Example #1
0
ActionRetCodeEnum
RotoShapeRenderNode::render(const RenderActionArgs& args)
{

#if !defined(ROTO_SHAPE_RENDER_CPU_USES_CAIRO) && !defined(HAVE_OSMESA)
    getNode()->setPersistentMessage(eMessageTypeError, kNatronPersistentErrorGenericRenderMessage, tr("Roto requires either OSMesa (CONFIG += enable-osmesa) or Cairo (CONFIG += enable-cairo) in order to render on CPU").toStdString());
    return eActionStatusFailed;
#endif

#if !defined(ROTO_SHAPE_RENDER_CPU_USES_CAIRO)
    if (args.backendType == eRenderBackendTypeCPU) {
        getNode()->setPersistentMessage(eMessageTypeError, kNatronPersistentErrorGenericRenderMessage, tr("An OpenGL context is required to draw with the Roto node. This might be because you are trying to render an image too big for OpenGL.").toStdString());
        return eActionStatusFailed;
    }
#endif

    RenderScale combinedScale = EffectInstance::getCombinedScale(args.mipMapLevel, args.proxyScale);

    // Get the Roto item attached to this node. It will be a render-local clone of the original item.
    RotoDrawableItemPtr rotoItem = getAttachedRotoItem();
    assert(rotoItem);
    if (!rotoItem) {
        return eActionStatusFailed;
    }

    // To be thread-safe we can only operate on a render clone.
    assert(rotoItem->isRenderClone());

    // Is it a smear or regular solid render ?
    assert(_imp->renderType.lock());
    RotoShapeRenderTypeEnum type = (RotoShapeRenderTypeEnum)_imp->renderType.lock()->getValue();

    // We only support rendering Bezier or strokes
    RotoStrokeItemPtr isStroke = toRotoStrokeItem(rotoItem);
    BezierPtr isBezier = toBezier(rotoItem);

    // Get the real stroke (the one the user interacts with)
    RotoStrokeItemPtr nonRenderStroke = toRotoStrokeItem(getOriginalAttachedItem());

    if (type == eRotoShapeRenderTypeSmear && !isStroke) {
        return eActionStatusFailed;
    }

    // Check that the item is really activated... it should have been caught in isIdentity otherwise.
    assert(rotoItem->isActivated(args.time, args.view) && (!isBezier || ((isBezier->isCurveFinished(args.view) || isBezier->isOpenBezier()) && ( isBezier->getControlPointsCount(args.view) > 1 ))));

    const OSGLContextPtr& glContext = args.glContext;

    // There must be an OpenGL context bound when using OpenGL.
    if ((args.backendType == eRenderBackendTypeOpenGL || args.backendType == eRenderBackendTypeOSMesa) && !glContext) {
        getNode()->setPersistentMessage(eMessageTypeError, kNatronPersistentErrorGenericRenderMessage, tr("An OpenGL context is required to draw with the Roto node").toStdString());
        return eActionStatusFailed;
    }

    // This is the image plane where we render, we are not multiplane so we only render out one plane
    assert(args.outputPlanes.size() == 1);
    const std::pair<ImagePlaneDesc,ImagePtr>& outputPlane = args.outputPlanes.front();

    // True if this render was trigger because the user is painting (with a pen or mouse)
    bool isDuringPainting = isStroke && isStroke->isCurrentlyDrawing();

    // These variables are useful to pick the stroke drawing algorithm where it was at the previous draw step.
    double distNextIn = 0.;
    Point lastCenterIn = { INT_MIN, INT_MIN };
    int strokeStartPointIndex = 0;
    int strokeMultiIndex = 0;

    // For strokes and open-bezier evaluate them to get the points and their pressure
    // We also compute the bounding box of the item taking into account the motion blur
    if (isStroke) {
        strokeStartPointIndex = isStroke->getRenderCloneCurrentStrokeStartPointIndex();
        strokeMultiIndex = isStroke->getRenderCloneCurrentStrokeIndex();
        isStroke->getStrokeState(&lastCenterIn, &distNextIn);
    }

