void MainApp::onRenderWorld()
{
	peon::SceneRenderer* pRenderer = peon::EngineCore::getSingleton().getRenderer();

	if(!m_bToggle)
	{
		glBindTexture(GL_TEXTURE_2D, m_pFontTexture->getTex() );
		m_pFont->renderText( 10.0f, 10.0f, "Picking Example. Click something!" );
		m_pFont->renderText( 10.0f, 30.0f, m_strPos );
		m_pFont->renderText( 10.0f, 50.0f, m_strChosen );
		glDisable(GL_LIGHTING);
	}

	glBindTexture(GL_TEXTURE_2D, m_pTexture->getTex() );

	glInitNames();
	glPushName( 0 ); //push at least one name on the stack
	//for the EARTH object
	//do the same for the MOON and the SUN
	glLoadName( SUN );
	glPushMatrix();
	glLoadIdentity();
	glTranslatef(-3.0f, 2.0f, -10.0f);

	//render 
	renderCube(1.0f, 1.0f, 0.0f, 1.0f );

	glPopMatrix();
	

	//do the same for the MOON and the SUN
	glLoadName( MOON );
	glPushMatrix();
	glLoadIdentity();
	glTranslatef(2.0f, 2.0f, -10.0f);

	//render 
	renderCube(0.5f, 0.5f, 0.5f, 1.0f );

	glPopMatrix();
	

	glLoadName( EARTH );
	glPushMatrix();
	glLoadIdentity();
	glTranslatef(0.0f, 0.0f, -10.0f);

	//render 
	renderCube(0.0f, 1.0f, 0.0f, 1.0f );

	
	glPopMatrix();
	
	

	

}
Example #2
0
int
main(void)
{
   SVGA3DUtil_InitFullscreen(CID, 800, 600);
   SVGA3DText_Init();

   vertexSid = SVGA3DUtil_DefineStaticBuffer(vertexData, sizeof vertexData);
   indexSid = SVGA3DUtil_DefineStaticBuffer(indexData, sizeof indexData);

   SVGA3D_DefineShader(CID, MY_VSHADER_ID, SVGA3D_SHADERTYPE_VS,
                       g_vs20_MyVertexShader, sizeof g_vs20_MyVertexShader);
   SVGA3D_DefineShader(CID, MY_PSHADER_ID, SVGA3D_SHADERTYPE_PS,
                       g_ps20_MyPixelShader, sizeof g_ps20_MyPixelShader);

   Matrix_Perspective(perspectiveMat, 45.0f,
                      gSVGA.width / (float)gSVGA.height, 10.0f, 100.0f);

   while (1) {
      if (SVGA3DUtil_UpdateFPSCounter(&gFPS)) {
         Console_Clear();
         Console_Format("Half-precision floating point test.\n"
                        "You should see four identical cubes.\n"
                        "\n"
                        "Top row: Fixed function, Bottom row: Shaders.\n"
                        "Left column: 32-bit float, Right column: 16-bit float.\n"
                        "\n%s",
                        gFPS.text);
         SVGA3DText_Update();
         VMBackdoor_VGAScreenshot();
      }

      SVGA3DUtil_ClearFullscreen(CID, SVGA3D_CLEAR_COLOR | SVGA3D_CLEAR_DEPTH,
                                 0x113366, 1.0f, 0);

      renderCube(-2, 2, FALSE, FALSE);   /* Top-left */
      renderCube(2, 2, FALSE, TRUE);     /* Top-right */
      renderCube(-2, -2, TRUE, FALSE);   /* Bottom-left */
      renderCube(2, -2, TRUE, TRUE);     /* Bottom-right */

      SVGA3DText_Draw();
      SVGA3DUtil_PresentFullscreen();
   }

   return 0;
}
Example #3
0
void Robot::renderArm(float xPos, float yPos, float zPos)
{
	glPushMatrix();
		glTranslatef(xPos, yPos, zPos);
		glScalef(1.0f, 5.0f, 1.0f);		// arm is a 1x5x1 cube

        glBindBuffer(GL_ARRAY_BUFFER, m_vbos[COLOR_BUFFER]);
        glColorPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(RED_OFFSET)); //Set the color to red
		renderCube(0.0f, 0.0f, 0.0f);
	glPopMatrix();
}
Example #4
0
void Robot::renderFoot(float xPos, float yPos, float zPos)
{
	glPushMatrix();
		glTranslatef(xPos, yPos, zPos);
		glScalef(1.0f, 0.5f, 3.0f);

        glBindBuffer(GL_ARRAY_BUFFER, m_vbos[COLOR_BUFFER]);
        glColorPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(WHITE_OFFSET)); //Set the color to white
		renderCube(0.0f, 0.0f, 0.0f);
	glPopMatrix();
}
Example #5
0
void Robot::renderTorso(float xPos, float yPos, float zPos)
{
	glPushMatrix();
		glTranslatef(xPos, yPos, zPos);
		glScalef(3.0f, 5.0f, 2.0f);		// torso is a 3x5x2 cube

        glBindBuffer(GL_ARRAY_BUFFER, m_vbos[COLOR_BUFFER]);
        glColorPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(BLUE_OFFSET)); //Set the color to blue
		renderCube(0.0f, 0.0f, 0.0f);
	glPopMatrix();
}
Example #6
0
//-------------------------------------------------------
void renderScene(bool top){
//-------------------------------------------------------
	static short angle = 0;
 
	if(top)
		renderCube(angle);
	else
		renderPyramid(angle);

	angle++;
}
Example #7
0
void render() {

    if (initialized == false) {
        createProgram();
        createCube();
        setSwapInterval(0);
        startTimeMillis = currentTimeMillis();
        initialized = true;
    }

    frameCount++;
    totalFrameCount++;
    long now = currentTimeMillis();
    long elapsed = now - startTimeMillis;
    static long lastTimerCall = 0;
    if ((now - lastTimerCall) > 250) {
        timer(0);
        lastTimerCall = now;
    }

    glClear(GL_COLOR_BUFFER_BIT);
    glEnable(GL_CULL_FACE);
    glUseProgram(programId);

