BX_CPU_THIS_PTR tr.cache.u.segment.limit_scaled < 103) {
      BX_ERROR(("INT_Ib(): TR.limit < 103 in VME"));
      exception(BX_GP_EXCEPTION, 0);
    }

    Bit32u io_base = system_read_word(tr_base + 102), offset = io_base - 32 + (vector >> 3);
    if (offset > BX_CPU_THIS_PTR tr.cache.u.segment.limit_scaled) {
      BX_ERROR(("INT_Ib(): failed to fetch VME redirection bitmap"));
      exception(BX_GP_EXCEPTION, 0);
    }

    Bit8u vme_redirection_bitmap = system_read_byte(tr_base + offset);
    if (!(vme_redirection_bitmap & (1 << (vector & 7))))
    {
      // redirect interrupt through virtual-mode idt
      Bit16u temp_flags = (Bit16u) read_eflags();

      Bit16u temp_CS = system_read_word(vector*4 + 2);
      Bit16u temp_IP = system_read_word(vector*4);

      if (BX_CPU_THIS_PTR get_IOPL() < 3) {
        temp_flags |= EFlagsIOPLMask;
        if (BX_CPU_THIS_PTR get_VIF())
          temp_flags |=  EFlagsIFMask;
        else
          temp_flags &= ~EFlagsIFMask;
      }

      Bit16u old_IP = IP;
      Bit16u old_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;

      push_16(temp_flags);
      // push return address onto new stack
      push_16(old_CS);
      push_16(old_IP);

      load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], (Bit16u) temp_CS);
      EIP = temp_IP;

      BX_CPU_THIS_PTR clear_TF();
      BX_CPU_THIS_PTR clear_RF();
      if (BX_CPU_THIS_PTR get_IOPL() == 3)
        BX_CPU_THIS_PTR clear_IF();
      else
        BX_CPU_THIS_PTR clear_VIF();

      return 1;
    }
  }
Example #4
0
  void
bx_cpu_c::PUSH_Iw(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
  BX_PANIC(("PUSH_Iv: not supported on 8086!"));
#else

    Bit16u imm16;

    imm16 = i->Iw;

    push_16(imm16);
#endif
}
Example #5
0
  void
bx_cpu_c::PUSH_Ew(BxInstruction_t *i)
{
    Bit16u op1_16;

    /* op1_16 is a register or memory reference */
    if (i->mod == 0xc0) {
      op1_16 = BX_READ_16BIT_REG(i->rm);
      }
    else {
      /* pointer, segment address pair */
      read_virtual_word(i->seg, i->rm_addr, &op1_16);
      }

    push_16(op1_16);
}
Example #6
0
  void
bx_cpu_c::PUSHAD16(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
  BX_PANIC(("PUSHAD: not supported on an 8086"));
#else
  Bit32u temp_ESP;
  Bit16u sp;

  if (bx_cpu. sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
    temp_ESP = ESP;
  else
    temp_ESP = SP;


#if BX_CPU_LEVEL >= 2
    if (protected_mode()) {
      if ( !can_push(&bx_cpu. sregs[BX_SEG_REG_SS].cache, temp_ESP, 16) ) {
        BX_PANIC(("PUSHA(): stack doesn't have enough room!"));
        exception(BX_SS_EXCEPTION, 0, 0);
        return;
        }
      }
    else
#endif
      {
      if (temp_ESP < 16)
        BX_PANIC(("pushad: eSP < 16"));
      }

    sp = SP;

    /* ??? optimize this by using virtual write, all checks passed */
    push_16(AX);
    push_16(CX);
    push_16(DX);
    push_16(BX);
    push_16(sp);
    push_16(BP);
    push_16(SI);
    push_16(DI);
#endif
}
Example #7
0
void BX_CPU_C::protected_mode_int(Bit8u vector, unsigned soft_int, bx_bool push_error, Bit16u error_code)
{
  bx_descriptor_t gate_descriptor, cs_descriptor;
  bx_selector_t cs_selector;

  Bit16u raw_tss_selector;
  bx_selector_t   tss_selector;
  bx_descriptor_t tss_descriptor;

  Bit16u gate_dest_selector;
  Bit32u gate_dest_offset;

  // interrupt vector must be within IDT table limits,
  // else #GP(vector*8 + 2 + EXT)
  if ((vector*8 + 7) > BX_CPU_THIS_PTR idtr.limit) {
    BX_ERROR(("interrupt(): vector must be within IDT table limits, IDT.limit = 0x%x", BX_CPU_THIS_PTR idtr.limit));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  Bit64u desctmp = system_read_qword(BX_CPU_THIS_PTR idtr.base + vector*8);