    // Ensure that the indices of the draw step are valid.
#ifdef DEBUG
    if (isDuringPainting && isStroke->getRenderCloneCurrentStrokeEndPointIndex() >= strokeStartPointIndex) {
        if (strokeStartPointIndex == 0) {
            assert((isStroke->getRenderCloneCurrentStrokeEndPointIndex() + 1) == isStroke->getNumControlPoints(0));
        } else {
            // +2 because we also add the last point of the previous draw step in the call to cloneIndexRange(), otherwise it would make holes in the drawing
            assert((isStroke->getRenderCloneCurrentStrokeEndPointIndex() + 2 - strokeStartPointIndex) == isStroke->getNumControlPoints(0));
        }
    }
#endif

    // Now we are good to start rendering

    // This is the state of the stroke aglorithm in output of this draw step
    double distToNextOut = 0.;
    Point lastCenterOut;

    // Retrieve the OpenGL context local data that were allocated in attachOpenGLContext
    RotoShapeRenderNodeOpenGLDataPtr glData;
    if (args.glContextData) {
        glData = boost::dynamic_pointer_cast<RotoShapeRenderNodeOpenGLData>(args.glContextData);
        assert(glData);
    }

    // Firs time we draw this clear the background since we are not going to render the full image with OpenGL.
    if (strokeStartPointIndex == 0 && strokeMultiIndex == 0) {
        outputPlane.second->fillBoundsZero();
    }

    bool clipToFormat = _imp->clipToFormatKnob.lock()->getValue();

    switch (type) {
        case eRotoShapeRenderTypeSolid: {

            // Account for motion-blur
            RangeD range;
            int divisions;
            rotoItem->getMotionBlurSettings(args.time, args.view, &range, &divisions);

            if (isDuringPainting) {
                // Do not use motion-blur when drawing.
                range.min = range.max = args.time;
                divisions = 1;
            }

#ifdef ROTO_SHAPE_RENDER_CPU_USES_CAIRO
            // When cairo is enabled, render with it for a CPU render
            if (args.backendType == eRenderBackendTypeCPU) {
                RotoShapeRenderCairo::renderMaskInternal_cairo(rotoItem, args.roi, outputPlane.first, args.time, args.view, range, divisions, combinedScale, isDuringPainting, distNextIn, lastCenterIn, outputPlane.second, &distToNextOut, &lastCenterOut);
                if (isDuringPainting && isStroke) {
                    nonRenderStroke->updateStrokeData(lastCenterOut, distToNextOut, isStroke->getRenderCloneCurrentStrokeEndPointIndex());
                }
            } else
#endif
            // Otherwise render with OpenGL or OSMesa
            if (args.backendType == eRenderBackendTypeOpenGL || args.backendType == eRenderBackendTypeOSMesa) {

                // Figure out the shape color
                ColorRgbaD shapeColor;
                {
                    const double t = args.time;
                    KnobColorPtr colorKnob = rotoItem->getColorKnob();
                    if (colorKnob) {
                        shapeColor.r = colorKnob->getValueAtTime(TimeValue(t), DimIdx(0), args.view);
                        shapeColor.g = colorKnob->getValueAtTime(TimeValue(t), DimIdx(1), args.view);
                        shapeColor.b = colorKnob->getValueAtTime(TimeValue(t), DimIdx(2), args.view);
                        shapeColor.a = colorKnob->getValueAtTime(TimeValue(t), DimIdx(3), args.view);
                    }
                }


                // Figure out the opacity
                double opacity = rotoItem->getOpacityKnob() ? rotoItem->getOpacityKnob()->getValueAtTime(args.time, DimIdx(0), args.view) : 1.;

                // For a stroke or an opened Bezier, use the generic stroke algorithm
                if ( isStroke || ( isBezier && (isBezier->isOpenBezier() || !isBezier->isFillEnabled()) ) ) {
                    const bool doBuildUp = !isStroke ? false : isStroke->getBuildupKnob()->getValueAtTime(args.time, DimIdx(0), args.view);
                    RotoShapeRenderGL::renderStroke_gl(glContext, glData, args.roi, outputPlane.second, isDuringPainting, distNextIn, lastCenterIn, rotoItem, doBuildUp, opacity, args.time, args.view, range, divisions, combinedScale, &distToNextOut, &lastCenterOut);