    //
    // calculate the ModelViewProjection and ModelViewProjection matrices
    //
    matrix44 tmp, mv, mvp, frustumMat, translateMat, rotateMat1, rotateMat2;
    frustum(frustumMat, left, right, bottom / aspectRatio, top / aspectRatio, nearPlane, farPlane);
    translate(translateMat, 0.0f, 0.0f, -3.0f);
    rotate(rotateMat1, 1.0f * elapsed / 100, 1.0f, 0.0f, 0.0f);
    rotate(rotateMat2, 1.0f * elapsed / 50, 0.0f, 1.0f, 0.0f);
    multm(tmp, rotateMat1, rotateMat2);
    multm(mv, translateMat, tmp);
    multm(mvp, frustumMat, mv);

    // set the uniforms before rendering
    GLuint mvpMatrixUniform = glGetUniformLocation(programId, "mvpMatrix");
    GLuint mvMatrixUniform = glGetUniformLocation(programId, "mvMatrix");
    GLuint colorUniform = glGetUniformLocation(programId, "color");
    GLuint lightDirUniform = glGetUniformLocation(programId, "lightDir");
    glUniformMatrix4fv(mvpMatrixUniform, 1, false, mvp);
    glUniformMatrix4fv(mvMatrixUniform, 1, false, mv);
    glUniform3f(colorUniform, 0.0f, 1.0f, 0.0f);
    glUniform3f(lightDirUniform, 0.0f, 0.0f, -1.0f);
    
	// render the cube
    renderCube();

    // display rendering buffer
    SDL_GL_SwapBuffers();
}
	void render() {

		matrix4x4 model = rigidBody.transform();
		matrix4x4 view = matrix4x4::translation(0, 0, 5.0f);
		
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

		glMatrixMode(GL_MODELVIEW);
		glLoadIdentity();

		matrix4x4 modelView = view * model;
		glLoadMatrix(modelView.transpose());
		
		renderCube();
	}
static inline void drawVector(Vector position, Vector vector, Color lineColor, Color endColor) {
	if (vectorGetLengthSq(vector) < 0.001) {
		return;
	}

	Vector sum = vectorSum(position, vector);
	glColor3f(lineColor.r, lineColor.g, lineColor.b);
	glBegin(GL_LINES);
		glVertex3d(position.x, position.y, position.z);
		glVertex3d(sum.x, sum.y, sum.z);
	glEnd();

	static double endSize = 0.05;
	renderCube(sum, vectorCreate(endSize, endSize, endSize), endColor);
}
Example #10
0
void Robot::renderLeg(float xPos, float yPos, float zPos)
{
	glPushMatrix();
		glTranslatef(xPos, yPos, zPos);

		// draw the foot
		glPushMatrix();
			glTranslatef(0.0f, -0.5f, 1.0f);
			renderFoot(0.0f, -3.0f, 0.0f);
		glPopMatrix();

		glScalef(1.0f, 5.0f, 1.0f);		// leg is a 1x5x1 cube
        glBindBuffer(GL_ARRAY_BUFFER, m_vbos[COLOR_BUFFER]);
        glColorPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(YELLOW_OFFSET)); //Set the color to yellow
		renderCube(0.0f, 0.0f, 0.0f);
	glPopMatrix();
}
Example #11
0
void tmpRenderMovingCubes(GameContext* context, glm::vec3 pos)
{
    float i = 3.0f;
    i += cos(context->time_now*2.0f);
    i += cos(context->time_now*5.0f)*0.3;

    // Rendering
    glUseProgram(programID);
    renderCube(pos+glm::vec3(i, 0.0f, 0.0f));
    renderCube(pos+glm::vec3(-i, 0.0f, 0.0f));
    renderCube(pos+glm::vec3(0.0f, i, 0.0f));
    renderCube(pos+glm::vec3(0.0f, -i, 0.0f));
    renderCube(pos+glm::vec3(0.0f, 0.0f, i));
    renderCube(pos+glm::vec3(0.0f, 0.0f, -i));
}
Example #12
0
void IblSpecularPass::update() {

	// pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale.
	// --------------------------------------------------------------------------------
	//unsigned int irradianceMap;
	

	prefilterShader.Use();
	glUniform1i(glGetUniformLocation(prefilterShader.Program, "environmentMap"), 0);
	prefilterShader.SetUniform("projection", captureProjection);
	glActiveTexture(GL_TEXTURE0);
	glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);

	glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
	unsigned int maxMipLevels = 8;
	for (unsigned int mip = 0; mip < maxMipLevels; ++mip)
	{
		// reisze framebuffer according to mip-level size.
		unsigned int mipWidth = 128 * std::pow(0.5, mip);
		unsigned int mipHeight = 128 * std::pow(0.5, mip);
		glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
		glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, mipWidth, mipHeight);
		glViewport(0, 0, mipWidth, mipHeight);

		float roughness = (float)mip / (float)(maxMipLevels - 1);
		prefilterShader.SetUniform("roughness", roughness);
		for (unsigned int i = 0; i < 6; ++i)
		{
			prefilterShader.SetUniform("view", captureViews[i]);
			glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, prefilterMap, mip);

			glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
			renderCube();
		}
	}
	glBindFramebuffer(GL_FRAMEBUFFER, 0);
	std::cout << "finish generating\n";
}
Example #13
0
int main() {

    //Call start up function
    startUp();

    //Create image processor
    //imageProcessor processor = imageProcessor();
    //Init the processing of images
    //processor.init();

    //Create solver and cube objects
    rCube rcube1 = rCube();
    solver solver1 = solver();

    rcube1.printCube();