  Bit32u dword1 = GET32L(desctmp);
  Bit32u dword2 = GET32H(desctmp);

  parse_descriptor(dword1, dword2, &gate_descriptor);

  if ((gate_descriptor.valid==0) || gate_descriptor.segment) {
    BX_ERROR(("interrupt(): gate descriptor is not valid sys seg (vector=0x%02x)", vector));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // descriptor AR byte must indicate interrupt gate, trap gate,
  // or task gate, else #GP(vector*8 + 2 + EXT)
  switch (gate_descriptor.type) {
  case BX_TASK_GATE:
  case BX_286_INTERRUPT_GATE:
  case BX_286_TRAP_GATE:
  case BX_386_INTERRUPT_GATE:
  case BX_386_TRAP_GATE:
    break;
  default:
    BX_ERROR(("interrupt(): gate.type(%u) != {5,6,7,14,15}",
      (unsigned) gate_descriptor.type));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // if software interrupt, then gate descripor DPL must be >= CPL,
  // else #GP(vector * 8 + 2 + EXT)
  if (soft_int && gate_descriptor.dpl < CPL) {
    BX_ERROR(("interrupt(): soft_int && (gate.dpl < CPL)"));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // Gate must be present, else #NP(vector * 8 + 2 + EXT)
  if (! IS_PRESENT(gate_descriptor)) {
    BX_ERROR(("interrupt(): gate not present"));
    exception(BX_NP_EXCEPTION, vector*8 + 2);
  }

  switch (gate_descriptor.type) {
  case BX_TASK_GATE:
    // examine selector to TSS, given in task gate descriptor
    raw_tss_selector = gate_descriptor.u.taskgate.tss_selector;
    parse_selector(raw_tss_selector, &tss_selector);

    // must specify global in the local/global bit,
    //      else #GP(TSS selector)
    if (tss_selector.ti) {
      BX_ERROR(("interrupt(): tss_selector.ti=1 from gate descriptor - #GP(tss_selector)"));
      exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    // index must be within GDT limits, else #TS(TSS selector)
    fetch_raw_descriptor(&tss_selector, &dword1, &dword2, BX_GP_EXCEPTION);

    parse_descriptor(dword1, dword2, &tss_descriptor);

    // AR byte must specify available TSS,
    //   else #GP(TSS selector)
    if (tss_descriptor.valid==0 || tss_descriptor.segment) {
      BX_ERROR(("interrupt(): TSS selector points to invalid or bad TSS - #GP(tss_selector)"));
      exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    if (tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS &&
        tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS)
    {
      BX_ERROR(("interrupt(): TSS selector points to bad TSS - #GP(tss_selector)"));
      exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    // TSS must be present, else #NP(TSS selector)
    if (! IS_PRESENT(tss_descriptor)) {
      BX_ERROR(("interrupt(): TSS descriptor.p == 0"));
      exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    // switch tasks with nesting to TSS
    task_switch(0, &tss_selector, &tss_descriptor,
                    BX_TASK_FROM_INT, dword1, dword2);

    RSP_SPECULATIVE;

    // if interrupt was caused by fault with error code
    //   stack limits must allow push of 2 more bytes, else #SS(0)
    // push error code onto stack

    if (push_error) {
      if (tss_descriptor.type >= 9) // TSS386
        push_32(error_code);
      else
        push_16(error_code);
    }

    // instruction pointer must be in CS limit, else #GP(0)
    if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
      BX_ERROR(("interrupt(): EIP > CS.limit"));
      exception(BX_GP_EXCEPTION, 0);
    }

    RSP_COMMIT;

    return;

  case BX_286_INTERRUPT_GATE:
  case BX_286_TRAP_GATE:
  case BX_386_INTERRUPT_GATE:
  case BX_386_TRAP_GATE:
    gate_dest_selector = gate_descriptor.u.gate.dest_selector;
    gate_dest_offset   = gate_descriptor.u.gate.dest_offset;

    // examine CS selector and descriptor given in gate descriptor
    // selector must be non-null else #GP(EXT)
    if ((gate_dest_selector & 0xfffc) == 0) {
      BX_ERROR(("int_trap_gate(): selector null"));
      exception(BX_GP_EXCEPTION, 0);
    }

    parse_selector(gate_dest_selector, &cs_selector);

    // selector must be within its descriptor table limits
    // else #GP(selector+EXT)
    fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
    parse_descriptor(dword1, dword2, &cs_descriptor);

    // descriptor AR byte must indicate code seg
    // and code segment descriptor DPL<=CPL, else #GP(selector+EXT)
    if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
        IS_DATA_SEGMENT(cs_descriptor.type) ||
        cs_descriptor.dpl > CPL)
    {
      BX_ERROR(("interrupt(): not accessible or not code segment cs=0x%04x", cs_selector.value));
      exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
    }

    // segment must be present, else #NP(selector + EXT)
    if (! IS_PRESENT(cs_descriptor)) {
      BX_ERROR(("interrupt(): segment not present"));
      exception(BX_NP_EXCEPTION, cs_selector.value & 0xfffc);
    }

    // if code segment is non-conforming and DPL < CPL then
    // INTERRUPT TO INNER PRIVILEGE
    if(IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && cs_descriptor.dpl < CPL)
    {
      Bit16u old_SS, old_CS, SS_for_cpl_x;
      Bit32u ESP_for_cpl_x, old_EIP, old_ESP;
      bx_descriptor_t ss_descriptor;
      bx_selector_t   ss_selector;
      int is_v8086_mode = v8086_mode();

