void BX_CPU_C::real_mode_int(Bit8u vector, bx_bool push_error, Bit16u error_code) { if ((vector*4+3) > BX_CPU_THIS_PTR idtr.limit) { BX_ERROR(("interrupt(real mode) vector > idtr.limit")); exception(BX_GP_EXCEPTION, 0); } push_16((Bit16u) read_eflags()); push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_16(IP); Bit16u new_ip = system_read_word(BX_CPU_THIS_PTR idtr.base + 4 * vector); // CS.LIMIT can't change when in real/v8086 mode if (new_ip > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("interrupt(real mode): instruction pointer not within code segment limits")); exception(BX_GP_EXCEPTION, 0); } Bit16u cs_selector = system_read_word(BX_CPU_THIS_PTR idtr.base + 4 * vector + 2); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_selector); EIP = new_ip; /* INT affects the following flags: I,T */ BX_CPU_THIS_PTR clear_IF(); BX_CPU_THIS_PTR clear_TF(); #if BX_CPU_LEVEL >= 4 BX_CPU_THIS_PTR clear_AC(); #endif BX_CPU_THIS_PTR clear_RF(); }
void BX_CPU_C::real_mode_int(Bit8u vector, bx_bool is_INT, bx_bool is_error_code, Bit16u error_code) { // real mode interrupt Bit16u cs_selector, ip; if ((vector*4+3) > BX_CPU_THIS_PTR idtr.limit) { BX_ERROR(("interrupt(real mode) vector > idtr.limit")); exception(BX_GP_EXCEPTION, 0, 0); } push_16((Bit16u) read_eflags()); cs_selector = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; push_16(cs_selector); ip = EIP; push_16(ip); access_read_linear(BX_CPU_THIS_PTR idtr.base + 4 * vector, 2, 0, BX_READ, &ip); EIP = (Bit32u) ip; access_read_linear(BX_CPU_THIS_PTR idtr.base + 4 * vector + 2, 2, 0, BX_READ, &cs_selector); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_selector); /* INT affects the following flags: I,T */ BX_CPU_THIS_PTR clear_IF(); BX_CPU_THIS_PTR clear_TF(); #if BX_CPU_LEVEL >= 4 BX_CPU_THIS_PTR clear_AC(); #endif BX_CPU_THIS_PTR clear_RF(); }
int BX_CPU_C::v86_redirect_interrupt(Bit8u vector) { #if BX_CPU_LEVEL >= 5 if (BX_CPU_THIS_PTR cr4.get_VME()) { bx_address tr_base = BX_CPU_THIS_PTR tr.cache.u.segment.base; if (BX_CPU_THIS_PTR tr.cache.u.segment.limit_scaled < 103) { BX_ERROR(("INT_Ib(): TR.limit < 103 in VME")); exception(BX_GP_EXCEPTION, 0); } Bit32u io_base = system_read_word(tr_base + 102), offset = io_base - 32 + (vector >> 3); if (offset > BX_CPU_THIS_PTR tr.cache.u.segment.limit_scaled) { BX_ERROR(("INT_Ib(): failed to fetch VME redirection bitmap")); exception(BX_GP_EXCEPTION, 0); } Bit8u vme_redirection_bitmap = system_read_byte(tr_base + offset); if (!(vme_redirection_bitmap & (1 << (vector & 7)))) { // redirect interrupt through virtual-mode idt Bit16u temp_flags = (Bit16u) read_eflags(); Bit16u temp_CS = system_read_word(vector*4 + 2); Bit16u temp_IP = system_read_word(vector*4); if (BX_CPU_THIS_PTR get_IOPL() < 3) { temp_flags |= EFlagsIOPLMask; if (BX_CPU_THIS_PTR get_VIF()) temp_flags |= EFlagsIFMask; else temp_flags &= ~EFlagsIFMask; } Bit16u old_IP = IP; Bit16u old_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; push_16(temp_flags); // push return address onto new stack push_16(old_CS); push_16(old_IP); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], (Bit16u) temp_CS); EIP = temp_IP; BX_CPU_THIS_PTR clear_TF(); BX_CPU_THIS_PTR clear_RF(); if (BX_CPU_THIS_PTR get_IOPL() == 3) BX_CPU_THIS_PTR clear_IF(); else BX_CPU_THIS_PTR clear_VIF(); return 1; } }
void bx_cpu_c::PUSH_Iw(BxInstruction_t *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("PUSH_Iv: not supported on 8086!")); #else Bit16u imm16; imm16 = i->Iw; push_16(imm16); #endif }
void bx_cpu_c::PUSH_Ew(BxInstruction_t *i) { Bit16u op1_16; /* op1_16 is a register or memory reference */ if (i->mod == 0xc0) { op1_16 = BX_READ_16BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_word(i->seg, i->rm_addr, &op1_16); } push_16(op1_16); }
void bx_cpu_c::PUSHAD16(BxInstruction_t *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("PUSHAD: not supported on an 8086")); #else Bit32u temp_ESP; Bit16u sp; if (bx_cpu. sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_ESP = ESP; else temp_ESP = SP; #if BX_CPU_LEVEL >= 2 if (protected_mode()) { if ( !can_push(&bx_cpu. sregs[BX_SEG_REG_SS].cache, temp_ESP, 16) ) { BX_PANIC(("PUSHA(): stack doesn't have enough room!")); exception(BX_SS_EXCEPTION, 0, 0); return; } } else #endif { if (temp_ESP < 16) BX_PANIC(("pushad: eSP < 16")); } sp = SP; /* ??? optimize this by using virtual write, all checks passed */ push_16(AX); push_16(CX); push_16(DX); push_16(BX); push_16(sp); push_16(BP); push_16(SI); push_16(DI); #endif }