    //Apply random solver to the cube
    solver1.randomSolver(rcube1);

    renderCube(rcube1);

    return 0;
}
Example #14
0
// renders the 3D scene
// --------------------
void renderScene(const Shader &shader)
{
    // room cube
    glm::mat4 model;
    model = glm::scale(model, glm::vec3(5.0f));
    shader.setMat4("model", model);
    glDisable(GL_CULL_FACE); // note that we disable culling here since we render 'inside' the cube instead of the usual 'outside' which throws off the normal culling methods.
    shader.setInt("reverse_normals", 1); // A small little hack to invert normals when drawing cube from the inside so lighting still works.
    renderCube();
    shader.setInt("reverse_normals", 0); // and of course disable it
    glEnable(GL_CULL_FACE);
    // cubes
    model = glm::mat4();
    model = glm::translate(model, glm::vec3(4.0f, -3.5f, 0.0));
    model = glm::scale(model, glm::vec3(0.5f));
    shader.setMat4("model", model);
    renderCube();
    model = glm::mat4();
    model = glm::translate(model, glm::vec3(2.0f, 3.0f, 1.0));
    model = glm::scale(model, glm::vec3(0.75f));
    shader.setMat4("model", model);
    renderCube();
    model = glm::mat4();
    model = glm::translate(model, glm::vec3(-3.0f, -1.0f, 0.0));
    model = glm::scale(model, glm::vec3(0.5f));
    shader.setMat4("model", model);
    renderCube();
    model = glm::mat4();
    model = glm::translate(model, glm::vec3(-1.5f, 1.0f, 1.5));
    model = glm::scale(model, glm::vec3(0.5f));
    shader.setMat4("model", model);
    renderCube();
    model = glm::mat4();
    model = glm::translate(model, glm::vec3(-1.5f, 2.0f, -3.0));
    model = glm::rotate(model, glm::radians(60.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
    model = glm::scale(model, glm::vec3(0.75f));
    shader.setMat4("model", model);
    renderCube();
}
int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_SAMPLES, 4);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
    //glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // uncomment this statement to fix compilation on OS X

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    glfwMakeContextCurrent(window);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);

    // tell GLFW to capture our mouse
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);
    // set depth function to less than AND equal for skybox depth trick.
    glDepthFunc(GL_LEQUAL);
    // enable seamless cubemap sampling for lower mip levels in the pre-filter map.
    glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);

    // build and compile shaders
    // -------------------------
    Shader pbrShader("2.2.2.pbr.vs", "2.2.2.pbr.fs");
    Shader equirectangularToCubemapShader("2.2.2.cubemap.vs", "2.2.2.equirectangular_to_cubemap.fs");
    Shader irradianceShader("2.2.2.cubemap.vs", "2.2.2.irradiance_convolution.fs");
    Shader prefilterShader("2.2.2.cubemap.vs", "2.2.2.prefilter.fs");
    Shader brdfShader("2.2.2.brdf.vs", "2.2.2.brdf.fs");
    Shader backgroundShader("2.2.2.background.vs", "2.2.2.background.fs");

    pbrShader.use();
    pbrShader.setInt("irradianceMap", 0);
    pbrShader.setInt("prefilterMap", 1);
    pbrShader.setInt("brdfLUT", 2);
    pbrShader.setInt("albedoMap", 3);
    pbrShader.setInt("normalMap", 4);
    pbrShader.setInt("metallicMap", 5);
    pbrShader.setInt("roughnessMap", 6);
    pbrShader.setInt("aoMap", 7);

    backgroundShader.use();
    backgroundShader.setInt("environmentMap", 0);

    // load PBR material textures
    // --------------------------
    // rusted iron
    unsigned int ironAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/albedo.png").c_str());
    unsigned int ironNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/normal.png").c_str());
    unsigned int ironMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/metallic.png").c_str());
    unsigned int ironRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/roughness.png").c_str());
    unsigned int ironAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/ao.png").c_str());

    // gold
    unsigned int goldAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/albedo.png").c_str());
    unsigned int goldNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/normal.png").c_str());
    unsigned int goldMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/metallic.png").c_str());
    unsigned int goldRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/roughness.png").c_str());
    unsigned int goldAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/ao.png").c_str());

    // grass
    unsigned int grassAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/albedo.png").c_str());
    unsigned int grassNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/normal.png").c_str());
    unsigned int grassMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/metallic.png").c_str());
    unsigned int grassRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/roughness.png").c_str());
    unsigned int grassAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/ao.png").c_str());

    // plastic
    unsigned int plasticAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/albedo.png").c_str());
    unsigned int plasticNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/normal.png").c_str());
    unsigned int plasticMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/metallic.png").c_str());
    unsigned int plasticRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/roughness.png").c_str());
    unsigned int plasticAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/ao.png").c_str());

    // wall
    unsigned int wallAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/albedo.png").c_str());
    unsigned int wallNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/normal.png").c_str());
    unsigned int wallMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/metallic.png").c_str());
    unsigned int wallRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/roughness.png").c_str());
    unsigned int wallAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/ao.png").c_str());

    // lights
    // ------
    glm::vec3 lightPositions[] = {
        glm::vec3(-10.0f,  10.0f, 10.0f),
        glm::vec3( 10.0f,  10.0f, 10.0f),
        glm::vec3(-10.0f, -10.0f, 10.0f),
        glm::vec3( 10.0f, -10.0f, 10.0f),
    };
    glm::vec3 lightColors[] = {
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f)
    };
    int nrRows = 7;
    int nrColumns = 7;
    float spacing = 2.5;

    // pbr: setup framebuffer
    // ----------------------
    unsigned int captureFBO;
    unsigned int captureRBO;
    glGenFramebuffers(1, &captureFBO);
    glGenRenderbuffers(1, &captureRBO);

    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
    glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
    glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, captureRBO);

    // pbr: load the HDR environment map
    // ---------------------------------
    stbi_set_flip_vertically_on_load(true);
    int width, height, nrComponents;
    float *data = stbi_loadf(FileSystem::getPath("resources/textures/hdr/newport_loft.hdr").c_str(), &width, &height, &nrComponents, 0);
    unsigned int hdrTexture;
    if (data)
    {
        glGenTextures(1, &hdrTexture);
        glBindTexture(GL_TEXTURE_2D, hdrTexture);
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, width, height, 0, GL_RGB, GL_FLOAT, data); // note how we specify the texture's data value to be float

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Failed to load HDR image." << std::endl;
    }

    // pbr: setup cubemap to render to and attach to framebuffer
    // ---------------------------------------------------------
    unsigned int envCubemap;
    glGenTextures(1, &envCubemap);
    glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
    for (unsigned int i = 0; i < 6; ++i)
    {
        glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 512, 512, 0, GL_RGB, GL_FLOAT, nullptr);
    }
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // enable pre-filter mipmap sampling (combatting visible dots artifact)
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

