// EGPublicKey::Dump
// Streaming method.  Outputs key to specfied stream.  Outputs key length followed
// by each factor of the key.
void
EGPublicKey::Dump(std::ostream& os) const
{
	// Output KeyLen followed by P, G, and Y
	try
	{
		ByteQueue aQueue;
		aQueue.Put(mKey, mKeyLen);
		aQueue.Close();

		Integer            p, q, g, y;
		BERSequenceDecoder aDecoder(aQueue);
		p.BERDecode(aDecoder);
		q.BERDecode(aDecoder);
		g.BERDecode(aDecoder);
		y.BERDecode(aDecoder);
		os << "(Len=" << mKeyLen << " P=" << p << " Q=" << q << " G=" << g
		   << " Y=" << y << ')';
	}
	catch (Exception& anEx)
	{
		WDBG_AH("EGPublicKey::Dump Caught CryptoLib exception: " << anEx.what());
		os << "(EGPublicKey Exception: " << anEx.what() << ')';
	}
}
// EGPublicKey::CopyFromPrivateKey
// Copies public key from a private key.  Existing key (if any) is replaced.  This
// method takes the binary rep of the private key and drops the private portion
// to generate the public key.
void
EGPublicKey::CopyFromPrivateKey(const EGPrivateKey& theKeyR)
{
	ClearLocal();

	try
	{
		ByteQueue aPrivQueue;
		aPrivQueue.Put(theKeyR.GetKey(), theKeyR.GetKeyLen());
		aPrivQueue.Close();

		ElGamalVerifier aKey(aPrivQueue);
		ByteQueue       aPubQueue;
		aKey.DEREncode(aPubQueue);
		aPubQueue.Close();

		AllocKeyBuf(aPubQueue.MaxRetrieveable());
		aPubQueue.Get(mKey, mKeyLen);
	}
	catch (Exception& anEx)
	{
		WDBG_AH("EGPublicKey::CopyFromPrivateKey Caught CryptoLib exception: " << anEx.what());
#ifndef _WONCRYPT_NOEXCEPTIONS
		throw WONCrypt::CryptException(WONCommon::ExCryptoLib, __LINE__, __FILE__, anEx.what());
#else
		Invalidate();
#endif
	}
}
Example #3
0
void initRSA() {
    string pubkey = base64_decode(string(serverPublicKey));
    ByteQueue tmp;
    for (int i = 0; i < pubkey.size(); i++)
        tmp.Put((byte)pubkey[i]);

    serverPub = new RSA::PublicKey;
    serverPub->Load(tmp);

    encryptor = new RSAES_OAEP_SHA_Encryptor(*serverPub);
}
// EGPublicKey::AllocateSig
// Allocates the mSigP member if needed.  Feeds binary rep of key into the
// ElGamalVerifier class from Crypto++.
void
EGPublicKey::AllocateSig() const
{
	WTRACE("EGPublicKey::AllocateSig");
	if (! mSigP)
	{
		WDBG_LL("EGPublicKey::AllocateSig Allocating crypt object.");
		ByteQueue aQueue;
		aQueue.Put(mKey, mKeyLen);
		aQueue.Close();
		mSigP = new ElGamalVerifier(aQueue);
	}
}
Example #5
0
void PutDecodedDatumInto(const TestData &data, const char *name, BufferedTransformation &target)
{
	std::string s1 = GetRequiredDatum(data, name), s2;
	ByteQueue q;

	while (!s1.empty())
	{
		while (s1[0] == ' ')
		{
			s1 = s1.substr(1);
			if (s1.empty())
				goto end;	// avoid invalid read if s1 is empty
		}

		int repeat = 1;
		if (s1[0] == 'r')
		{
			repeat = atoi(s1.c_str()+1);
			s1 = s1.substr(s1.find(' ')+1);
		}

		s2 = ""; // MSVC 6 doesn't have clear();