      BX_DEBUG(("interrupt(): INTERRUPT TO INNER PRIVILEGE"));

      // check selector and descriptor for new stack in current TSS
      get_SS_ESP_from_TSS(cs_descriptor.dpl,
                              &SS_for_cpl_x, &ESP_for_cpl_x);

      if (is_v8086_mode && cs_descriptor.dpl != 0) {
        // if code segment DPL != 0 then #GP(new code segment selector)
        BX_ERROR(("interrupt(): code segment DPL(%d) != 0 in v8086 mode", cs_descriptor.dpl));
        exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
      }

      // Selector must be non-null else #TS(EXT)
      if ((SS_for_cpl_x & 0xfffc) == 0) {
        BX_ERROR(("interrupt(): SS selector null"));
        exception(BX_TS_EXCEPTION, 0); /* TS(ext) */
      }

      // selector index must be within its descriptor table limits
      // else #TS(SS selector + EXT)
      parse_selector(SS_for_cpl_x, &ss_selector);
      // fetch 2 dwords of descriptor; call handles out of limits checks
      fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION);
      parse_descriptor(dword1, dword2, &ss_descriptor);

      // selector rpl must = dpl of code segment,
      // else #TS(SS selector + ext)
      if (ss_selector.rpl != cs_descriptor.dpl) {
        BX_ERROR(("interrupt(): SS.rpl != CS.dpl"));
        exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // stack seg DPL must = DPL of code segment,
      // else #TS(SS selector + ext)
      if (ss_descriptor.dpl != cs_descriptor.dpl) {
        BX_ERROR(("interrupt(): SS.dpl != CS.dpl"));
        exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // descriptor must indicate writable data segment,
      // else #TS(SS selector + EXT)
      if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
           IS_CODE_SEGMENT(ss_descriptor.type) ||
          !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
      {
        BX_ERROR(("interrupt(): SS is not writable data segment"));
        exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // seg must be present, else #SS(SS selector + ext)
      if (! IS_PRESENT(ss_descriptor)) {
        BX_ERROR(("interrupt(): SS not present"));
        exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // IP must be within CS segment boundaries, else #GP(0)
      if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) {
        BX_ERROR(("interrupt(): gate EIP > CS.limit"));
        exception(BX_GP_EXCEPTION, 0);
      }

      old_ESP = ESP;
      old_SS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
      old_EIP = EIP;
      old_CS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;

      // Prepare new stack segment
      bx_segment_reg_t new_stack;
      new_stack.selector = ss_selector;
      new_stack.cache = ss_descriptor;
      new_stack.selector.rpl = cs_descriptor.dpl;
      // add cpl to the selector value
      new_stack.selector.value = (0xfffc & new_stack.selector.value) |
        new_stack.selector.rpl;

      if (ss_descriptor.u.segment.d_b) {
        Bit32u temp_ESP = ESP_for_cpl_x;

        if (is_v8086_mode)
        {
          if (gate_descriptor.type>=14) { // 386 int/trap gate
            write_new_stack_dword_32(&new_stack, temp_ESP-4,  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_dword_32(&new_stack, temp_ESP-8,  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_dword_32(&new_stack, temp_ESP-12, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_dword_32(&new_stack, temp_ESP-16, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_ESP -= 16;
          }
          else {
            write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_word_32(&new_stack, temp_ESP-6, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_word_32(&new_stack, temp_ESP-8, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_ESP -= 8;
          }
        }

        if (gate_descriptor.type>=14) { // 386 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_dword_32(&new_stack, temp_ESP-4,  cs_descriptor.dpl, old_SS);
          write_new_stack_dword_32(&new_stack, temp_ESP-8,  cs_descriptor.dpl, old_ESP);
          write_new_stack_dword_32(&new_stack, temp_ESP-12, cs_descriptor.dpl, read_eflags());
          write_new_stack_dword_32(&new_stack, temp_ESP-16, cs_descriptor.dpl, old_CS);
          write_new_stack_dword_32(&new_stack, temp_ESP-20, cs_descriptor.dpl, old_EIP);
          temp_ESP -= 20;

          if (push_error) {
            temp_ESP -= 4;
            write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, error_code);
          }
        }
        else {                          // 286 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_word_32(&new_stack, temp_ESP-2,  cs_descriptor.dpl, old_SS);
          write_new_stack_word_32(&new_stack, temp_ESP-4,  cs_descriptor.dpl, (Bit16u) old_ESP);
          write_new_stack_word_32(&new_stack, temp_ESP-6,  cs_descriptor.dpl, (Bit16u) read_eflags());
          write_new_stack_word_32(&new_stack, temp_ESP-8,  cs_descriptor.dpl, old_CS);
          write_new_stack_word_32(&new_stack, temp_ESP-10, cs_descriptor.dpl, (Bit16u) old_EIP);
          temp_ESP -= 10;

          if (push_error) {
            temp_ESP -= 2;
            write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, error_code);
          }
        }