    // pbr: set up projection and view matrices for capturing data onto the 6 cubemap face directions
    // ----------------------------------------------------------------------------------------------
    glm::mat4 captureProjection = glm::perspective(glm::radians(90.0f), 1.0f, 0.1f, 10.0f);
    glm::mat4 captureViews[] =
    {
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3( 1.0f,  0.0f,  0.0f), glm::vec3(0.0f, -1.0f,  0.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-1.0f,  0.0f,  0.0f), glm::vec3(0.0f, -1.0f,  0.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3( 0.0f,  1.0f,  0.0f), glm::vec3(0.0f,  0.0f,  1.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3( 0.0f, -1.0f,  0.0f), glm::vec3(0.0f,  0.0f, -1.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3( 0.0f,  0.0f,  1.0f), glm::vec3(0.0f, -1.0f,  0.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3( 0.0f,  0.0f, -1.0f), glm::vec3(0.0f, -1.0f,  0.0f))
    };

    // pbr: convert HDR equirectangular environment map to cubemap equivalent
    // ----------------------------------------------------------------------
    equirectangularToCubemapShader.use();
    equirectangularToCubemapShader.setInt("equirectangularMap", 0);
    equirectangularToCubemapShader.setMat4("projection", captureProjection);
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_2D, hdrTexture);

    glViewport(0, 0, 512, 512); // don't forget to configure the viewport to the capture dimensions.
    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    for (unsigned int i = 0; i < 6; ++i)
    {
        equirectangularToCubemapShader.setMat4("view", captureViews[i]);
        glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, 0);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        renderCube();
    }
    glBindFramebuffer(GL_FRAMEBUFFER, 0);

    // then let OpenGL generate mipmaps from first mip face (combatting visible dots artifact)
    glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
    glGenerateMipmap(GL_TEXTURE_CUBE_MAP);

    // pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale.
    // --------------------------------------------------------------------------------
    unsigned int irradianceMap;
    glGenTextures(1, &irradianceMap);
    glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
    for (unsigned int i = 0; i < 6; ++i)
    {
        glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 32, 32, 0, GL_RGB, GL_FLOAT, nullptr);
    }
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
    glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 32, 32);

    // pbr: solve diffuse integral by convolution to create an irradiance (cube)map.
    // -----------------------------------------------------------------------------
    irradianceShader.use();
    irradianceShader.setInt("environmentMap", 0);
    irradianceShader.setMat4("projection", captureProjection);
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);

    glViewport(0, 0, 32, 32); // don't forget to configure the viewport to the capture dimensions.
    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    for (unsigned int i = 0; i < 6; ++i)
    {
        irradianceShader.setMat4("view", captureViews[i]);
        glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradianceMap, 0);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        renderCube();
    }
    glBindFramebuffer(GL_FRAMEBUFFER, 0);

    // pbr: create a pre-filter cubemap, and re-scale capture FBO to pre-filter scale.
    // --------------------------------------------------------------------------------
    unsigned int prefilterMap;
    glGenTextures(1, &prefilterMap);
    glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
    for (unsigned int i = 0; i < 6; ++i)
    {
        glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 128, 128, 0, GL_RGB, GL_FLOAT, nullptr);
    }
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // be sure to set minifcation filter to mip_linear 
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    // generate mipmaps for the cubemap so OpenGL automatically allocates the required memory.
    glGenerateMipmap(GL_TEXTURE_CUBE_MAP);

    // pbr: run a quasi monte-carlo simulation on the environment lighting to create a prefilter (cube)map.
    // ----------------------------------------------------------------------------------------------------
    prefilterShader.use();
    prefilterShader.setInt("environmentMap", 0);
    prefilterShader.setMat4("projection", captureProjection);
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);

    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    unsigned int maxMipLevels = 5;
    for (unsigned int mip = 0; mip < maxMipLevels; ++mip)
    {
        // reisze framebuffer according to mip-level size.
        unsigned int mipWidth = 128 * std::pow(0.5, mip);
        unsigned int mipHeight = 128 * std::pow(0.5, mip);
        glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
        glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, mipWidth, mipHeight);
        glViewport(0, 0, mipWidth, mipHeight);

        float roughness = (float)mip / (float)(maxMipLevels - 1);
        prefilterShader.setFloat("roughness", roughness);
        for (unsigned int i = 0; i < 6; ++i)
        {
            prefilterShader.setMat4("view", captureViews[i]);
            glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, prefilterMap, mip);

            glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
            renderCube();
        }
    }
    glBindFramebuffer(GL_FRAMEBUFFER, 0);

    // pbr: generate a 2D LUT from the BRDF equations used.
    // ----------------------------------------------------
    unsigned int brdfLUTTexture;
    glGenTextures(1, &brdfLUTTexture);

    // pre-allocate enough memory for the LUT texture.
    glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, 512, 512, 0, GL_RG, GL_FLOAT, 0);
    // be sure to set wrapping mode to GL_CLAMP_TO_EDGE
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

    // then re-configure capture framebuffer object and render screen-space quad with BRDF shader.
    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
    glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
    glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, brdfLUTTexture, 0);

    glViewport(0, 0, 512, 512);
    brdfShader.use();
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    renderQuad();

    glBindFramebuffer(GL_FRAMEBUFFER, 0);


    // initialize static shader uniforms before rendering
    // --------------------------------------------------
    glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
    pbrShader.use();
    pbrShader.setMat4("projection", projection);
    backgroundShader.use();
    backgroundShader.setMat4("projection", projection);

    // then before rendering, configure the viewport to the original framebuffer's screen dimensions
    int scrWidth, scrHeight;
    glfwGetFramebufferSize(window, &scrWidth, &scrHeight);
    glViewport(0, 0, scrWidth, scrHeight);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic
        // --------------------
        float currentFrame = glfwGetTime();
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        // render scene, supplying the convoluted irradiance map to the final shader.
        // ------------------------------------------------------------------------------------------
        pbrShader.use();
        glm::mat4 model;
        glm::mat4 view = camera.GetViewMatrix();
        pbrShader.setMat4("view", view);
        pbrShader.setVec3("camPos", camera.Position);

        // bind pre-computed IBL data
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
        glActiveTexture(GL_TEXTURE1);
        glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
        glActiveTexture(GL_TEXTURE2);
        glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);