		if (s1[0] == '\"')
		{
			s2 = s1.substr(1, s1.find('\"', 1)-1);
			s1 = s1.substr(s2.length() + 2);
		}
		else if (s1.substr(0, 2) == "0x")
		{
			StringSource(s1.substr(2, s1.find(' ')), true, new HexDecoder(new StringSink(s2)));
			s1 = s1.substr(STDMIN(s1.find(' '), s1.length()));
		}
		else
		{
			StringSource(s1.substr(0, s1.find(' ')), true, new HexDecoder(new StringSink(s2)));
			s1 = s1.substr(STDMIN(s1.find(' '), s1.length()));
		}

		while (repeat--)
		{
			q.Put((const byte *)s2.data(), s2.size());
			RandomizedTransfer(q, target, false);
		}
	}

end:
	RandomizedTransfer(q, target, true);
}
Example #6
0
void PutDecodedDatumInto(const TestData &data, const char *name, BufferedTransformation &target)
{
	std::string s1 = GetRequiredDatum(data, name), s2;

	while (!s1.empty())
	{
		while (s1[0] == ' ')
			s1 = s1.substr(1);

		int repeat = 1;
		if (s1[0] == 'r')
		{
			repeat = atoi(s1.c_str()+1);
			s1 = s1.substr(s1.find(' ')+1);
		}
		
		s2 = ""; // MSVC 6 doesn't have clear();

		if (s1[0] == '\"')
		{
			s2 = s1.substr(1, s1.find('\"', 1)-1);
			s1 = s1.substr(s2.length() + 2);
		}
		else if (s1.substr(0, 2) == "0x")
		{
			StringSource(s1.substr(2, s1.find(' ')), true, new HexDecoder(new StringSink(s2)));
			s1 = s1.substr(STDMIN(s1.find(' '), s1.length()));
		}
		else
		{
			StringSource(s1.substr(0, s1.find(' ')), true, new HexDecoder(new StringSink(s2)));
			s1 = s1.substr(STDMIN(s1.find(' '), s1.length()));
		}

		ByteQueue q;
		while (repeat--)
		{
			q.Put((const byte *)s2.data(), s2.size());
			if (q.MaxRetrievable() > 4*1024 || repeat == 0)
				q.TransferTo(target);
		}
	}
}
// EGPublicKey::AllocateCrypt
// Allocates the mCryptP member if needed.  Manually decodes binary rep into factors
// and feeds appropriate factor to the ElGamalEncryptor class from Crypto++.
void
EGPublicKey::AllocateCrypt() const
{
	WTRACE("EGPublicKey::AllocateCrypt");
	if (! mCryptP)
	{
		WDBG_LL("EGPublicKey::AllocateCrypt Allocating crypt object.");
		ByteQueue aQueue;
		aQueue.Put(mKey, mKeyLen);
		aQueue.Close();

		// *HACK*
		// Manually build the ElGamalEncryptor object.  See notes at
		// top of this file.
		Integer p, q, g, y;
		BERSequenceDecoder seq(aQueue);
		p.BERDecode(seq);
		q.BERDecode(seq);
		g.BERDecode(seq);
		y.BERDecode(seq);
		mCryptP = new ElGamalEncryptor(p, g, y);
	}
}
Example #8
0
bool ValidateRSA()
{
	cout << "\nRSA validation suite running...\n\n";

	byte out[100], outPlain[100];
	bool pass = true, fail;

	{
		static const char plain[] = "Everyone gets Friday off.";
		byte *signature = (byte *)
			"\x05\xfa\x6a\x81\x2f\xc7\xdf\x8b\xf4\xf2\x54\x25\x09\xe0\x3e\x84"
			"\x6e\x11\xb9\xc6\x20\xbe\x20\x09\xef\xb4\x40\xef\xbc\xc6\x69\x21"
			"\x69\x94\xac\x04\xf3\x41\xb5\x7d\x05\x20\x2d\x42\x8f\xb2\xa2\x7b"
			"\x5c\x77\xdf\xd9\xb1\x5b\xfc\x3d\x55\x93\x53\x50\x34\x10\xc1\xe1";