void BX_CPU_C::protected_mode_int(Bit8u vector, unsigned soft_int, bx_bool push_error, Bit16u error_code) { bx_descriptor_t gate_descriptor, cs_descriptor; bx_selector_t cs_selector; Bit16u raw_tss_selector; bx_selector_t tss_selector; bx_descriptor_t tss_descriptor; Bit16u gate_dest_selector; Bit32u gate_dest_offset; // interrupt vector must be within IDT table limits, // else #GP(vector*8 + 2 + EXT) if ((vector*8 + 7) > BX_CPU_THIS_PTR idtr.limit) { BX_ERROR(("interrupt(): vector must be within IDT table limits, IDT.limit = 0x%x", BX_CPU_THIS_PTR idtr.limit)); exception(BX_GP_EXCEPTION, vector*8 + 2); } Bit64u desctmp = system_read_qword(BX_CPU_THIS_PTR idtr.base + vector*8); Bit32u dword1 = GET32L(desctmp); Bit32u dword2 = GET32H(desctmp); parse_descriptor(dword1, dword2, &gate_descriptor); if ((gate_descriptor.valid==0) || gate_descriptor.segment) { BX_ERROR(("interrupt(): gate descriptor is not valid sys seg (vector=0x%02x)", vector)); exception(BX_GP_EXCEPTION, vector*8 + 2); } // descriptor AR byte must indicate interrupt gate, trap gate, // or task gate, else #GP(vector*8 + 2 + EXT) switch (gate_descriptor.type) { case BX_TASK_GATE: case BX_286_INTERRUPT_GATE: case BX_286_TRAP_GATE: case BX_386_INTERRUPT_GATE: case BX_386_TRAP_GATE: break; default: BX_ERROR(("interrupt(): gate.type(%u) != {5,6,7,14,15}", (unsigned) gate_descriptor.type)); exception(BX_GP_EXCEPTION, vector*8 + 2); } // if software interrupt, then gate descripor DPL must be >= CPL, // else #GP(vector * 8 + 2 + EXT) if (soft_int && gate_descriptor.dpl < CPL) { BX_ERROR(("interrupt(): soft_int && (gate.dpl < CPL)")); exception(BX_GP_EXCEPTION, vector*8 + 2); } // Gate must be present, else #NP(vector * 8 + 2 + EXT) if (! IS_PRESENT(gate_descriptor)) { BX_ERROR(("interrupt(): gate not present")); exception(BX_NP_EXCEPTION, vector*8 + 2); } switch (gate_descriptor.type) { case BX_TASK_GATE: // examine selector to TSS, given in task gate descriptor raw_tss_selector = gate_descriptor.u.taskgate.tss_selector; parse_selector(raw_tss_selector, &tss_selector); // must specify global in the local/global bit, // else #GP(TSS selector) if (tss_selector.ti) { BX_ERROR(("interrupt(): tss_selector.ti=1 from gate descriptor - #GP(tss_selector)")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc); } // index must be within GDT limits, else #TS(TSS selector) fetch_raw_descriptor(&tss_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &tss_descriptor); // AR byte must specify available TSS, // else #GP(TSS selector) if (tss_descriptor.valid==0 || tss_descriptor.segment) { BX_ERROR(("interrupt(): TSS selector points to invalid or bad TSS - #GP(tss_selector)")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc); } if (tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS && tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS) { BX_ERROR(("interrupt(): TSS selector points to bad TSS - #GP(tss_selector)")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc); } // TSS must be present, else #NP(TSS selector) if (! IS_PRESENT(tss_descriptor)) { BX_ERROR(("interrupt(): TSS descriptor.p == 0")); exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc); } // switch tasks with nesting to TSS task_switch(0, &tss_selector, &tss_descriptor, BX_TASK_FROM_INT, dword1, dword2); RSP_SPECULATIVE; // if interrupt was caused by fault with error code // stack limits must allow push of 2 more bytes, else #SS(0) // push error code onto stack if (push_error) { if (tss_descriptor.type >= 9) // TSS386 push_32(error_code); else push_16(error_code); } // instruction pointer must be in CS limit, else #GP(0) if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("interrupt(): EIP > CS.limit")); exception(BX_GP_EXCEPTION, 0); } RSP_COMMIT; return; case BX_286_INTERRUPT_GATE: case BX_286_TRAP_GATE: case BX_386_INTERRUPT_GATE: case BX_386_TRAP_GATE: gate_dest_selector = gate_descriptor.u.gate.dest_selector; gate_dest_offset = gate_descriptor.u.gate.dest_offset; // examine CS selector and descriptor given in gate descriptor // selector must be non-null else #GP(EXT) if ((gate_dest_selector & 0xfffc) == 0) { BX_ERROR(("int_trap_gate(): selector null")); exception(BX_GP_EXCEPTION, 0); } parse_selector(gate_dest_selector, &cs_selector); // selector must be within its descriptor table limits // else #GP(selector+EXT) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &cs_descriptor); // descriptor AR byte must indicate code seg // and code segment descriptor DPL<=CPL, else #GP(selector+EXT) if (cs_descriptor.valid==0 || cs_descriptor.segment==0 || IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl > CPL) { BX_ERROR(("interrupt(): not accessible or not code segment cs=0x%04x", cs_selector.value)); exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc); } // segment must be present, else #NP(selector + EXT) if (! IS_PRESENT(cs_descriptor)) { BX_ERROR(("interrupt(): segment not present")); exception(BX_NP_EXCEPTION, cs_selector.value & 0xfffc); } // if code segment is non-conforming and DPL < CPL then // INTERRUPT TO INNER PRIVILEGE if(IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && cs_descriptor.dpl < CPL) { Bit16u old_SS, old_CS, SS_for_cpl_x; Bit32u ESP_for_cpl_x, old_EIP, old_ESP; bx_descriptor_t ss_descriptor; bx_selector_t ss_selector; int is_v8086_mode = v8086_mode(); BX_DEBUG(("interrupt(): INTERRUPT TO INNER PRIVILEGE")); // check selector and descriptor for new stack in current TSS get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x); if (is_v8086_mode && cs_descriptor.dpl != 0) { // if code segment DPL != 0 then #GP(new code segment selector) BX_ERROR(("interrupt(): code segment DPL(%d) != 0 in v8086 mode", cs_descriptor.dpl)); exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc); } // Selector must be non-null else #TS(EXT) if ((SS_for_cpl_x & 0xfffc) == 0) { BX_ERROR(("interrupt(): SS selector null")); exception(BX_TS_EXCEPTION, 0); /* TS(ext) */ } // selector index must be within its descriptor table limits // else #TS(SS selector + EXT) parse_selector(SS_for_cpl_x, &ss_selector); // fetch 2 dwords of descriptor; call handles out of limits checks fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION); parse_descriptor(dword1, dword2, &ss_descriptor); // selector rpl must = dpl of code segment, // else #TS(SS selector + ext) if (ss_selector.rpl != cs_descriptor.dpl) { BX_ERROR(("interrupt(): SS.rpl != CS.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // stack seg DPL must = DPL of code segment, // else #TS(SS selector + ext) if (ss_descriptor.dpl != cs_descriptor.dpl) { BX_ERROR(("interrupt(): SS.dpl != CS.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // descriptor must indicate writable data segment, // else #TS(SS selector + EXT) if (ss_descriptor.valid==0 || ss_descriptor.segment==0 || IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type)) { BX_ERROR(("interrupt(): SS is not writable data segment")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // seg must be present, else #SS(SS selector + ext) if (! IS_PRESENT(ss_descriptor)) { BX_ERROR(("interrupt(): SS not present")); exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // IP must be within CS segment boundaries, else #GP(0) if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) { BX_ERROR(("interrupt(): gate EIP > CS.limit")); exception(BX_GP_EXCEPTION, 0); } old_ESP = ESP; old_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value; old_EIP = EIP; old_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; // Prepare new stack segment bx_segment_reg_t new_stack; new_stack.selector = ss_selector; new_stack.cache = ss_descriptor; new_stack.selector.rpl = cs_descriptor.dpl; // add cpl to the selector value new_stack.selector.value = (0xfffc & new_stack.selector.value) | new_stack.selector.rpl; if (ss_descriptor.u.segment.d_b) { Bit32u temp_ESP = ESP_for_cpl_x; if (is_v8086_mode) { if (gate_descriptor.type>=14) { // 386 int/trap gate write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value); write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value); write_new_stack_dword_32(&new_stack, temp_ESP-12, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value); write_new_stack_dword_32(&new_stack, temp_ESP-16, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value); temp_ESP -= 16; } else { write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value); write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value); write_new_stack_word_32(&new_stack, temp_ESP-6, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value); write_new_stack_word_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value); temp_ESP -= 8; } } if (gate_descriptor.type>=14) { // 386 int/trap gate // push long pointer to old stack onto new stack write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, old_SS); write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, old_ESP); write_new_stack_dword_32(&new_stack, temp_ESP-12, cs_descriptor.dpl, read_eflags()); write_new_stack_dword_32(&new_stack, temp_ESP-16, cs_descriptor.dpl, old_CS); write_new_stack_dword_32(&new_stack, temp_ESP-20, cs_descriptor.dpl, old_EIP); temp_ESP -= 20; if (push_error) { temp_ESP -= 4; write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, error_code); } } else { // 286 int/trap gate // push long pointer to old stack onto new stack write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, old_SS); write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) old_ESP); write_new_stack_word_32(&new_stack, temp_ESP-6, cs_descriptor.dpl, (Bit16u) read_eflags()); write_new_stack_word_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, old_CS); write_new_stack_word_32(&new_stack, temp_ESP-10, cs_descriptor.dpl, (Bit16u) old_EIP); temp_ESP -= 10; if (push_error) { temp_ESP -= 2; write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, error_code); } } ESP = temp_ESP; } else { Bit16u temp_SP = (Bit16u) ESP_for_cpl_x; if (is_v8086_mode) { if (gate_descriptor.type>=14) { // 386 int/trap gate write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-12), cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-16), cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value); temp_SP -= 16; } else { write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-6), cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value); temp_SP -= 8; } } if (gate_descriptor.type>=14) { // 386 int/trap gate // push long pointer to old stack onto new stack write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, old_SS); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, old_ESP); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-12), cs_descriptor.dpl, read_eflags()); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-16), cs_descriptor.dpl, old_CS); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-20), cs_descriptor.dpl, old_EIP); temp_SP -= 20; if (push_error) { temp_SP -= 4; write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, error_code); } } else { // 286 int/trap gate // push long pointer to old stack onto new stack write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, old_SS); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) old_ESP); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-6), cs_descriptor.dpl, (Bit16u) read_eflags()); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, old_CS); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-10), cs_descriptor.dpl, (Bit16u) old_EIP); temp_SP -= 10; if (push_error) { temp_SP -= 2; write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, error_code); } } SP = temp_SP; } // load new CS:eIP values from gate // set CPL to new code segment DPL // set RPL of CS to CPL load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl); // load new SS:eSP values from TSS load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl); if (is_v8086_mode) { BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = 0; } } else { BX_DEBUG(("interrupt(): INTERRUPT TO SAME PRIVILEGE")); if (v8086_mode() && (IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) || cs_descriptor.dpl != 0)) { // if code segment DPL != 0 then #GP(new code segment selector) BX_ERROR(("interrupt(): code segment conforming or DPL(%d) != 0 in v8086 mode", cs_descriptor.dpl)); exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc); } // EIP must be in CS limit else #GP(0) if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) { BX_ERROR(("interrupt(): IP > CS descriptor limit")); exception(BX_GP_EXCEPTION, 0); } // push flags onto stack // push current CS selector onto stack // push return offset onto stack if (gate_descriptor.type >= 14) { // 386 gate push_32(read_eflags()); push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_32(EIP); if (push_error) push_32(error_code); } else { // 286 gate push_16((Bit16u) read_eflags()); push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_16(IP); if (push_error) push_16(error_code); } // load CS:IP from gate // load CS descriptor // set the RPL field of CS to CPL load_cs(&cs_selector, &cs_descriptor, CPL); } EIP = gate_dest_offset; // if interrupt gate then set IF to 0 if (!(gate_descriptor.type & 1)) // even is int-gate BX_CPU_THIS_PTR clear_IF(); BX_CPU_THIS_PTR clear_TF(); BX_CPU_THIS_PTR clear_NT(); BX_CPU_THIS_PTR clear_VM(); BX_CPU_THIS_PTR clear_RF(); return; default: BX_PANIC(("bad descriptor type in interrupt()!")); break; } }
BX_CPU_C::call_protected(bxInstruction_c *i, Bit16u cs_raw, bx_address disp) { bx_selector_t cs_selector; Bit32u dword1, dword2; bx_descriptor_t cs_descriptor; /* new cs selector must not be null, else #GP(0) */ if ((cs_raw & 0xfffc) == 0) { BX_ERROR(("call_protected: CS selector null")); exception(BX_GP_EXCEPTION, 0, 0); } parse_selector(cs_raw, &cs_selector); // check new CS selector index within its descriptor limits, // else #GP(new CS selector) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &cs_descriptor); // examine AR byte of selected descriptor for various legal values if (cs_descriptor.valid==0) { BX_ERROR(("call_protected: invalid CS descriptor")); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } if (cs_descriptor.segment) // normal segment { check_cs(&cs_descriptor, cs_raw, BX_SELECTOR_RPL(cs_raw), CPL); #if BX_SUPPORT_X86_64 if (i->os64L()) { // push return address onto stack (CS padded to 64bits) push_64((Bit64u) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_64(RIP); } else #endif if (i->os32L()) { // push return address onto stack (CS padded to 32bits) push_32((Bit32u) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_32(EIP); } else { // push return address onto stack push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_16(IP); } // load code segment