                    // Update the stroke algorithm in output
                    if (isDuringPainting && isStroke) {
                        nonRenderStroke->updateStrokeData(lastCenterOut, distToNextOut, isStroke->getRenderCloneCurrentStrokeEndPointIndex());
                    }
                } else {
                    // Render a Bezier
                    //qDebug() << QThread::currentThread() << this  << isBezier.get()<< "RoD while render:";
                    //isBezier->getBoundingBox(args.time, args.view).debug();
                    RotoShapeRenderGL::renderBezier_gl(glContext, glData,
                                                       args.roi,
                                                       isBezier, outputPlane.second, clipToFormat, opacity, args.time, args.view, range, divisions, combinedScale, GL_TEXTURE_2D);
                }
            } // useOpenGL
        }   break;
        case eRotoShapeRenderTypeSmear: {

            OSGLContextAttacherPtr contextAttacher;
            if (args.backendType == eRenderBackendTypeOSMesa && !glContext->isGPUContext()) {
                // When rendering smear with OSMesa we need to write to the full image bounds and not only the RoI, so re-attach the default framebuffer
                // with the image bounds
                Image::CPUData imageData;
                outputPlane.second->getCPUData(&imageData);

                contextAttacher = OSGLContextAttacher::create(glContext, imageData.bounds.width(), imageData.bounds.height(), imageData.bounds.width(), imageData.ptrs[0]);
            }

            // Ensure that initially everything in the background is the source image
            if (strokeStartPointIndex == 0 && strokeMultiIndex == 0) {

                GetImageOutArgs outArgs;
                GetImageInArgs inArgs(&args.mipMapLevel, &args.proxyScale, &args.roi, &args.backendType);
                inArgs.inputNb = 0;
                if (!getImagePlane(inArgs, &outArgs)) {
                    getNode()->setPersistentMessage(eMessageTypeError, kNatronPersistentErrorGenericRenderMessage, tr("Failed to fetch source image").toStdString());
                    return eActionStatusFailed;
                }

                ImagePtr bgImage = outArgs.image;


                if (args.backendType == eRenderBackendTypeCPU || glContext->isGPUContext()) {

                    // Copy the BG image to the output image
                    Image::CopyPixelsArgs cpyArgs;
                    cpyArgs.roi = outputPlane.second->getBounds();
                    outputPlane.second->copyPixels(*bgImage, cpyArgs);
                } else {

                    // With OSMesa we cannot re-use the existing output plane as source because mesa clears the framebuffer out upon the first draw
                    // after a binding.
                    // The only option is to draw in a tmp texture that will live for the whole stroke painting life

                    Image::InitStorageArgs initArgs;
                    initArgs.bounds = bgImage->getBounds();
                    initArgs.bitdepth = outputPlane.second->getBitDepth();
                    initArgs.storage = eStorageModeGLTex;
                    initArgs.glContext = glContext;
                    initArgs.textureTarget = GL_TEXTURE_2D;
                    _imp->osmesaSmearTmpTexture = Image::create(initArgs);
                    if (!_imp->osmesaSmearTmpTexture) {
                        return eActionStatusFailed;
                    }

                    // Make sure the texture is ready before rendering the smear
                    GL_CPU::Flush();
                    GL_CPU::Finish();
                }
            } else {
                if (args.backendType == eRenderBackendTypeOSMesa && !glContext->isGPUContext() && strokeStartPointIndex == 0) {
                    // Ensure the tmp texture has correct size
                    assert(_imp->osmesaSmearTmpTexture);
                    ActionRetCodeEnum stat = _imp->osmesaSmearTmpTexture->ensureBounds(outputPlane.second->getBounds(), args.mipMapLevel, std::vector<RectI>(), shared_from_this());
                    if (isFailureRetCode(stat)) {
                        return stat;
                    }
                }
            }

            bool renderedDot;
#ifdef ROTO_SHAPE_RENDER_CPU_USES_CAIRO
            // Render with cairo if we need to render on CPU
            if (args.backendType == eRenderBackendTypeCPU) {
                renderedDot = RotoShapeRenderCairo::renderSmear_cairo(args.time, args.view, combinedScale, isStroke, args.roi, outputPlane.second, distNextIn, lastCenterIn, &distToNextOut, &lastCenterOut);
            } else
#endif
            if (args.backendType == eRenderBackendTypeOpenGL || args.backendType == eRenderBackendTypeOSMesa) {