        ESP = temp_ESP;
      }
      else {
        Bit16u temp_SP = (Bit16u) ESP_for_cpl_x;

        if (is_v8086_mode)
        {
          if (gate_descriptor.type>=14) { // 386 int/trap gate
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4),  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8),  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-12), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-16), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_SP -= 16;
          }
          else {
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-6), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_SP -= 8;
          }
        }

        if (gate_descriptor.type>=14) { // 386 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4),  cs_descriptor.dpl, old_SS);
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8),  cs_descriptor.dpl, old_ESP);
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-12), cs_descriptor.dpl, read_eflags());
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-16), cs_descriptor.dpl, old_CS);
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-20), cs_descriptor.dpl, old_EIP);
          temp_SP -= 20;

          if (push_error) {
            temp_SP -= 4;
            write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, error_code);
          }
        }
        else {                          // 286 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2),  cs_descriptor.dpl, old_SS);
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4),  cs_descriptor.dpl, (Bit16u) old_ESP);
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-6),  cs_descriptor.dpl, (Bit16u) read_eflags());
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-8),  cs_descriptor.dpl, old_CS);
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-10), cs_descriptor.dpl, (Bit16u) old_EIP);
          temp_SP -= 10;

          if (push_error) {
            temp_SP -= 2;
            write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, error_code);
          }
        }

        SP = temp_SP;
      }

      // load new CS:eIP values from gate
      // set CPL to new code segment DPL
      // set RPL of CS to CPL
      load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);

      // load new SS:eSP values from TSS
      load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);

      if (is_v8086_mode)
      {
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = 0;
      }
    }
    else
    {
      BX_DEBUG(("interrupt(): INTERRUPT TO SAME PRIVILEGE"));

      if (v8086_mode() && (IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) || cs_descriptor.dpl != 0)) {
        // if code segment DPL != 0 then #GP(new code segment selector)
        BX_ERROR(("interrupt(): code segment conforming or DPL(%d) != 0 in v8086 mode", cs_descriptor.dpl));
        exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
      }

      // EIP must be in CS limit else #GP(0)
      if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) {
        BX_ERROR(("interrupt(): IP > CS descriptor limit"));
        exception(BX_GP_EXCEPTION, 0);
      }

      // push flags onto stack
      // push current CS selector onto stack
      // push return offset onto stack
      if (gate_descriptor.type >= 14) { // 386 gate
        push_32(read_eflags());
        push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
        push_32(EIP);
        if (push_error)
          push_32(error_code);
      }
      else { // 286 gate
        push_16((Bit16u) read_eflags());
        push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
        push_16(IP);
        if (push_error)
          push_16(error_code);
      }

      // load CS:IP from gate
      // load CS descriptor
      // set the RPL field of CS to CPL
      load_cs(&cs_selector, &cs_descriptor, CPL);
    }

    EIP = gate_dest_offset;

    // if interrupt gate then set IF to 0
    if (!(gate_descriptor.type & 1)) // even is int-gate
      BX_CPU_THIS_PTR clear_IF();
    BX_CPU_THIS_PTR clear_TF();
    BX_CPU_THIS_PTR clear_NT();
    BX_CPU_THIS_PTR clear_VM();
    BX_CPU_THIS_PTR clear_RF();
    return;

  default:
    BX_PANIC(("bad descriptor type in interrupt()!"));
    break;
  }
}
Example #8
0
BX_CPU_C::call_protected(bxInstruction_c *i, Bit16u cs_raw, bx_address disp)
{
  bx_selector_t cs_selector;
  Bit32u dword1, dword2;
  bx_descriptor_t cs_descriptor;

  /* new cs selector must not be null, else #GP(0) */
  if ((cs_raw & 0xfffc) == 0) {
    BX_ERROR(("call_protected: CS selector null"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  parse_selector(cs_raw, &cs_selector);
  // check new CS selector index within its descriptor limits,
  // else #GP(new CS selector)
  fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &cs_descriptor);

  // examine AR byte of selected descriptor for various legal values
  if (cs_descriptor.valid==0) {
    BX_ERROR(("call_protected: invalid CS descriptor"));
    exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
  }

  if (cs_descriptor.segment)   // normal segment
  {
    check_cs(&cs_descriptor, cs_raw, BX_SELECTOR_RPL(cs_raw), CPL);

#if BX_SUPPORT_X86_64
    if (i->os64L()) {
      // push return address onto stack (CS padded to 64bits)
      push_64((Bit64u) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_64(RIP);
    }
    else
#endif
    if (i->os32L()) {
      // push return address onto stack (CS padded to 32bits)
      push_32((Bit32u) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_32(EIP);
    }
    else {
      // push return address onto stack
      push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_16(IP);
    }