descriptor into CS cache // load CS with new code segment selector // set RPL of CS to CPL branch_far64(&cs_selector, &cs_descriptor, disp, CPL); return; } else { // gate & special segment bx_descriptor_t gate_descriptor = cs_descriptor; bx_selector_t gate_selector = cs_selector; Bit32u new_EIP; Bit16u dest_selector; Bit16u raw_tss_selector; bx_selector_t tss_selector; bx_descriptor_t tss_descriptor; Bit32u temp_eIP; // descriptor DPL must be >= CPL else #GP(gate selector) if (gate_descriptor.dpl < CPL) { BX_ERROR(("call_protected: descriptor.dpl < CPL")); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } // descriptor DPL must be >= gate selector RPL else #GP(gate selector) if (gate_descriptor.dpl < gate_selector.rpl) { BX_ERROR(("call_protected: descriptor.dpl < selector.rpl")); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } #if BX_SUPPORT_X86_64 if (long_mode()) { // call gate type is higher priority than non-present bit check if (gate_descriptor.type != BX_386_CALL_GATE) { BX_ERROR(("call_protected: gate type %u unsupported in long mode", (unsigned) gate_descriptor.type)); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } } else #endif { switch (gate_descriptor.type) { case BX_SYS_SEGMENT_AVAIL_286_TSS: case BX_SYS_SEGMENT_AVAIL_386_TSS: case BX_TASK_GATE: case BX_286_CALL_GATE: case BX_386_CALL_GATE: break; default: BX_ERROR(("call_protected(): gate.type(%u) unsupported", (unsigned) gate_descriptor.type)); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } } // gate descriptor must be present else #NP(gate selector) if (! IS_PRESENT(gate_descriptor)) { BX_ERROR(("call_protected: gate not present")); exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0); } #if BX_SUPPORT_X86_64 if (long_mode()) { call_gate64(&gate_selector); return; } #endif switch (gate_descriptor.type) { case BX_SYS_SEGMENT_AVAIL_286_TSS: case BX_SYS_SEGMENT_AVAIL_386_TSS: if (gate_descriptor.type==BX_SYS_SEGMENT_AVAIL_286_TSS) BX_DEBUG(("call_protected: 16bit available TSS")); else BX_DEBUG(("call_protected: 32bit available TSS")); // SWITCH_TASKS _without_ nesting to TSS task_switch(&gate_selector, &gate_descriptor, BX_TASK_FROM_CALL_OR_INT, dword1, dword2); // EIP must be in code seg limit, else #GP(0) if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("call_protected: EIP not within CS limits")); exception(BX_GP_EXCEPTION, 0, 0); } return; case BX_TASK_GATE: // examine selector to TSS, given in Task Gate descriptor // must specify global in the local/global bit else #TS(TSS selector) raw_tss_selector = gate_descriptor.u.taskgate.tss_selector; parse_selector(raw_tss_selector, &tss_selector); if (tss_selector.ti) { BX_ERROR(("call_protected: tss_selector.ti=1")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } // index must be within GDT limits else #TS(TSS selector) fetch_raw_descriptor(&tss_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &tss_descriptor); // descriptor AR byte must specify available TSS // else #GP(TSS selector) if (tss_descriptor.valid==0 || tss_descriptor.segment) { BX_ERROR(("call_protected: TSS selector points to bad TSS")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } if (tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS && tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS) { BX_ERROR(("call_protected: TSS selector points to bad TSS")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } // task state segment must be present, else #NP(tss selector) if (! IS_PRESENT(tss_descriptor)) { BX_ERROR(("call_protected: task descriptor.p == 0")); exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } // SWITCH_TASKS without nesting to TSS task_switch(&tss_selector, &tss_descriptor, BX_TASK_FROM_CALL_OR_INT, dword1, dword2); // EIP must be within code segment limit, else #TS(0) if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) temp_eIP = EIP; else temp_eIP = IP; if (temp_eIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("call_protected: EIP > CS.limit")); exception(BX_GP_EXCEPTION, 0, 0); } return; case BX_286_CALL_GATE: case BX_386_CALL_GATE: // examine code segment selector in call gate descriptor BX_DEBUG(("call_protected: call gate")); dest_selector = gate_descriptor.u.gate.dest_selector; new_EIP = gate_descriptor.u.gate.dest_offset; // selector must not be null else #GP(0) if ((dest_selector & 0xfffc) == 0) { BX_ERROR(("call_protected: selector in gate null")); exception(BX_GP_EXCEPTION, 0, 0); } parse_selector(dest_selector, &cs_selector); // selector must be within its descriptor table limits, // else #GP(code segment selector) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &cs_descriptor); // AR byte of selected descriptor must indicate code segment, // else #GP(code segment selector) // DPL of selected descriptor must be <= CPL, // else #GP(code segment