// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void AggregateCopyPropagation::SetBit(BitVector& vector, int bit) {
    if(vector.BitCount() == (bit + 1)) {
        vector.Resize(bit + 4);
    }
    
    vector.SetBit(bit);
}
Example #2
0
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void VariableAnalysis::ComputeBlockExposedAndKillSets(Block* block, 
													  BitVector& exposedSet,
													  BitVector& killSet) {
	// Scan all the instructions in the block and look for 'load' and 'store'.
	for(auto instr = block->FirstInstruction(); instr; 
        instr = instr->NextInstruction()) {
		if(auto storeInstr = instr->As<StoreInstr>()) {
			// A variable can be killed only if it's stored into.
			// Note that we don't care about the effects of function calls,
			// because in that case the variable is marked as "address taken"
			// and it isn't considered for SSA conversion anyway.
			if(auto variableRef = storeInstr->DestinationOp()->As<VariableReference>()) {
				auto localVar = variableRef->GetVariable();
				
                if(localVar == nullptr) {
                    continue;
                }

				killSet.SetBit(localVar->Id());
			}
		}
		else if(auto loadInstr = instr->As<LoadInstr>()) {
			// The only way a variable can be "used" is through a 'load' instruction.
			// All other kinds of uses will render the variable as being "address taken".
			if(auto variableRef = loadInstr->SourceOp()->As<VariableReference>()) {
				auto localVar = variableRef->GetVariable();
				
                if(localVar == nullptr) {
                    continue;
                }

				// Mark the variable as 'exposed' only if it's not in the 'kill' set.
				if(killSet.IsSet(localVar->Id()) == false) {
					exposedSet.SetBit(localVar->Id());
				}
			}
		}
	}
}
Example #3
0
  void BitVector_Test::Test_bitVectorPopulationCount()
  {
    {
      const u32 SIZE =  0;
      BitVector<SIZE> bits;
      assert(bits.PopulationCount() == 0);
      for (u32 i = 0; i < SIZE; ++i) 
      {
        bits.SetBit(i);
        assert(bits.PopulationCount() == i + 1);
      }
    }
    {
      const u32 SIZE =  1;
      BitVector<SIZE> bits;
      assert(bits.PopulationCount() == 0);
      for (u32 i = 0; i < SIZE; ++i) 
      {
        bits.SetBit(i);
        assert(bits.PopulationCount() == i + 1);
      }
    }
    {
      const u32 SIZE =  31;
      BitVector<SIZE> bits;
      assert(bits.PopulationCount() == 0);
      for (u32 i = 0; i < SIZE; ++i) 
      {
        bits.SetBit(i);
        assert(bits.PopulationCount() == i + 1);
      }
    }
    {
      const u32 SIZE =  32;
      BitVector<SIZE> bits;
      assert(bits.PopulationCount() == 0);
      for (u32 i = 0; i < SIZE; ++i) 
      {
        bits.SetBit(i);
        assert(bits.PopulationCount() == i + 1);
      }
    }
    {
      const u32 SIZE =  35;
      BitVector<SIZE> bits;
      assert(bits.PopulationCount() == 0);
      for (u32 i = 0; i < SIZE; ++i) 
      {
        bits.SetBit(i);
        assert(bits.PopulationCount() == i + 1);
      }

    }
    {
      const u32 SIZE =  67;
      BitVector<SIZE> bits;
      assert(bits.PopulationCount() == 0);
      for (u32 i = 0; i < SIZE; ++i) 
      {
        bits.SetBit(i);
        assert(bits.PopulationCount() == i + 1);
      }

      // all combinations of start and len..
      BitVector<SIZE> zbits;

      for (u32 start = 0; start < SIZE; ++start) 
      {
        for (u32 end = start; end < SIZE; ++end) 
        {
          u32 len = end - start + 1;
          assert(bits.PopulationCount(start, len) == len);
          assert(zbits.PopulationCount(start, len) == 0);
        }
      }

    }

    {
      const u32 SIZE =  258;
      BitVector<SIZE> bits;
      assert(bits.PopulationCount() == 0);
      for (u32 i = 0; i < SIZE; ++i) 
      {
        bits.SetBit(SIZE - i - 1);
        assert(bits.PopulationCount() == i + 1);
      }

      assert(bits.PopulationCount() == SIZE);

      for (u32 i = 0; i < SIZE; ++i) 
      {
        bits.ClearBit(i);
        assert(bits.PopulationCount() == SIZE - (i + 1));
      }
    }

    {
      BitVector<256>* bits = setup();
      assert(bits->PopulationCount() == 115);
      assert(bits->PopulationCount(64,96) == 51); 
      assert(bits->PopulationCount(5,250) == 113);
    }
  }