		FileSource keys("TestData/rsa512a.dat", true, new HexDecoder);
		Weak::RSASSA_PKCS1v15_MD2_Signer rsaPriv(keys);
		Weak::RSASSA_PKCS1v15_MD2_Verifier rsaPub(rsaPriv);

		size_t signatureLength = rsaPriv.SignMessage(GlobalRNG(), (byte *)plain, strlen(plain), out);
		fail = !VerifyBufsEqual(signature, out, 64);
		pass = pass && !fail;

		cout << (fail ? "FAILED    " : "passed    ");
		cout << "signature check against test vector\n";

		fail = !rsaPub.VerifyMessage((byte *)plain, strlen(plain), out, signatureLength);
		pass = pass && !fail;

		cout << (fail ? "FAILED    " : "passed    ");
		cout << "verification check against test vector\n";

		out[10]++;
		fail = rsaPub.VerifyMessage((byte *)plain, strlen(plain), out, signatureLength);
		pass = pass && !fail;

		cout << (fail ? "FAILED    " : "passed    ");
		cout << "invalid signature verification\n";
	}
	{
		FileSource keys("TestData/rsa1024.dat", true, new HexDecoder);
		RSAES_PKCS1v15_Decryptor rsaPriv(keys);
		RSAES_PKCS1v15_Encryptor rsaPub(rsaPriv);

		pass = CryptoSystemValidate(rsaPriv, rsaPub) && pass;
	}
	{
		RSAES<OAEP<SHA> >::Decryptor rsaPriv(GlobalRNG(), 512);
		RSAES<OAEP<SHA> >::Encryptor rsaPub(rsaPriv);

		pass = CryptoSystemValidate(rsaPriv, rsaPub) && pass;
	}
	{
		byte *plain = (byte *)
			"\x54\x85\x9b\x34\x2c\x49\xea\x2a";
		byte *encrypted = (byte *)
			"\x14\xbd\xdd\x28\xc9\x83\x35\x19\x23\x80\xe8\xe5\x49\xb1\x58\x2a"
			"\x8b\x40\xb4\x48\x6d\x03\xa6\xa5\x31\x1f\x1f\xd5\xf0\xa1\x80\xe4"
			"\x17\x53\x03\x29\xa9\x34\x90\x74\xb1\x52\x13\x54\x29\x08\x24\x52"
			"\x62\x51";
		byte *oaepSeed = (byte *)
			"\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2"
			"\xf0\x6c\xb5\x8f";
		ByteQueue bq;
		bq.Put(oaepSeed, 20);
		FixedRNG rng(bq);

		FileSource privFile("TestData/rsa400pv.dat", true, new HexDecoder);
		FileSource pubFile("TestData/rsa400pb.dat", true, new HexDecoder);
		RSAES_OAEP_SHA_Decryptor rsaPriv;
		rsaPriv.AccessKey().BERDecodePrivateKey(privFile, false, 0);
		RSAES_OAEP_SHA_Encryptor rsaPub(pubFile);

		memset(out, 0, 50);
		memset(outPlain, 0, 8);
		rsaPub.Encrypt(rng, plain, 8, out);
		DecodingResult result = rsaPriv.FixedLengthDecrypt(GlobalRNG(), encrypted, outPlain);
		fail = !result.isValidCoding || (result.messageLength!=8) || !VerifyBufsEqual(out, encrypted, 50) || !VerifyBufsEqual(plain, outPlain, 8);
		pass = pass && !fail;

		cout << (fail ? "FAILED    " : "passed    ");
		cout << "PKCS 2.0 encryption and decryption\n";
	}

	return pass;
}
Example #9
0
void CAuthenticationProfileImpl::onBufferReceived(const iviLink::Channel::tChannelId channel, Buffer const& buffer)
{
   LOG4CPLUS_TRACE_METHOD(msLogger, __PRETTY_FUNCTION__);
   LOG4CPLUS_TRACE(msLogger, "CBuffer write position = "+convertIntegerToString(buffer.getWritePosition())
         + "; CBuffer size = " + convertIntegerToString(buffer.getSize()) +
         "; Channel = "+ convertIntegerToString(channel));

   assert(this);