    // load code segment descriptor into CS cache
    // load CS with new code segment selector
    // set RPL of CS to CPL
    branch_far64(&cs_selector, &cs_descriptor, disp, CPL);

    return;
  }
  else { // gate & special segment
    bx_descriptor_t  gate_descriptor = cs_descriptor;
    bx_selector_t    gate_selector = cs_selector;
    Bit32u new_EIP;
    Bit16u dest_selector;
    Bit16u          raw_tss_selector;
    bx_selector_t   tss_selector;
    bx_descriptor_t tss_descriptor;
    Bit32u temp_eIP;

    // descriptor DPL must be >= CPL else #GP(gate selector)
    if (gate_descriptor.dpl < CPL) {
      BX_ERROR(("call_protected: descriptor.dpl < CPL"));
      exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }

    // descriptor DPL must be >= gate selector RPL else #GP(gate selector)
    if (gate_descriptor.dpl < gate_selector.rpl) {
      BX_ERROR(("call_protected: descriptor.dpl < selector.rpl"));
      exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }

#if BX_SUPPORT_X86_64
    if (long_mode()) {
      // call gate type is higher priority than non-present bit check
      if (gate_descriptor.type != BX_386_CALL_GATE) {
        BX_ERROR(("call_protected: gate type %u unsupported in long mode", (unsigned) gate_descriptor.type));
        exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
      }
    }
    else
#endif
    {
      switch (gate_descriptor.type) {
        case BX_SYS_SEGMENT_AVAIL_286_TSS:
        case BX_SYS_SEGMENT_AVAIL_386_TSS:
        case BX_TASK_GATE:
        case BX_286_CALL_GATE:
        case BX_386_CALL_GATE:
          break;
        default:
          BX_ERROR(("call_protected(): gate.type(%u) unsupported", (unsigned) gate_descriptor.type));
          exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
      }
    }

    // gate descriptor must be present else #NP(gate selector)
    if (! IS_PRESENT(gate_descriptor)) {
      BX_ERROR(("call_protected: gate not present"));
      exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0);
    }

#if BX_SUPPORT_X86_64
    if (long_mode()) {
      call_gate64(&gate_selector);
      return;
    }
#endif

    switch (gate_descriptor.type) {
      case BX_SYS_SEGMENT_AVAIL_286_TSS:
      case BX_SYS_SEGMENT_AVAIL_386_TSS:

        if (gate_descriptor.type==BX_SYS_SEGMENT_AVAIL_286_TSS)
          BX_DEBUG(("call_protected: 16bit available TSS"));
        else
          BX_DEBUG(("call_protected: 32bit available TSS"));

        // SWITCH_TASKS _without_ nesting to TSS
        task_switch(&gate_selector, &gate_descriptor,
          BX_TASK_FROM_CALL_OR_INT, dword1, dword2);

        // EIP must be in code seg limit, else #GP(0)
        if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
          BX_ERROR(("call_protected: EIP not within CS limits"));
          exception(BX_GP_EXCEPTION, 0, 0);
        }
        return;

      case BX_TASK_GATE:
        // examine selector to TSS, given in Task Gate descriptor
        // must specify global in the local/global bit else #TS(TSS selector)
        raw_tss_selector = gate_descriptor.u.taskgate.tss_selector;
        parse_selector(raw_tss_selector, &tss_selector);

        if (tss_selector.ti) {
          BX_ERROR(("call_protected: tss_selector.ti=1"));
          exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }

        // index must be within GDT limits else #TS(TSS selector)
        fetch_raw_descriptor(&tss_selector, &dword1, &dword2, BX_GP_EXCEPTION);

        parse_descriptor(dword1, dword2, &tss_descriptor);

        // descriptor AR byte must specify available TSS
        //   else #GP(TSS selector)
        if (tss_descriptor.valid==0 || tss_descriptor.segment) {
          BX_ERROR(("call_protected: TSS selector points to bad TSS"));
          exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }
        if (tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS &&
            tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS)
        {
          BX_ERROR(("call_protected: TSS selector points to bad TSS"));
          exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }

        // task state segment must be present, else #NP(tss selector)
        if (! IS_PRESENT(tss_descriptor)) {
          BX_ERROR(("call_protected: task descriptor.p == 0"));
          exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }

        // SWITCH_TASKS without nesting to TSS
        task_switch(&tss_selector, &tss_descriptor,
                    BX_TASK_FROM_CALL_OR_INT, dword1, dword2);

        // EIP must be within code segment limit, else #TS(0)
        if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b)
          temp_eIP = EIP;
        else
          temp_eIP =  IP;

        if (temp_eIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled)
        {
          BX_ERROR(("call_protected: EIP > CS.limit"));
          exception(BX_GP_EXCEPTION, 0, 0);
        }
        return;

      case BX_286_CALL_GATE:
      case BX_386_CALL_GATE:
        // examine code segment selector in call gate descriptor
        BX_DEBUG(("call_protected: call gate"));
        dest_selector = gate_descriptor.u.gate.dest_selector;
        new_EIP       = gate_descriptor.u.gate.dest_offset;

