ActionRetCodeEnum RotoShapeRenderNode::render(const RenderActionArgs& args) { #if !defined(ROTO_SHAPE_RENDER_CPU_USES_CAIRO) && !defined(HAVE_OSMESA) getNode()->setPersistentMessage(eMessageTypeError, kNatronPersistentErrorGenericRenderMessage, tr("Roto requires either OSMesa (CONFIG += enable-osmesa) or Cairo (CONFIG += enable-cairo) in order to render on CPU").toStdString()); return eActionStatusFailed; #endif #if !defined(ROTO_SHAPE_RENDER_CPU_USES_CAIRO) if (args.backendType == eRenderBackendTypeCPU) { getNode()->setPersistentMessage(eMessageTypeError, kNatronPersistentErrorGenericRenderMessage, tr("An OpenGL context is required to draw with the Roto node. This might be because you are trying to render an image too big for OpenGL.").toStdString()); return eActionStatusFailed; } #endif RenderScale combinedScale = EffectInstance::getCombinedScale(args.mipMapLevel, args.proxyScale); // Get the Roto item attached to this node. It will be a render-local clone of the original item. RotoDrawableItemPtr rotoItem = getAttachedRotoItem(); assert(rotoItem); if (!rotoItem) { return eActionStatusFailed; } // To be thread-safe we can only operate on a render clone. assert(rotoItem->isRenderClone()); // Is it a smear or regular solid render ? assert(_imp->renderType.lock()); RotoShapeRenderTypeEnum type = (RotoShapeRenderTypeEnum)_imp->renderType.lock()->getValue(); // We only support rendering Bezier or strokes RotoStrokeItemPtr isStroke = toRotoStrokeItem(rotoItem); BezierPtr isBezier = toBezier(rotoItem); // Get the real stroke (the one the user interacts with) RotoStrokeItemPtr nonRenderStroke = toRotoStrokeItem(getOriginalAttachedItem()); if (type == eRotoShapeRenderTypeSmear && !isStroke) { return eActionStatusFailed; } // Check that the item is really activated... it should have been caught in isIdentity otherwise. assert(rotoItem->isActivated(args.time, args.view) && (!isBezier || ((isBezier->isCurveFinished(args.view) || isBezier->isOpenBezier()) && ( isBezier->getControlPointsCount(args.view) > 1 )))); const OSGLContextPtr& glContext = args.glContext; // There must be an OpenGL context bound when using OpenGL. if ((args.backendType == eRenderBackendTypeOpenGL || args.backendType == eRenderBackendTypeOSMesa) && !glContext) { getNode()->setPersistentMessage(eMessageTypeError, kNatronPersistentErrorGenericRenderMessage, tr("An OpenGL context is required to draw with the Roto node").toStdString()); return eActionStatusFailed; } // This is the image plane where we render, we are not multiplane so we only render out one plane assert(args.outputPlanes.size() == 1); const std::pair<ImagePlaneDesc,ImagePtr>& outputPlane = args.outputPlanes.front(); // True if this render was trigger because the user is painting (with a pen or mouse) bool isDuringPainting = isStroke && isStroke->isCurrentlyDrawing(); // These variables are useful to pick the stroke drawing algorithm where it was at the previous draw step. double distNextIn = 0.; Point lastCenterIn = { INT_MIN, INT_MIN }; int strokeStartPointIndex = 0; int strokeMultiIndex = 0; // For strokes and open-bezier evaluate them to get the points and their pressure // We also compute the bounding box of the item taking into account the motion blur if (isStroke) { strokeStartPointIndex = isStroke->getRenderCloneCurrentStrokeStartPointIndex(); strokeMultiIndex = isStroke->getRenderCloneCurrentStrokeIndex(); isStroke->getStrokeState(&lastCenterIn, &distNextIn); } // Ensure that the indices of the draw step are valid. #ifdef DEBUG if (isDuringPainting && isStroke->getRenderCloneCurrentStrokeEndPointIndex() >= strokeStartPointIndex) { if (strokeStartPointIndex == 0) { assert((isStroke->getRenderCloneCurrentStrokeEndPointIndex() + 1) == isStroke->getNumControlPoints(0)); } else { // +2 because we also add the last point of the previous draw step in the call to cloneIndexRange(), otherwise it would make holes in the drawing assert((isStroke->getRenderCloneCurrentStrokeEndPointIndex() + 2 - strokeStartPointIndex) == isStroke->getNumControlPoints(0)); } } #endif // Now we are good to start rendering // This is the state of the stroke aglorithm in output of this draw step double distToNextOut = 0.; Point lastCenterOut; // Retrieve the OpenGL context local data that were allocated in attachOpenGLContext RotoShapeRenderNodeOpenGLDataPtr glData; if (args.glContextData) { glData = boost::dynamic_pointer_cast<RotoShapeRenderNodeOpenGLData>(args.glContextData); assert(glData); } // Firs time we draw this clear the background since we are not going to render the full image with OpenGL. if (strokeStartPointIndex == 0 && strokeMultiIndex == 0) { outputPlane.second->fillBoundsZero(); } bool clipToFormat = _imp->clipToFormatKnob.lock()->getValue(); switch (type) { case eRotoShapeRenderTypeSolid: { // Account for motion-blur RangeD range; int divisions; rotoItem->getMotionBlurSettings(args.time, args.view, &range, &divisions); if (isDuringPainting) { // Do not use motion-blur when drawing. range.min = range.max = args.time; divisions = 1; } #ifdef ROTO_SHAPE_RENDER_CPU_USES_CAIRO // When cairo is enabled, render with it for a CPU render if (args.backendType == eRenderBackendTypeCPU) { RotoShapeRenderCairo::renderMaskInternal_cairo(rotoItem, args.roi, outputPlane.first, args.time, args.view, range, divisions, combinedScale, isDuringPainting, distNextIn, lastCenterIn, outputPlane.second, &distToNextOut, &lastCenterOut); if (isDuringPainting && isStroke) { nonRenderStroke->updateStrokeData(lastCenterOut, distToNextOut, isStroke->getRenderCloneCurrentStrokeEndPointIndex()); } } else #endif // Otherwise render with OpenGL or OSMesa if (args.backendType == eRenderBackendTypeOpenGL || args.backendType == eRenderBackendTypeOSMesa) { // Figure out the shape color ColorRgbaD shapeColor; { const double t = args.time; KnobColorPtr colorKnob = rotoItem->getColorKnob(); if (colorKnob) { shapeColor.r = colorKnob->getValueAtTime(TimeValue(t), DimIdx(0), args.view); shapeColor.g = colorKnob->getValueAtTime(TimeValue(t), DimIdx(1), args.view); shapeColor.b = colorKnob->getValueAtTime(TimeValue(t), DimIdx(2), args.view); shapeColor.a = colorKnob->getValueAtTime(TimeValue(t), DimIdx(3), args.view); } } // Figure out the opacity double opacity = rotoItem->getOpacityKnob() ? rotoItem->getOpacityKnob()->getValueAtTime(args.time, DimIdx(0), args.view) : 1.; // For a stroke or an opened Bezier, use the generic stroke algorithm if ( isStroke || ( isBezier && (isBezier->isOpenBezier() || !isBezier->isFillEnabled()) ) ) { const bool doBuildUp = !isStroke ? false : isStroke->getBuildupKnob()->getValueAtTime(args.time, DimIdx(0), args.view); RotoShapeRenderGL::renderStroke_gl(glContext, glData, args.roi, outputPlane.second, isDuringPainting, distNextIn, lastCenterIn, rotoItem, doBuildUp, opacity, args.time, args.view, range, divisions, combinedScale, &distToNextOut, &lastCenterOut); // Update the stroke algorithm in output if (isDuringPainting && isStroke) { nonRenderStroke->updateStrokeData(lastCenterOut, distToNextOut, isStroke->getRenderCloneCurrentStrokeEndPointIndex()); } } else { // Render a Bezier //qDebug() << QThread::currentThread() << this << isBezier.get()<< "RoD while render:"; //isBezier->getBoundingBox(args.time, args.view).debug(); RotoShapeRenderGL::renderBezier_gl(glContext, glData, args.roi, isBezier, outputPlane.second, clipToFormat, opacity, args.time, args.view, range, divisions, combinedScale, GL_TEXTURE_2D); } } // useOpenGL } break; case eRotoShapeRenderTypeSmear: { OSGLContextAttacherPtr contextAttacher; if (args.backendType == eRenderBackendTypeOSMesa && !glContext->isGPUContext()) { // When rendering smear with OSMesa we need to write to the full image bounds and not only the RoI, so re-attach the default framebuffer // with the image bounds Image::CPUData imageData; outputPlane.second->getCPUData(&imageData); contextAttacher = OSGLContextAttacher::create(glContext, imageData.bounds.width(), imageData.bounds.height(), imageData.bounds.width(), imageData.ptrs[0]); } // Ensure that initially everything in the background is the source image if (strokeStartPointIndex == 0 && strokeMultiIndex == 0) { GetImageOutArgs outArgs; GetImageInArgs inArgs(&args.mipMapLevel, &args.proxyScale, &args.roi, &args.backendType); inArgs.inputNb = 0; if (!getImagePlane(inArgs, &outArgs)) { getNode()->setPersistentMessage(eMessageTypeError, kNatronPersistentErrorGenericRenderMessage, tr("Failed to fetch source image").toStdString()); return eActionStatusFailed; } ImagePtr bgImage = outArgs.image; if (args.backendType == eRenderBackendTypeCPU || glContext->isGPUContext()) { // Copy the BG image to the output image Image::CopyPixelsArgs cpyArgs; cpyArgs.roi = outputPlane.second->getBounds(); outputPlane.second->copyPixels(*bgImage, cpyArgs); } else { // With OSMesa we cannot re-use the existing output plane as source because mesa clears the framebuffer out upon the first draw // after a binding. // The only option is to draw in a tmp texture that will live for the whole stroke painting life Image::InitStorageArgs initArgs; initArgs.bounds = bgImage->getBounds(); initArgs.bitdepth = outputPlane.second->getBitDepth(); initArgs.storage = eStorageModeGLTex; initArgs.glContext = glContext; initArgs.textureTarget = GL_TEXTURE_2D; _imp->osmesaSmearTmpTexture = Image::create(initArgs); if (!_imp->osmesaSmearTmpTexture) { return eActionStatusFailed; } // Make sure the texture is ready before rendering the smear GL_CPU::Flush(); GL_CPU::Finish(); } } else { if (args.backendType == eRenderBackendTypeOSMesa && !glContext->isGPUContext() && strokeStartPointIndex == 0) { // Ensure the tmp texture has correct size assert(_imp->osmesaSmearTmpTexture); ActionRetCodeEnum stat = _imp->osmesaSmearTmpTexture->ensureBounds(outputPlane.second->getBounds(), args.mipMapLevel, std::vector<RectI>(), shared_from_this()); if (isFailureRetCode(stat)) { return stat; } } } bool renderedDot; #ifdef ROTO_SHAPE_RENDER_CPU_USES_CAIRO // Render with cairo if we need to render on CPU if (args.backendType == eRenderBackendTypeCPU) { renderedDot = RotoShapeRenderCairo::renderSmear_cairo(args.time, args.view, combinedScale, isStroke, args.roi, outputPlane.second, distNextIn, lastCenterIn, &distToNextOut, &lastCenterOut); } else #endif if (args.backendType == eRenderBackendTypeOpenGL || args.backendType == eRenderBackendTypeOSMesa) { // Render with OpenGL ImagePtr dstImage = glContext->isGPUContext() ? outputPlane.second : _imp->osmesaSmearTmpTexture; assert(dstImage); renderedDot = RotoShapeRenderGL::renderSmear_gl(glContext, glData, args.roi, dstImage, distNextIn, lastCenterIn, isStroke, 1., args.time, args.view, combinedScale, &distToNextOut, &lastCenterOut); } // Update the stroke algorithm in output if (isDuringPainting) { Q_UNUSED(renderedDot); nonRenderStroke->updateStrokeData(lastCenterOut, distToNextOut, isStroke->getRenderCloneCurrentStrokeEndPointIndex()); } } break; } // type return eActionStatusOK; } // RotoShapeRenderNode::render
void C2CurveEvaluator::evaluateCurve(const std::vector<Point>& ptvCtrlPts, std::vector<Point>& ptvEvaluatedCurvePts, const float& fAniLength, const bool& bWrap) const { int i, j; double coef_mat[GAUSSIAN_MAXN][GAUSSIAN_MAXN], tmp[GAUSSIAN_MAXN][GAUSSIAN_MAXN]; double res_vecx[GAUSSIAN_MAXN], res_vecy[GAUSSIAN_MAXN]; ptvEvaluatedCurvePts.clear(); std::vector<Point> controlPts = ptvCtrlPts; if(bWrap) { int s = controlPts.size(); controlPts.insert(controlPts.begin(), Point(controlPts[s - 1].x - fAniLength, controlPts[s - 1]. y)); controlPts.insert(controlPts.begin(), Point(controlPts[s - 1].x - fAniLength, controlPts[s - 1]. y)); controlPts.push_back(Point(controlPts[2].x + fAniLength, controlPts[2].y)); controlPts.push_back(Point(controlPts[3].x + fAniLength, controlPts[3].y)); } else { ptvEvaluatedCurvePts.push_back(Point(fAniLength, controlPts.back().y)); ptvEvaluatedCurvePts.push_back(Point(0.0, controlPts[0].y)); } int size = controlPts.size(); //Construct the matrix to solve for(i = 0; i < size; i++) { for(j = 0; j < size; j++) { coef_mat[i][j] = 0.0f; } } res_vecx[0] = 3 * (controlPts[1].x - controlPts[0].x); res_vecy[0] = 3 * (controlPts[1].y - controlPts[0].y); res_vecx[size - 1] = 3 * (controlPts[size - 1].x - controlPts[size - 2].x); res_vecy[size - 1] = 3 * (controlPts[size - 1].y - controlPts[size - 2].y); for(i = 1; i < size - 1; i++) { res_vecx[i] = 3 * (controlPts[i + 1].x - controlPts[i - 1].x); res_vecy[i] = 3 * (controlPts[i + 1].y - controlPts[i - 1].y); } coef_mat[0][0] = 2.0f; coef_mat[0][1] = 1.0f; coef_mat[size - 1][size - 1] = 2.0f; coef_mat[size - 1][size - 2] = 1.0f; for(i = 1; i < size - 1; i++) { coef_mat[i][i - 1] = 1.0f; coef_mat[i][i] = 4.0f; coef_mat[i][i + 1] = 1.0f; } memcpy(tmp, coef_mat, sizeof(double) * GAUSSIAN_MAXN * GAUSSIAN_MAXN); gaussTPivot(size, tmp, res_vecx); gaussTPivot(size, coef_mat, res_vecy); for(i=0; i+1 < size; i++) { //transform to bezier Point V[4]; Point N[4]; N[0] = controlPts[i]; N[3] = controlPts[i+1]; N[1] = Point(res_vecx[i], res_vecx[i]); N[2] = Point(res_vecx[i + 1], res_vecx[i + 1]); toBezier(N, V); //then display bezier curve addBezier(ptvEvaluatedCurvePts, V, 0.0f, fAniLength); } }