        // rusted iron
        glActiveTexture(GL_TEXTURE3);
        glBindTexture(GL_TEXTURE_2D, ironAlbedoMap);
        glActiveTexture(GL_TEXTURE4);
        glBindTexture(GL_TEXTURE_2D, ironNormalMap);
        glActiveTexture(GL_TEXTURE5);
        glBindTexture(GL_TEXTURE_2D, ironMetallicMap);
        glActiveTexture(GL_TEXTURE6);
        glBindTexture(GL_TEXTURE_2D, ironRoughnessMap);
        glActiveTexture(GL_TEXTURE7);
        glBindTexture(GL_TEXTURE_2D, ironAOMap);

        model = glm::mat4();
        model = glm::translate(model, glm::vec3(-5.0, 0.0, 2.0));
        pbrShader.setMat4("model", model);
        renderSphere();

        // gold
        glActiveTexture(GL_TEXTURE3);
        glBindTexture(GL_TEXTURE_2D, goldAlbedoMap);
        glActiveTexture(GL_TEXTURE4);
        glBindTexture(GL_TEXTURE_2D, goldNormalMap);
        glActiveTexture(GL_TEXTURE5);
        glBindTexture(GL_TEXTURE_2D, goldMetallicMap);
        glActiveTexture(GL_TEXTURE6);
        glBindTexture(GL_TEXTURE_2D, goldRoughnessMap);
        glActiveTexture(GL_TEXTURE7);
        glBindTexture(GL_TEXTURE_2D, goldAOMap);

        model = glm::mat4();
        model = glm::translate(model, glm::vec3(-3.0, 0.0, 2.0));
        pbrShader.setMat4("model", model);
        renderSphere();

        // grass
        glActiveTexture(GL_TEXTURE3);
        glBindTexture(GL_TEXTURE_2D, grassAlbedoMap);
        glActiveTexture(GL_TEXTURE4);
        glBindTexture(GL_TEXTURE_2D, grassNormalMap);
        glActiveTexture(GL_TEXTURE5);
        glBindTexture(GL_TEXTURE_2D, grassMetallicMap);
        glActiveTexture(GL_TEXTURE6);
        glBindTexture(GL_TEXTURE_2D, grassRoughnessMap);
        glActiveTexture(GL_TEXTURE7);
        glBindTexture(GL_TEXTURE_2D, grassAOMap);

        model = glm::mat4();
        model = glm::translate(model, glm::vec3(-1.0, 0.0, 2.0));
        pbrShader.setMat4("model", model);
        renderSphere();

        // plastic
        glActiveTexture(GL_TEXTURE3);
        glBindTexture(GL_TEXTURE_2D, plasticAlbedoMap);
        glActiveTexture(GL_TEXTURE4);
        glBindTexture(GL_TEXTURE_2D, plasticNormalMap);
        glActiveTexture(GL_TEXTURE5);
        glBindTexture(GL_TEXTURE_2D, plasticMetallicMap);
        glActiveTexture(GL_TEXTURE6);
        glBindTexture(GL_TEXTURE_2D, plasticRoughnessMap);
        glActiveTexture(GL_TEXTURE7);
        glBindTexture(GL_TEXTURE_2D, plasticAOMap);

        model = glm::mat4();
        model = glm::translate(model, glm::vec3(1.0, 0.0, 2.0));
        pbrShader.setMat4("model", model);
        renderSphere();

        // wall
        glActiveTexture(GL_TEXTURE3);
        glBindTexture(GL_TEXTURE_2D, wallAlbedoMap);
        glActiveTexture(GL_TEXTURE4);
        glBindTexture(GL_TEXTURE_2D, wallNormalMap);
        glActiveTexture(GL_TEXTURE5);
        glBindTexture(GL_TEXTURE_2D, wallMetallicMap);
        glActiveTexture(GL_TEXTURE6);
        glBindTexture(GL_TEXTURE_2D, wallRoughnessMap);
        glActiveTexture(GL_TEXTURE7);
        glBindTexture(GL_TEXTURE_2D, wallAOMap);

        model = glm::mat4();
        model = glm::translate(model, glm::vec3(3.0, 0.0, 2.0));
        pbrShader.setMat4("model", model);
        renderSphere();

        // render light source (simply re-render sphere at light positions)
        // this looks a bit off as we use the same shader, but it'll make their positions obvious and 
        // keeps the codeprint small.
        for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i)
        {
            glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0);
            newPos = lightPositions[i];
            pbrShader.setVec3("lightPositions[" + std::to_string(i) + "]", newPos);
            pbrShader.setVec3("lightColors[" + std::to_string(i) + "]", lightColors[i]);

            model = glm::mat4();
            model = glm::translate(model, newPos);
            model = glm::scale(model, glm::vec3(0.5f));
            pbrShader.setMat4("model", model);
            renderSphere();
        }

        // render skybox (render as last to prevent overdraw)
        backgroundShader.use();

        backgroundShader.setMat4("view", view);
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
        //glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // display irradiance map
        //glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); // display prefilter map
        renderCube();

        // render BRDF map to screen
        //brdfShader.Use();
        //renderQuad();


        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}
Example #16
0
void CubeWidget::paintGL()
{
	glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
	glLoadIdentity();

	glTranslatef(0.0f, 0.0f, -16.0f);

	glBegin(GL_LINES);
	// global rotation axix
	glColor3f(1.0f, 1.0f, 1.0f); // white
	glVertex3f(0.0f, 0.0f, 0.0f);
	glVertex3f(10.0f, -10.0f, 0.0f);
	glEnd();

	glRotatef(40.0f, 1.0f, -1.0f, 0.0f);

	if (isRotating)
	{
		switch (rotation.type)
		{
		case CubeModel::X_AXIS:
			if (rotation.cw)
			{
				glRotatef(360.0f - rotationAngle, 1.0f, 0.0f, 0.0f);
			}
			else
			{
				glRotatef(rotationAngle, 1.0f, 0.0f, 0.0f);
			}
			break;
		case CubeModel::Y_AXIS:
			if (rotation.cw)
			{
				glRotatef(360.0f - rotationAngle, 0.0f, 1.0f, 0.0f);
			}
			else
			{
				glRotatef(rotationAngle, 0.0f, 1.0f, 0.0f);
			}
			break;
		case CubeModel::Z_AXIS:
			if (rotation.cw)
			{
				glRotatef(360.0f - rotationAngle, 0.0f, 0.0f, 1.0f);
			}
			else
			{
				glRotatef(rotationAngle, 0.0f, 0.0f, 1.0f);
			}
			break;
		default:
			break;
		}
	}

	renderCube();

	glBegin(GL_LINES);
	// picking ray
	glColor3f(1.0f, 0.0f, 1.0f); // pink
	glVertex3d(x_near, y_near, z_near);
	glVertex3d(x_far, y_far, z_far);
	glEnd();
}
Example #17
0
int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
    //glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // uncomment this statement to fix compilation on OS X