        // selector must not be null else #GP(0)
        if ((dest_selector & 0xfffc) == 0) {
          BX_ERROR(("call_protected: selector in gate null"));
          exception(BX_GP_EXCEPTION, 0, 0);
        }

        parse_selector(dest_selector, &cs_selector);
        // selector must be within its descriptor table limits,
        //   else #GP(code segment selector)
        fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
        parse_descriptor(dword1, dword2, &cs_descriptor);

        // AR byte of selected descriptor must indicate code segment,
        //   else #GP(code segment selector)
        // DPL of selected descriptor must be <= CPL,
        // else #GP(code segment selector)
        if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
            IS_DATA_SEGMENT(cs_descriptor.type) ||
            cs_descriptor.dpl > CPL)
        {
          BX_ERROR(("call_protected: selected descriptor is not code"));
          exception(BX_GP_EXCEPTION, dest_selector & 0xfffc, 0);
        }

        // code segment must be present else #NP(selector)
        if (! IS_PRESENT(cs_descriptor)) {
          BX_ERROR(("call_protected: code segment not present !"));
          exception(BX_NP_EXCEPTION, dest_selector & 0xfffc, 0);
        }

        // CALL GATE TO MORE PRIVILEGE
        // if non-conforming code segment and DPL < CPL then
        if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL))
        {
          Bit16u SS_for_cpl_x;
          Bit32u ESP_for_cpl_x;
          bx_selector_t   ss_selector;
          bx_descriptor_t ss_descriptor;
          Bit16u   return_SS, return_CS;
          Bit32u   return_ESP, return_EIP;
          Bit16u   parameter_word[32];
          Bit32u   parameter_dword[32];

          BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL"));

          // get new SS selector for new privilege level from TSS
          get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x);

          // check selector & descriptor for new SS:
          // selector must not be null, else #TS(0)
          if ((SS_for_cpl_x & 0xfffc) == 0) {
            BX_ERROR(("call_protected: new SS null"));
            exception(BX_TS_EXCEPTION, 0, 0);
          }

          // selector index must be within its descriptor table limits,
          //   else #TS(SS selector)
          parse_selector(SS_for_cpl_x, &ss_selector);
          fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION);
          parse_descriptor(dword1, dword2, &ss_descriptor);

          // selector's RPL must equal DPL of code segment,
          //   else #TS(SS selector)
          if (ss_selector.rpl != cs_descriptor.dpl) {
            BX_ERROR(("call_protected: SS selector.rpl != CS descr.dpl"));
            exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // stack segment DPL must equal DPL of code segment,
          //   else #TS(SS selector)
          if (ss_descriptor.dpl != cs_descriptor.dpl) {
            BX_ERROR(("call_protected: SS descr.rpl != CS descr.dpl"));
            exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // descriptor must indicate writable data segment,
          //   else #TS(SS selector)
          if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
               IS_CODE_SEGMENT(ss_descriptor.type) ||
              !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
          {
            BX_ERROR(("call_protected: ss descriptor is not writable data seg"));
            exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // segment must be present, else #SS(SS selector)
          if (! IS_PRESENT(ss_descriptor)) {
            BX_ERROR(("call_protected: ss descriptor not present"));
            exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // get word count from call gate, mask to 5 bits
          unsigned param_count = gate_descriptor.u.gate.param_count & 0x1f;

          // save return SS:eSP to be pushed on new stack
          return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
          if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
            return_ESP = ESP;
          else
            return_ESP =  SP;

          // save return CS:eIP to be pushed on new stack
          return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
          if (cs_descriptor.u.segment.d_b)
            return_EIP = EIP;
          else
            return_EIP = IP;

          if (gate_descriptor.type==BX_286_CALL_GATE) {
            for (unsigned i=0; i<param_count; i++) {
              parameter_word[i] = read_virtual_word(BX_SEG_REG_SS, return_ESP + i*2);
            }
          }
          else {
            for (unsigned i=0; i<param_count; i++) {
              parameter_dword[i] = read_virtual_dword(BX_SEG_REG_SS, return_ESP + i*4);
            }
          }

          // Prepare new stack segment
          bx_segment_reg_t new_stack;
          new_stack.selector = ss_selector;
          new_stack.cache = ss_descriptor;
          new_stack.selector.rpl = cs_descriptor.dpl;
          // add cpl to the selector value
          new_stack.selector.value = (0xfffc & new_stack.selector.value) |
            new_stack.selector.rpl;

          /* load new SS:SP value from TSS */
          if (ss_descriptor.u.segment.d_b) {
            Bit32u temp_ESP = ESP_for_cpl_x;

            // push pointer of old stack onto new stack
            if (gate_descriptor.type==BX_386_CALL_GATE) {
              write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_SS);
              write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_ESP);
              temp_ESP -= 8;

              for (unsigned i=param_count; i>0; i--) {
                temp_ESP -= 4;
                write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, parameter_dword[i-1]);
              }
              // push return address onto new stack
              write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_CS);
              write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_EIP);
              temp_ESP -= 8;
            }
            else {
              write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_SS);
              write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_ESP);
              temp_ESP -= 4;

              for (unsigned i=param_count; i>0; i--) {
                temp_ESP -= 2;
                write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, parameter_word[i-1]);
              }
              // push return address onto new stack
              write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_CS);
              write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_EIP);
              temp_ESP -= 4;
            }