   UInt8 *incomingData = buffer.getBuffer();
   int read_size = buffer.getSize();

   LOG4CPLUS_INFO(msLogger, "Procedure ID = " + convertIntegerToString(incomingData[0]));

   if(incomingData[0] == SEND_ENCRYPTED_PIN)
   {
      LOG4CPLUS_INFO(msLogger, "Encrypted PIN received");
      string encryptedPIN((char*)(incomingData + 1), read_size - 1);
      LOG4CPLUS_INFO(msLogger, "Engrypted PIN length = " + convertIntegerToString(encryptedPIN.length()));
      LOG4CPLUS_INFO(msLogger, "Encrypted PIN  = " + encryptedPIN);
      string decryptedRemotePIN = CRSAEncryptDecrypt::decrypt(encryptedPIN, CRSAEncryptDecrypt::getPrivateKey(mpAppCallbacks->getInternalPath()));
      LOG4CPLUS_INFO(msLogger, "Decrypted remote PIN = " + decryptedRemotePIN);

      mpAppCallbacks->gotPIN(decryptedRemotePIN[0] - '0',
                             decryptedRemotePIN[1] - '0',
                             decryptedRemotePIN[2] - '0',
                             decryptedRemotePIN[3] - '0');

   }
   else if(incomingData[0] == SEND_PUBLIC_KEY)
   {
      LOG4CPLUS_INFO(msLogger, "PublicKey received");
      UInt8* keyBytes = new UInt8[read_size - 1];
      memcpy(keyBytes, incomingData + 1, read_size - 1);
      ByteQueue queue;
      queue.Put(keyBytes, read_size - 1);
      remoteHostPublicKey.Load(queue);
   }
   else if(incomingData[0] == SEND_UID)
   {
      LOG4CPLUS_INFO(msLogger, "Remote UID received");
      string uid((char*)(incomingData + 1), read_size - 1);
      LOG4CPLUS_INFO(msLogger, "UID = " + uid);
      mRemoteUID = iviLink::BaseUid(uid);

      if(mpTrustList->isKnownUid(mRemoteUID))
      {
          LOG4CPLUS_INFO(msLogger, "Remote UID is known");

          remoteUIDIsChecked = true;
          remoteUIDIsOK = true;

          sendYourUIDIsKnow();
          validateUIDs();
      }
      else
      {
         LOG4CPLUS_INFO(msLogger, "Remote UID is unknown");

         remoteUIDIsChecked = true;
         remoteUIDIsOK = false;

         sendYourUIDIsUnknown();
         validateUIDs();
      }
   }
   else if(incomingData[0] == YOUR_UID_IS_OK)
   {
      localUIDIsChecked = true;
      localUIDIsOK = true;

      validateUIDs();
   }
   else if(incomingData[0] == YOUR_UID_IS_NOK)
   {
      localUIDIsChecked = true;
      localUIDIsOK = false;
      validateUIDs();
   }
   else if(incomingData[0] == READY_TO_EXIT)
   {
      mpAppCallbacks->onReadyToExit();
   }
}
Example #10
0
bool RSAValidate()
{
	cout << "\nRSA validation suite running...\n\n";

	byte out[100], outPlain[100];
	unsigned int outLen;
	bool pass = true, fail;

	try
	{
		{
			char *plain = "Everyone gets Friday off.";
			byte *signature = (byte *)
				"\x05\xfa\x6a\x81\x2f\xc7\xdf\x8b\xf4\xf2\x54\x25\x09\xe0\x3e\x84"
				"\x6e\x11\xb9\xc6\x20\xbe\x20\x09\xef\xb4\x40\xef\xbc\xc6\x69\x21"
				"\x69\x94\xac\x04\xf3\x41\xb5\x7d\x05\x20\x2d\x42\x8f\xb2\xa2\x7b"
				"\x5c\x77\xdf\xd9\xb1\x5b\xfc\x3d\x55\x93\x53\x50\x34\x10\xc1\xe1";
			LC_RNG rng(765);