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);

    // tell GLFW to capture our mouse
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);

    // build and compile shaders
    // -------------------------
    Shader shader("6.lighting.vs", "6.lighting.fs");
    Shader hdrShader("6.hdr.vs", "6.hdr.fs");

    // load textures
    // -------------
    unsigned int woodTexture = loadTexture(FileSystem::getPath("resources/textures/wood.png").c_str(), true); // note that we're loading the texture as an SRGB texture

    // configure floating point framebuffer
    // ------------------------------------
    unsigned int hdrFBO;
    glGenFramebuffers(1, &hdrFBO);
    // create floating point color buffer
    unsigned int colorBuffer;
    glGenTextures(1, &colorBuffer);
    glBindTexture(GL_TEXTURE_2D, colorBuffer);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    // create depth buffer (renderbuffer)
    unsigned int rboDepth;
    glGenRenderbuffers(1, &rboDepth);
    glBindRenderbuffer(GL_RENDERBUFFER, rboDepth);
    glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, SCR_WIDTH, SCR_HEIGHT);
    // attach buffers
    glBindFramebuffer(GL_FRAMEBUFFER, hdrFBO);
    glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, colorBuffer, 0);
    glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rboDepth);
    if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
        std::cout << "Framebuffer not complete!" << std::endl;
    glBindFramebuffer(GL_FRAMEBUFFER, 0);

    // lighting info
    // -------------
    // positions
    std::vector<glm::vec3> lightPositions;
    lightPositions.push_back(glm::vec3( 0.0f,  0.0f, 49.5f)); // back light
    lightPositions.push_back(glm::vec3(-1.4f, -1.9f, 9.0f));
    lightPositions.push_back(glm::vec3( 0.0f, -1.8f, 4.0f));
    lightPositions.push_back(glm::vec3( 0.8f, -1.7f, 6.0f));
    // colors
    std::vector<glm::vec3> lightColors;
    lightColors.push_back(glm::vec3(200.0f, 200.0f, 200.0f));
    lightColors.push_back(glm::vec3(0.1f, 0.0f, 0.0f));
    lightColors.push_back(glm::vec3(0.0f, 0.0f, 0.2f));
    lightColors.push_back(glm::vec3(0.0f, 0.1f, 0.0f));

    // shader configuration
    // --------------------
    shader.use();
    shader.setInt("diffuseTexture", 0);
    hdrShader.use();
    hdrShader.setInt("hdrBuffer", 0);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic
        // --------------------
        float currentFrame = glfwGetTime();
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        // 1. render scene into floating point framebuffer
        // -----------------------------------------------
        glBindFramebuffer(GL_FRAMEBUFFER, hdrFBO);
            glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
            glm::mat4 projection = glm::perspective(camera.Zoom, (GLfloat)SCR_WIDTH / (GLfloat)SCR_HEIGHT, 0.1f, 100.0f);
            glm::mat4 view = camera.GetViewMatrix();
            shader.use();
            shader.setMat4("projection", projection);
            shader.setMat4("view", view);
            glActiveTexture(GL_TEXTURE0);
            glBindTexture(GL_TEXTURE_2D, woodTexture);
            // set lighting uniforms
            for (unsigned int i = 0; i < lightPositions.size(); i++)
            {
                shader.setVec3("lights[" + std::to_string(i) + "].Position", lightPositions[i]);
                shader.setVec3("lights[" + std::to_string(i) + "].Color", lightColors[i]);
            }
            shader.setVec3("viewPos", camera.Position);
            // render tunnel
            glm::mat4 model = glm::mat4();
            model = glm::translate(model, glm::vec3(0.0f, 0.0f, 25.0));
            model = glm::scale(model, glm::vec3(2.5f, 2.5f, 27.5f));
            shader.setMat4("model", model);
            shader.setInt("inverse_normals", true);
            renderCube();
        glBindFramebuffer(GL_FRAMEBUFFER, 0);

        // 2. now render floating point color buffer to 2D quad and tonemap HDR colors to default framebuffer's (clamped) color range
        // --------------------------------------------------------------------------------------------------------------------------
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        hdrShader.use();
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, colorBuffer);
        hdrShader.setInt("hdr", hdr);
        hdrShader.setFloat("exposure", exposure);
        renderQuad();

        std::cout << "hdr: " << (hdr ? "on" : "off") << "| exposure: " << exposure << std::endl;

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    glfwTerminate();
    return 0;
}
Example #18
0
void MetalineEnemy::render()
{	
	glColor4f(0.5, 0.5, 0.5, 1.0);
	
	glMaterialfv(GL_FRONT, GL_AMBIENT, centerMaterialAmbient);
	glMaterialfv(GL_FRONT, GL_DIFFUSE, centerMaterialDiffuse);
    glMaterialfv(GL_FRONT, GL_SPECULAR, centerMaterialSpecular);
    glMaterialfv(GL_FRONT, GL_SHININESS, &centerShininess);
	
	glPushMatrix();
	glTranslatef(center.x, center.y, center.z);
	glutSolidSphere(CENTER_SPHERE_RADIUS * this->radius, CENTER_SPHERE_SLICES, CENTER_SPHERE_STACKS);
	glPopMatrix();
	
	glColor4f(0.5, 0.5, 0.5, 1.0);
	
	glMaterialfv(GL_FRONT, GL_AMBIENT, blobMaterialAmbient);
	glMaterialfv(GL_FRONT, GL_DIFFUSE, blobMaterialDiffuse);
    glMaterialfv(GL_FRONT, GL_SPECULAR, blobMaterialSpecular);
    glMaterialfv(GL_FRONT, GL_SHININESS, &blobShininess);
	
	glBegin(GL_TRIANGLES);
	
	memset(added, 0, addedSize3D * sizeof(added[0]));
	
	int curNeighborIndex = 0;
	int endNeighborIndex = 0;
	
	memset(fieldStrengths, 0, strengthSize3D * sizeof(fieldStrengths[0]));
	
	for (int i = 0; i < numBlobs; i++) {
		LineBlob curBlob = blobs[i];
		