            ESP = temp_ESP;
          }
          else {
            Bit16u temp_SP = (Bit16u) ESP_for_cpl_x;

            // push pointer of old stack onto new stack
            if (gate_descriptor.type==BX_386_CALL_GATE) {
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_SS);
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_ESP);
              temp_SP -= 8;

              for (unsigned i=param_count; i>0; i--) {
                temp_SP -= 4;
                write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, parameter_dword[i-1]);
              }
              // push return address onto new stack
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_CS);
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_EIP);
              temp_SP -= 8;
            }
            else {
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_SS);
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_ESP);
              temp_SP -= 4;

              for (unsigned i=param_count; i>0; i--) {
                temp_SP -= 2;
                write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, parameter_word[i-1]);
              }
              // push return address onto new stack
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_CS);
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_EIP);
              temp_SP -= 4;
            }

            SP = temp_SP;
          }

          // new eIP must be in code segment limit else #GP(0)
          if (new_EIP > cs_descriptor.u.segment.limit_scaled) {
            BX_ERROR(("call_protected: EIP not within CS limits"));
            exception(BX_GP_EXCEPTION, 0, 0);
          }

          /* load SS descriptor */
          load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);

          /* load new CS:IP value from gate */
          /* load CS descriptor */
          /* set CPL to stack segment DPL */
          /* set RPL of CS to CPL */
          load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);
          EIP = new_EIP;
        }
        else   // CALL GATE TO SAME PRIVILEGE
        {
          BX_DEBUG(("CALL GATE TO SAME PRIVILEGE"));

          if (gate_descriptor.type == BX_386_CALL_GATE) {
            // call gate 32bit, push return address onto stack
            push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
            push_32(EIP);
          }
          else {
            // call gate 16bit, push return address onto stack
            push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
            push_16(IP);
          }

          // load CS:EIP from gate
          // load code segment descriptor into CS register
          // set RPL of CS to CPL
          branch_far32(&cs_selector, &cs_descriptor, new_EIP, CPL);
        }
        return;

      default: // can't get here
        BX_PANIC(("call_protected: gate type %u unsupported", (unsigned) cs_descriptor.type));
        exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }
  }
}
Example #9
0
void BX_CPP_AttrRegparmN(1) BX_CPU_C::call_gate(bx_descriptor_t *gate_descriptor)
{
  bx_selector_t cs_selector;
  Bit32u dword1, dword2;
  bx_descriptor_t cs_descriptor;

  // examine code segment selector in call gate descriptor
  BX_DEBUG(("call_protected: call gate"));

  Bit16u dest_selector = gate_descriptor->u.gate.dest_selector;
  Bit32u new_EIP       = gate_descriptor->u.gate.dest_offset;

  // selector must not be null else #GP(0)
  if ((dest_selector & 0xfffc) == 0) {
    BX_ERROR(("call_protected: selector in gate null"));
    exception(BX_GP_EXCEPTION, 0);
  }

  parse_selector(dest_selector, &cs_selector);
  // selector must be within its descriptor table limits,
  //   else #GP(code segment selector)
  fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &cs_descriptor);

  // AR byte of selected descriptor must indicate code segment,
  //   else #GP(code segment selector)
  // DPL of selected descriptor must be <= CPL,
  // else #GP(code segment selector)
  if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
      IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl > CPL)
  {
    BX_ERROR(("call_protected: selected descriptor is not code"));
    exception(BX_GP_EXCEPTION, dest_selector & 0xfffc);
  }

  // code segment must be present else #NP(selector)
  if (! IS_PRESENT(cs_descriptor)) {
    BX_ERROR(("call_protected: code segment not present !"));
    exception(BX_NP_EXCEPTION, dest_selector & 0xfffc);
  }

  // CALL GATE TO MORE PRIVILEGE
  // if non-conforming code segment and DPL < CPL then
  if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL))
  {
    Bit16u SS_for_cpl_x;
    Bit32u ESP_for_cpl_x;
    bx_selector_t   ss_selector;
    bx_descriptor_t ss_descriptor;
    Bit16u   return_SS, return_CS;
    Bit32u   return_ESP, return_EIP;

    BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL"));

    // get new SS selector for new privilege level from TSS
    get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x);

    // check selector & descriptor for new SS:
    // selector must not be null, else #TS(0)
    if ((SS_for_cpl_x & 0xfffc) == 0) {
      BX_ERROR(("call_protected: new SS null"));
      exception(BX_TS_EXCEPTION, 0);
    }

    // selector index must be within its descriptor table limits,
    //   else #TS(SS selector)
    parse_selector(SS_for_cpl_x, &ss_selector);
    fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION);
    parse_descriptor(dword1, dword2, &ss_descriptor);