selector) if (cs_descriptor.valid==0 || cs_descriptor.segment==0 || IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl > CPL) { BX_ERROR(("call_protected: selected descriptor is not code")); exception(BX_GP_EXCEPTION, dest_selector & 0xfffc, 0); } // code segment must be present else #NP(selector) if (! IS_PRESENT(cs_descriptor)) { BX_ERROR(("call_protected: code segment not present !")); exception(BX_NP_EXCEPTION, dest_selector & 0xfffc, 0); } // CALL GATE TO MORE PRIVILEGE // if non-conforming code segment and DPL < CPL then if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL)) { Bit16u SS_for_cpl_x; Bit32u ESP_for_cpl_x; bx_selector_t ss_selector; bx_descriptor_t ss_descriptor; Bit16u return_SS, return_CS; Bit32u return_ESP, return_EIP; Bit16u parameter_word[32]; Bit32u parameter_dword[32]; BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL")); // get new SS selector for new privilege level from TSS get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x); // check selector & descriptor for new SS: // selector must not be null, else #TS(0) if ((SS_for_cpl_x & 0xfffc) == 0) { BX_ERROR(("call_protected: new SS null")); exception(BX_TS_EXCEPTION, 0, 0); } // selector index must be within its descriptor table limits, // else #TS(SS selector) parse_selector(SS_for_cpl_x, &ss_selector); fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION); parse_descriptor(dword1, dword2, &ss_descriptor); // selector's RPL must equal DPL of code segment, // else #TS(SS selector) if (ss_selector.rpl != cs_descriptor.dpl) { BX_ERROR(("call_protected: SS selector.rpl != CS descr.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // stack segment DPL must equal DPL of code segment, // else #TS(SS selector) if (ss_descriptor.dpl != cs_descriptor.dpl) { BX_ERROR(("call_protected: SS descr.rpl != CS descr.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // descriptor must indicate writable data segment, // else #TS(SS selector) if (ss_descriptor.valid==0 || ss_descriptor.segment==0 || IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type)) { BX_ERROR(("call_protected: ss descriptor is not writable data seg")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // segment must be present, else #SS(SS selector) if (! IS_PRESENT(ss_descriptor)) { BX_ERROR(("call_protected: ss descriptor not present")); exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // get word count from call gate, mask to 5 bits unsigned param_count = gate_descriptor.u.gate.param_count & 0x1f; // save return SS:eSP to be pushed on new stack return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) return_ESP = ESP; else return_ESP = SP; // save return CS:eIP to be pushed on new stack return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; if (cs_descriptor.u.segment.d_b) return_EIP = EIP; else return_EIP = IP; if (gate_descriptor.type==BX_286_CALL_GATE) { for (unsigned i=0; i<param_count; i++) { parameter_word[i] = read_virtual_word(BX_SEG_REG_SS, return_ESP + i*2); } } else { for (unsigned i=0; i<param_count; i++) { parameter_dword[i] = read_virtual_dword(BX_SEG_REG_SS, return_ESP + i*4); } } // Prepare new stack segment bx_segment_reg_t new_stack; new_stack.selector = ss_selector; new_stack.cache = ss_descriptor; new_stack.selector.rpl = cs_descriptor.dpl; // add cpl to the selector value new_stack.selector.value = (0xfffc & new_stack.selector.value) | new_stack.selector.rpl; /* load new SS:SP value from TSS */ if (ss_descriptor.u.segment.d_b) { Bit32u temp_ESP = ESP_for_cpl_x; // push pointer of old stack onto new stack if (gate_descriptor.type==BX_386_CALL_GATE) { write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_SS); write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_ESP); temp_ESP -= 8; for (unsigned i=param_count; i>0; i--) { temp_ESP -= 4; write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, parameter_dword[i-1]); } // push return address onto new stack write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_CS); write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_EIP); temp_ESP -= 8; } else { write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_SS); write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_ESP); temp_ESP -= 4; for (unsigned i=param_count; i>0; i--) { temp_ESP -= 2; write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, parameter_word[i-1]); } // push return address onto new stack write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_CS); write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_EIP); temp_ESP -= 4; } ESP = temp_ESP; } else { Bit16u temp_SP = (Bit16u) ESP_for_cpl_x; // push pointer of old stack onto new stack if (gate_descriptor.type==BX_386_CALL_GATE) { write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_SS); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_ESP); temp_SP -= 8; for (unsigned i=param_count; i>0; i--) { temp_SP -= 4; write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, parameter_dword[i-1]); } // push return address onto new stack write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_CS); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_EIP); temp_SP -= 8; } else { write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_SS); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_ESP); temp_SP -= 4; for (unsigned i=param_count; i>0; i--) { temp_SP -= 2; write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, parameter_word[i-1]); } // push return address onto new stack write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_CS); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_EIP); temp_SP -= 4; } SP = temp_SP; } // new eIP must be in code segment limit else #GP(0) if (new_EIP > cs_descriptor.u.segment.limit_scaled) { BX_ERROR(("call_protected: EIP not within CS limits")); exception(BX_GP_EXCEPTION, 0, 0); } /* load SS descriptor */ load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl); /* load new CS:IP value from gate */ /* load CS descriptor */ /* set CPL to stack segment DPL */ /* set RPL of CS to CPL */ load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl); EIP = new_EIP; } else // CALL GATE TO SAME PRIVILEGE { BX_DEBUG(("CALL GATE TO SAME PRIVILEGE")); if (gate_descriptor.type == BX_386_CALL_GATE) { // call gate 32bit, push return address onto stack push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_32(EIP); } else { // call gate 16bit, push return address onto stack push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_16(IP); } // load CS:EIP from gate // load code segment descriptor into CS register // set RPL of CS to CPL branch_far32(&cs_selector, &cs_descriptor, new_EIP, CPL); } return; default: // can't get here BX_PANIC(("call_protected: gate type %u unsupported", (unsigned) cs_descriptor.type)); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } } }
void BX_CPP_AttrRegparmN(1) BX_CPU_C::call_gate(bx_descriptor_t *gate_descriptor) { bx_selector_t cs_selector; Bit32u dword1, dword2; bx_descriptor_t cs_descriptor; // examine code segment selector in call gate descriptor BX_DEBUG(("call_protected: call gate")); Bit16u dest_selector = gate_descriptor->u.gate.dest_selector; Bit32u new_EIP = gate_descriptor->u.gate.dest_offset; // selector must not be null else #GP(0) if ((dest_selector & 0xfffc) == 0) { BX_ERROR(("call_protected: selector in gate null")); exception(BX_GP_EXCEPTION, 0); } parse_selector(dest_selector, &cs_selector); // selector must be within its descriptor table limits, // else #GP(code segment selector) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &cs_descriptor); // AR byte of selected descriptor must indicate code segment, // else #GP(code segment selector) // DPL of selected descriptor must be <= CPL, // else #GP(code segment selector) if (cs_descriptor.valid==0 || cs_descriptor.segment==0 || IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl > CPL) { BX_ERROR(("call_protected: selected descriptor is not code")); exception(BX_GP_EXCEPTION, dest_selector & 0xfffc); } // code segment must be present else #NP(selector) if (! IS_PRESENT(cs_descriptor)) { BX_ERROR(("call_protected: code segment not present !")); exception(BX_NP_EXCEPTION, dest_selector & 0xfffc); } // CALL GATE TO MORE PRIVILEGE // if non-conforming code segment and DPL < CPL then if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL)) { Bit16u SS_for_cpl_x; Bit32u ESP_for_cpl_x; bx_selector_t ss_selector; bx_descriptor_t ss_descriptor; Bit16u return_SS, return_CS; Bit32u return_ESP, return_EIP; BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL")); // get new SS selector for new privilege level from TSS get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x); // check selector & descriptor for new SS: // selector must not be null, else #TS(0) if ((SS_for_cpl_x & 0xfffc) == 0) { BX_ERROR(("call_protected: new SS null")); exception(BX_TS_EXCEPTION, 0); } // selector index must be within its descriptor table limits, // else #TS(SS selector) parse_selector(SS_for_cpl_x, &ss_selector); fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION); parse_descriptor(dword1, dword2, &ss_descriptor); // selector's RPL must equal DPL of code segment, // else #TS(SS selector) if (ss_selector.rpl != cs_descriptor.dpl) { BX_ERROR(("call_protected: SS selector.rpl != CS descr.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // stack segment DPL must equal DPL of code segment, // else #TS(SS selector) if (ss_descriptor.dpl != cs_descriptor.dpl) { BX_ERROR(("call_protected: SS descr.rpl != CS descr.