		Index blobCubePosition = getCubePosition(curBlob.center);
		
		bool isComputed = false;
		bool found = false;
		
		for(;blobCubePosition.x < DEFAULT_NUM_CUBES_PER_DIMENSION; blobCubePosition.x++)
		{
			if (wasAdded(blobCubePosition))
			{
				isComputed = true;
				found = true;
				break;
			}
			else
			{
				if (renderCube(blobCubePosition))
				{
					found = true;
					break;
				}
			}
		}
		
		if (!isComputed)
		{
			
			addNeighbors(blobCubePosition, endNeighborIndex);
			
			while (curNeighborIndex < endNeighborIndex)
			{
				if (renderCube(neighbors[curNeighborIndex]))
				{
					addNeighbors(neighbors[curNeighborIndex], endNeighborIndex);
				}
				
				curNeighborIndex++;
			}
		}
	}
	
	glEnd();
}
int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_SAMPLES, 4);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    glfwMakeContextCurrent(window);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);

    // tell GLFW to capture our mouse
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LEQUAL); // set depth function to less than AND equal for skybox depth trick.

    // build and compile shaders
    // -------------------------
    Shader pbrShader("2.1.2.pbr.vs", "2.1.2.pbr.fs");
    Shader equirectangularToCubemapShader("2.1.2.cubemap.vs", "2.1.2.equirectangular_to_cubemap.fs");
    Shader irradianceShader("2.1.2.cubemap.vs", "2.1.2.irradiance_convolution.fs");
    Shader backgroundShader("2.1.2.background.vs", "2.1.2.background.fs");


    pbrShader.use();
    pbrShader.setInt("irradianceMap", 0);
    pbrShader.setVec3("albedo", 0.5f, 0.0f, 0.0f);
    pbrShader.setFloat("ao", 1.0f);

    backgroundShader.use();
    backgroundShader.setInt("environmentMap", 0);


    // lights
    // ------
    glm::vec3 lightPositions[] = {
        glm::vec3(-10.0f,  10.0f, 10.0f),
        glm::vec3( 10.0f,  10.0f, 10.0f),
        glm::vec3(-10.0f, -10.0f, 10.0f),
        glm::vec3( 10.0f, -10.0f, 10.0f),
    };
    glm::vec3 lightColors[] = {
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f)
    };
    int nrRows = 7;
    int nrColumns = 7;
    float spacing = 2.5;

    // pbr: setup framebuffer
    // ----------------------
    unsigned int captureFBO;
    unsigned int captureRBO;
    glGenFramebuffers(1, &captureFBO);
    glGenRenderbuffers(1, &captureRBO);

    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
    glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
    glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, captureRBO);

    // pbr: load the HDR environment map
    // ---------------------------------
    stbi_set_flip_vertically_on_load(true);
    int width, height, nrComponents;
    float *data = stbi_loadf(FileSystem::getPath("resources/textures/hdr/newport_loft.hdr").c_str(), &width, &height, &nrComponents, 0);
    unsigned int hdrTexture;
    if (data)
    {
        glGenTextures(1, &hdrTexture);
        glBindTexture(GL_TEXTURE_2D, hdrTexture);
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, width, height, 0, GL_RGB, GL_FLOAT, data); // note how we specify the texture's data value to be float

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Failed to load HDR image." << std::endl;
    }

    // pbr: setup cubemap to render to and attach to framebuffer
    // ---------------------------------------------------------
    unsigned int envCubemap;
    glGenTextures(1, &envCubemap);
    glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
    for (unsigned int i = 0; i < 6; ++i)
    {
        glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 512, 512, 0, GL_RGB, GL_FLOAT, nullptr);
    }
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

    // pbr: set up projection and view matrices for capturing data onto the 6 cubemap face directions
    // ----------------------------------------------------------------------------------------------
    glm::mat4 captureProjection = glm::perspective(glm::radians(90.0f), 1.0f, 0.1f, 10.0f);
    glm::mat4 captureViews[] =
    {
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(1.0f,  0.0f,  0.0f), glm::vec3(0.0f, -1.0f,  0.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-1.0f,  0.0f,  0.0f), glm::vec3(0.0f, -1.0f,  0.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f,  1.0f,  0.0f), glm::vec3(0.0f,  0.0f,  1.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f,  0.0f), glm::vec3(0.0f,  0.0f, -1.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f,  0.0f,  1.0f), glm::vec3(0.0f, -1.0f,  0.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f,  0.0f, -1.0f), glm::vec3(0.0f, -1.0f,  0.0f))
    };

    // pbr: convert HDR equirectangular environment map to cubemap equivalent
    // ----------------------------------------------------------------------
    equirectangularToCubemapShader.use();
    equirectangularToCubemapShader.setInt("equirectangularMap", 0);
    equirectangularToCubemapShader.setMat4("projection", captureProjection);
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_2D, hdrTexture);

    glViewport(0, 0, 512, 512); // don't forget to configure the viewport to the capture dimensions.
    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    for (unsigned int i = 0; i < 6; ++i)
    {
        equirectangularToCubemapShader.setMat4("view", captureViews[i]);
        glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, 0);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        renderCube();
    }
    glBindFramebuffer(GL_FRAMEBUFFER, 0);

    // pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale.
    // --------------------------------------------------------------------------------
    unsigned int irradianceMap;
    glGenTextures(1, &irradianceMap);
    glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
    for (unsigned int i = 0; i < 6; ++i)
    {
        glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 32, 32, 0, GL_RGB, GL_FLOAT, nullptr);
    }
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
    glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 32, 32);