                // Render with OpenGL
                ImagePtr dstImage = glContext->isGPUContext() ? outputPlane.second : _imp->osmesaSmearTmpTexture;
                assert(dstImage);
                renderedDot = RotoShapeRenderGL::renderSmear_gl(glContext, glData, args.roi, dstImage, distNextIn, lastCenterIn, isStroke, 1., args.time, args.view, combinedScale, &distToNextOut, &lastCenterOut);
            }

            // Update the stroke algorithm in output
            if (isDuringPainting) {
                Q_UNUSED(renderedDot);
                nonRenderStroke->updateStrokeData(lastCenterOut, distToNextOut, isStroke->getRenderCloneCurrentStrokeEndPointIndex());
            }

        }   break;
    } // type



    return eActionStatusOK;

} // RotoShapeRenderNode::render
void C2CurveEvaluator::evaluateCurve(const std::vector<Point>& ptvCtrlPts, 
		std::vector<Point>& ptvEvaluatedCurvePts, 
		const float& fAniLength, 
		const bool& bWrap) const
{
	int i, j;
	double coef_mat[GAUSSIAN_MAXN][GAUSSIAN_MAXN], tmp[GAUSSIAN_MAXN][GAUSSIAN_MAXN];
	double res_vecx[GAUSSIAN_MAXN], res_vecy[GAUSSIAN_MAXN];
	ptvEvaluatedCurvePts.clear();
	std::vector<Point> controlPts = ptvCtrlPts;

	if(bWrap) {
		int s = controlPts.size();
		controlPts.insert(controlPts.begin(), Point(controlPts[s - 1].x - fAniLength, controlPts[s - 1]. y));
		controlPts.insert(controlPts.begin(), Point(controlPts[s - 1].x - fAniLength, controlPts[s - 1]. y));
		controlPts.push_back(Point(controlPts[2].x + fAniLength, controlPts[2].y));
		controlPts.push_back(Point(controlPts[3].x + fAniLength, controlPts[3].y));
	}
	else {
		ptvEvaluatedCurvePts.push_back(Point(fAniLength, controlPts.back().y));
		ptvEvaluatedCurvePts.push_back(Point(0.0, controlPts[0].y));
	}
	int size = controlPts.size();

	//Construct the matrix to solve
	for(i = 0; i < size; i++) {
		for(j = 0; j < size; j++) {
			coef_mat[i][j] = 0.0f;
		}
	}
	res_vecx[0] = 3 * (controlPts[1].x - controlPts[0].x);
	res_vecy[0] = 3 * (controlPts[1].y - controlPts[0].y);
	res_vecx[size - 1] = 3 * (controlPts[size - 1].x - controlPts[size - 2].x);
	res_vecy[size - 1] = 3 * (controlPts[size - 1].y - controlPts[size - 2].y);

	for(i = 1; i < size - 1; i++) {
		res_vecx[i] = 3 * (controlPts[i + 1].x - controlPts[i - 1].x);
		res_vecy[i] = 3 * (controlPts[i + 1].y - controlPts[i - 1].y);
	}
	coef_mat[0][0] = 2.0f; coef_mat[0][1] = 1.0f;
	coef_mat[size - 1][size - 1] = 2.0f; coef_mat[size - 1][size - 2] = 1.0f;
	for(i = 1; i < size - 1; i++) {
		coef_mat[i][i - 1] = 1.0f; coef_mat[i][i] = 4.0f; coef_mat[i][i + 1] = 1.0f;
	}

	memcpy(tmp, coef_mat, sizeof(double) * GAUSSIAN_MAXN * GAUSSIAN_MAXN);

	gaussTPivot(size, tmp, res_vecx);
	gaussTPivot(size, coef_mat, res_vecy);

	for(i=0; i+1 < size; i++) {
		//transform to bezier
		Point V[4];
		Point N[4];
		N[0] = controlPts[i];
		N[3] = controlPts[i+1];
		N[1] = Point(res_vecx[i], res_vecx[i]);
		N[2] = Point(res_vecx[i + 1], res_vecx[i + 1]);
		toBezier(N, V);
		//then display bezier curve
		addBezier(ptvEvaluatedCurvePts, V, 0.0f, fAniLength);
	}
}