			FileSource keys("rsa512a.dat", true, new HexDecoder);
			RSASSA_PKCS1v15_MD2_Signer rsaPriv(keys);
			RSASSA_PKCS1v15_MD2_Verifier rsaPub(rsaPriv);

			rsaPriv.SignMessage(rng, (byte *)plain, strlen(plain), out);
			fail = memcmp(signature, out, 64) != 0;
			pass = pass && !fail;

			cout << (fail ? "FAILED    " : "passed    ");
			cout << "signature check against test vector\n";

			fail = !rsaPub.VerifyMessage((byte *)plain, strlen(plain), out);
			pass = pass && !fail;

			cout << (fail ? "FAILED    " : "passed    ");
			cout << "verification check against test vector\n";

			out[10]++;
			fail = rsaPub.VerifyMessage((byte *)plain, strlen(plain), out);
			pass = pass && !fail;

			cout << (fail ? "FAILED    " : "passed    ");
			cout << "invalid signature verification\n";
		}
		{
			FileSource keys("rsa512.dat", true, new HexDecoder);
			RSAES_PKCS1v15_Decryptor rsaPriv(keys);
			RSAES_PKCS1v15_Encryptor rsaPub(rsaPriv);

			pass = CryptoSystemValidate(rsaPriv, rsaPub) && pass;
		}
		{
			byte *plain = (byte *)
				"\x54\x85\x9b\x34\x2c\x49\xea\x2a";
			byte *encrypted = (byte *)
				"\x14\xbd\xdd\x28\xc9\x83\x35\x19\x23\x80\xe8\xe5\x49\xb1\x58\x2a"
				"\x8b\x40\xb4\x48\x6d\x03\xa6\xa5\x31\x1f\x1f\xd5\xf0\xa1\x80\xe4"
				"\x17\x53\x03\x29\xa9\x34\x90\x74\xb1\x52\x13\x54\x29\x08\x24\x52"
				"\x62\x51";
			byte *oaepSeed = (byte *)
				"\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2"
				"\xf0\x6c\xb5\x8f";
			ByteQueue bq;
			bq.Put(oaepSeed, 20);
			FixedRNG rng(bq);

			FileSource privFile("rsa400pv.dat", true, new HexDecoder);
			FileSource pubFile("rsa400pb.dat", true, new HexDecoder);
			RSAES_OAEP_SHA_Decryptor rsaPriv(privFile);
			RSAES_OAEP_SHA_Encryptor rsaPub(pubFile);

			memset(out, 0, 50);
			memset(outPlain, 0, 8);
			rsaPub.Encrypt(rng, plain, 8, out);
			outLen = rsaPriv.Decrypt(encrypted, outPlain);
			fail = (outLen!=8) || memcmp(out, encrypted, 50) || memcmp(plain, outPlain, 8);
			pass = pass && !fail;

			cout << (fail ? "FAILED    " : "passed    ");
			cout << "PKCS 2.0 encryption and decryption\n";
		}
	}
	catch (BERDecodeErr)
	{
		cout << "FAILED    Error decoding RSA key\n";
		pass = false;
	}

	return pass;
}
Example #11
0
size_t PEM_ReadLine(BufferedTransformation& source, SecByteBlock& line, SecByteBlock& ending)
{
    if(!source.AnyRetrievable())
    {
        line.New(0);
        ending.New(0);
        
        return 0;
    }
    
    ByteQueue temp;
    
    while(source.AnyRetrievable())
    {
        byte b;
        if(!source.Get(b))
            throw Exception(Exception::OTHER_ERROR, "PEM_ReadLine: failed to read byte");
        