    // pbr: solve diffuse integral by convolution to create an irradiance (cube)map.
    // -----------------------------------------------------------------------------
    irradianceShader.use();
    irradianceShader.setInt("environmentMap", 0);
    irradianceShader.setMat4("projection", captureProjection);
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);

    glViewport(0, 0, 32, 32); // don't forget to configure the viewport to the capture dimensions.
    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    for (unsigned int i = 0; i < 6; ++i)
    {
        irradianceShader.setMat4("view", captureViews[i]);
        glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradianceMap, 0);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        renderCube();
    }
    glBindFramebuffer(GL_FRAMEBUFFER, 0);

    // initialize static shader uniforms before rendering
    // --------------------------------------------------
    glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
    pbrShader.use();
    pbrShader.setMat4("projection", projection);
    backgroundShader.use();
    backgroundShader.setMat4("projection", projection);

    // then before rendering, configure the viewport to the original framebuffer's screen dimensions
    int scrWidth, scrHeight;
    glfwGetFramebufferSize(window, &scrWidth, &scrHeight);
    glViewport(0, 0, scrWidth, scrHeight);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic
        // --------------------
        float currentFrame = glfwGetTime();
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        // render scene, supplying the convoluted irradiance map to the final shader.
        // ------------------------------------------------------------------------------------------
        pbrShader.use();
        glm::mat4 view = camera.GetViewMatrix();
        pbrShader.setMat4("view", view);
        pbrShader.setVec3("camPos", camera.Position);

        // bind pre-computed IBL data
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);

        // render rows*column number of spheres with material properties defined by textures (they all have the same material properties)
        glm::mat4 model;
        for (int row = 0; row < nrRows; ++row)
        {
            pbrShader.setFloat("metallic", (float)row / (float)nrRows);
            for (int col = 0; col < nrColumns; ++col)
            {
                // we clamp the roughness to 0.025 - 1.0 as perfectly smooth surfaces (roughness of 0.0) tend to look a bit off
                // on direct lighting.
                pbrShader.setFloat("roughness", glm::clamp((float)col / (float)nrColumns, 0.05f, 1.0f));

                model = glm::mat4();
                model = glm::translate(model, glm::vec3(
                    (float)(col - (nrColumns / 2)) * spacing,
                    (float)(row - (nrRows / 2)) * spacing,
                    -2.0f
                ));
                pbrShader.setMat4("model", model);
                renderSphere();
            }
        }


        // render light source (simply re-render sphere at light positions)
        // this looks a bit off as we use the same shader, but it'll make their positions obvious and 
        // keeps the codeprint small.
        for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i)
        {
            glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0);
            newPos = lightPositions[i];
            pbrShader.setVec3("lightPositions[" + std::to_string(i) + "]", newPos);
            pbrShader.setVec3("lightColors[" + std::to_string(i) + "]", lightColors[i]);

            model = glm::mat4();
            model = glm::translate(model, newPos);
            model = glm::scale(model, glm::vec3(0.5f));
            pbrShader.setMat4("model", model);
            renderSphere();
        }

        // render skybox (render as last to prevent overdraw)
        backgroundShader.use();
        backgroundShader.setMat4("view", view);
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
        //glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // display irradiance map
        renderCube();


        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}
Example #20
0
void OrientationOverlay::process() {
    if (!inport_.isReady())
        outport_.activateTarget();
    else
        privatePort_.activateTarget();

    //draw the cube in the desired position
    // set modelview and projection matrices
    MatStack.matrixMode(tgt::MatrixStack::PROJECTION);
    MatStack.pushMatrix();

    MatStack.loadMatrix(tgt::mat4::createOrtho(-1,1,1,-1,-2,2));

    MatStack.matrixMode(tgt::MatrixStack::MODELVIEW);
    MatStack.pushMatrix();
    MatStack.translate(shiftX_.get()*2.0f-1.0f, shiftY_.get()*2.0f-1.0f, 0);
    tgt::mat4 view = camera_.get().getViewMatrix().getRotationalPart();

    MatStack.scale((float)outport_.getSize().y / (float)outport_.getSize().x, 1, 1);

    MatStack.multMatrix(view);

    glClearDepth(1);

    glEnable(GL_DEPTH_TEST);
    glDisable(GL_LIGHTING);

    // render cube and axis overlays
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    if (drawCube_.get() == true)
        renderCube();
    if (drawAxes_.get() == true)
        renderAxes();

    if (!inport_.isReady())
        outport_.deactivateTarget();
    else
        privatePort_.deactivateTarget();

    // restore OpenGL state
    glCullFace(GL_BACK);
    glDisable(GL_CULL_FACE);
    MatStack.matrixMode(tgt::MatrixStack::PROJECTION);
    MatStack.popMatrix();
    MatStack.matrixMode(tgt::MatrixStack::MODELVIEW);
    MatStack.popMatrix();
    LGL_ERROR;

    glEnable(GL_DEPTH_TEST);

    // now do the composition of the OrientationOverlay with the inport render data by shader
    if (inport_.isReady()) {
        outport_.activateTarget();
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        // use the shader to draw cube and axis over inport render data
        // therefore bind rgba and depth values of both to textures
        TextureUnit colorUnit0, depthUnit0, colorUnit1, depthUnit1;
        privatePort_.bindTextures(colorUnit0.getEnum(), depthUnit0.getEnum());
        inport_.bindTextures(colorUnit1.getEnum(), depthUnit1.getEnum());

        // initialize shader
        program_->activate();
        setGlobalShaderParameters(program_);
        program_->setUniform("colorTexMe_", colorUnit0.getUnitNumber());
        program_->setUniform("depthTexMe_", depthUnit0.getUnitNumber());
        program_->setUniform("colorTexIn_", colorUnit1.getUnitNumber());
        program_->setUniform("depthTexIn_", depthUnit1.getUnitNumber());
        privatePort_.setTextureParameters(program_, "textureParametersMe_");
        inport_.setTextureParameters(program_, "textureParametersIn_");

        glDepthFunc(GL_ALWAYS);
        renderQuad(); // render quad primitive textured by fragment shader
        glDepthFunc(GL_LESS);
        outport_.deactivateTarget();

        program_->deactivate();
        glActiveTexture(GL_TEXTURE0);
    }

    LGL_ERROR;
}