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // descriptor must indicate writable data segment, // else #TS(SS selector) if (ss_descriptor.valid==0 || ss_descriptor.segment==0 || IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type)) { BX_ERROR(("call_protected: ss descriptor is not writable data seg")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // segment must be present, else #SS(SS selector) if (! IS_PRESENT(ss_descriptor)) { BX_ERROR(("call_protected: ss descriptor not present")); exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // get word count from call gate, mask to 5 bits unsigned param_count = gate_descriptor->u.gate.param_count & 0x1f; // save return SS:eSP to be pushed on new stack return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) return_ESP = ESP; else return_ESP = SP; // save return CS:eIP to be pushed on new stack return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; if (cs_descriptor.u.segment.d_b) return_EIP = EIP; else return_EIP = IP; // Prepare new stack segment bx_segment_reg_t new_stack; new_stack.selector = ss_selector; new_stack.cache = ss_descriptor; new_stack.selector.rpl = cs_descriptor.dpl; // add cpl to the selector value new_stack.selector.value = (0xfffc & new_stack.selector.value) | new_stack.selector.rpl; /* load new SS:SP value from TSS */ if (ss_descriptor.u.segment.d_b) { Bit32u temp_ESP = ESP_for_cpl_x; // push pointer of old stack onto new stack if (gate_descriptor->type==BX_386_CALL_GATE) { write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_SS); write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_ESP); temp_ESP -= 8; for (unsigned n=param_count; n>0; n--) { temp_ESP -= 4; Bit32u param = read_virtual_dword_32(BX_SEG_REG_SS, return_ESP + (n-1)*4); write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, param); } // push return address onto new stack write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_CS); write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_EIP); temp_ESP -= 8; } else { write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_SS); write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_ESP); temp_ESP -= 4; for (unsigned n=param_count; n>0; n--) { temp_ESP -= 2; Bit16u param = read_virtual_word_32(BX_SEG_REG_SS, return_ESP + (n-1)*2); write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, param); } // push return address onto new stack write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_CS); write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_EIP); temp_ESP -= 4; } ESP = temp_ESP; } else { Bit16u temp_SP = (Bit16u) ESP_for_cpl_x; // push pointer of old stack onto new stack if (gate_descriptor->type==BX_386_CALL_GATE) { write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_SS); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_ESP); temp_SP -= 8; for (unsigned n=param_count; n>0; n--) { temp_SP -= 4; Bit32u param = read_virtual_dword_32(BX_SEG_REG_SS, return_ESP + (n-1)*4); write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, param); } // push return address onto new stack write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_CS); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_EIP); temp_SP -= 8; } else { write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_SS); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_ESP); temp_SP -= 4; for (unsigned n=param_count; n>0; n--) { temp_SP -= 2; Bit16u param = read_virtual_word_32(BX_SEG_REG_SS, return_ESP + (n-1)*2); write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, param); } // push return address onto new stack write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_CS); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_EIP); temp_SP -= 4; } SP = temp_SP; } // new eIP must be in code segment limit else #GP(0) if (new_EIP > cs_descriptor.u.segment.limit_scaled) { BX_ERROR(("call_protected: EIP not within CS limits")); exception(BX_GP_EXCEPTION, 0); } /* load SS descriptor */ load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl); /* load new CS:IP value from gate */ /* load CS descriptor */ /* set CPL to stack segment DPL */ /* set RPL of CS to CPL */ load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl); EIP = new_EIP; } else // CALL GATE TO SAME PRIVILEGE { BX_DEBUG(("CALL GATE TO SAME PRIVILEGE")); if (gate_descriptor->type == BX_386_CALL_GATE) { // call gate 32bit, push return address onto stack push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_32(EIP); } else { // call gate 16bit, push return address onto stack push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_16(IP); } // load CS:EIP from gate // load code segment descriptor into CS register // set RPL of CS to CPL branch_far32(&cs_selector, &cs_descriptor, new_EIP, CPL); } }
void bx_cpu_c::PUSH_RX(BxInstruction_t *i) { push_16( bx_cpu. gen_reg[i->b1 & 0x07].word.rx ); }