    // selector's RPL must equal DPL of code segment,
    //   else #TS(SS selector)
    if (ss_selector.rpl != cs_descriptor.dpl) {
      BX_ERROR(("call_protected: SS selector.rpl != CS descr.dpl"));
      exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // stack segment DPL must equal DPL of code segment,
    //   else #TS(SS selector)
    if (ss_descriptor.dpl != cs_descriptor.dpl) {
      BX_ERROR(("call_protected: SS descr.rpl != CS descr.dpl"));
      exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // descriptor must indicate writable data segment,
    //   else #TS(SS selector)
    if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
        IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
    {
      BX_ERROR(("call_protected: ss descriptor is not writable data seg"));
      exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // segment must be present, else #SS(SS selector)
    if (! IS_PRESENT(ss_descriptor)) {
      BX_ERROR(("call_protected: ss descriptor not present"));
      exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // get word count from call gate, mask to 5 bits
    unsigned param_count = gate_descriptor->u.gate.param_count & 0x1f;

    // save return SS:eSP to be pushed on new stack
    return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
    if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
      return_ESP = ESP;
    else
      return_ESP =  SP;

    // save return CS:eIP to be pushed on new stack
    return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
    if (cs_descriptor.u.segment.d_b)
      return_EIP = EIP;
    else
      return_EIP = IP;

    // Prepare new stack segment
    bx_segment_reg_t new_stack;
    new_stack.selector = ss_selector;
    new_stack.cache = ss_descriptor;
    new_stack.selector.rpl = cs_descriptor.dpl;
    // add cpl to the selector value
    new_stack.selector.value = (0xfffc & new_stack.selector.value) |
    new_stack.selector.rpl;

    /* load new SS:SP value from TSS */
    if (ss_descriptor.u.segment.d_b) {
      Bit32u temp_ESP = ESP_for_cpl_x;

      // push pointer of old stack onto new stack
      if (gate_descriptor->type==BX_386_CALL_GATE) {
        write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_SS);
        write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_ESP);
        temp_ESP -= 8;

        for (unsigned n=param_count; n>0; n--) {
          temp_ESP -= 4;
          Bit32u param = read_virtual_dword_32(BX_SEG_REG_SS, return_ESP + (n-1)*4);
          write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_CS);
        write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_EIP);
        temp_ESP -= 8;
      }
      else {
        write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_SS);
        write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_ESP);
        temp_ESP -= 4;

        for (unsigned n=param_count; n>0; n--) {
          temp_ESP -= 2;
          Bit16u param = read_virtual_word_32(BX_SEG_REG_SS, return_ESP + (n-1)*2);
          write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_CS);
        write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_EIP);
        temp_ESP -= 4;
      }

      ESP = temp_ESP;
    }
    else {
      Bit16u temp_SP = (Bit16u) ESP_for_cpl_x;

      // push pointer of old stack onto new stack
      if (gate_descriptor->type==BX_386_CALL_GATE) {
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_SS);
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_ESP);
        temp_SP -= 8;

        for (unsigned n=param_count; n>0; n--) {
          temp_SP -= 4;
          Bit32u param = read_virtual_dword_32(BX_SEG_REG_SS, return_ESP + (n-1)*4);
          write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_CS);
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_EIP);
        temp_SP -= 8;
      }
      else {
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_SS);
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_ESP);
        temp_SP -= 4;

        for (unsigned n=param_count; n>0; n--) {
          temp_SP -= 2;
          Bit16u param = read_virtual_word_32(BX_SEG_REG_SS, return_ESP + (n-1)*2);
          write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_CS);
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_EIP);
        temp_SP -= 4;
      }

      SP = temp_SP;
    }

    // new eIP must be in code segment limit else #GP(0)
    if (new_EIP > cs_descriptor.u.segment.limit_scaled) {
      BX_ERROR(("call_protected: EIP not within CS limits"));
      exception(BX_GP_EXCEPTION, 0);
    }

    /* load SS descriptor */
    load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);

    /* load new CS:IP value from gate */
    /* load CS descriptor */
    /* set CPL to stack segment DPL */
    /* set RPL of CS to CPL */
    load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);
    EIP = new_EIP;
  }
  else   // CALL GATE TO SAME PRIVILEGE
  {
    BX_DEBUG(("CALL GATE TO SAME PRIVILEGE"));

    if (gate_descriptor->type == BX_386_CALL_GATE) {
      // call gate 32bit, push return address onto stack
      push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_32(EIP);
    }
    else {
      // call gate 16bit, push return address onto stack
      push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_16(IP);
    }

    // load CS:EIP from gate
    // load code segment descriptor into CS register
    // set RPL of CS to CPL
    branch_far32(&cs_selector, &cs_descriptor, new_EIP, CPL);
  }
}
Example #10
0
  void
bx_cpu_c::PUSH_RX(BxInstruction_t *i)
{
  push_16( bx_cpu. gen_reg[i->b1 & 0x07].word.rx );
}