        // LF ?
        if(b == '\n')
        {
            ending = LF;
            break;
        }
        
        // CR ?
        if(b == '\r')
        {
            // CRLF ?
            if(source.AnyRetrievable() && source.Peek(b))
            {
                if(b == '\n')
                {
                    source.Skip(1);
                    
                    ending = CRLF;
                    break;
                }
            }
            
            ending = CR;
            break;
        }
        
        // Not End-of-Line, accumulate it.
        temp.Put(b);
    }
    
    if(temp.AnyRetrievable())
    {
        line.Grow(temp.MaxRetrievable());
        temp.Get(line.data(), line.size());
    }
    else
    {
        line.New(0);
        ending.New(0);
    }
    
    // We return a line stripped of CRs and LFs. However, we return the actual number of
    //   of bytes processed, including the CR and LF. A return of 0 means nothing was read.
    //   A return of 1 means an empty line was read (CR or LF). A return of 2 could
    //   mean an empty line was read (CRLF), or could mean 1 character was read. In
    //   any case, line will hold whatever was parsed.
    return line.size() + ending.size();
}
Example #12
0
bool
Validator::verifySignature(const uint8_t* buf,
                           const size_t size,
                           const Signature& sig,
                           const v1::PublicKey& key)
{
  try {
    using namespace CryptoPP;

    switch (sig.getType()) {
      case tlv::SignatureSha256WithRsa: {
        if (key.getKeyType() != KeyType::RSA)
          return false;

        RSA::PublicKey publicKey;
        ByteQueue queue;

        queue.Put(reinterpret_cast<const byte*>(key.get().buf()), key.get().size());
        publicKey.Load(queue);

        RSASS<PKCS1v15, SHA256>::Verifier verifier(publicKey);
        return verifier.VerifyMessage(buf, size,
                                      sig.getValue().value(), sig.getValue().value_size());
      }

      case tlv::SignatureSha256WithEcdsa: {
        if (key.getKeyType() != KeyType::EC)
          return false;

        ECDSA<ECP, SHA256>::PublicKey publicKey;
        ByteQueue queue;

        queue.Put(reinterpret_cast<const byte*>(key.get().buf()), key.get().size());
        publicKey.Load(queue);

        ECDSA<ECP, SHA256>::Verifier verifier(publicKey);

        uint32_t length = 0;
        StringSource src(key.get().buf(), key.get().size(), true);
        BERSequenceDecoder subjectPublicKeyInfo(src);
        {
          BERSequenceDecoder algorithmInfo(subjectPublicKeyInfo);
          {
            Oid algorithm;
            algorithm.decode(algorithmInfo);

            Oid curveId;
            curveId.decode(algorithmInfo);

            if (curveId == SECP256R1)
              length = 256;
            else if (curveId == SECP384R1)
              length = 384;
            else
              return false;
          }
        }

        switch (length) {
          case 256: {
            uint8_t buffer[64];
            size_t usedSize = DSAConvertSignatureFormat(buffer, sizeof(buffer), DSA_P1363,
                                                        sig.getValue().value(),
                                                        sig.getValue().value_size(),
                                                        DSA_DER);
            return verifier.VerifyMessage(buf, size, buffer, usedSize);
          }

          case 384: {
            uint8_t buffer[96];
            size_t usedSize = DSAConvertSignatureFormat(buffer, sizeof(buffer), DSA_P1363,
                                                        sig.getValue().value(),
                                                        sig.getValue().value_size(),
                                                        DSA_DER);
            return verifier.VerifyMessage(buf, size, buffer, usedSize);
          }

          default:
            return false;
        }
      }

      default:
        // Unsupported sig type
        return false;
    }
  }
  catch (const CryptoPP::Exception& e) {
    return false;
  }
}