// EGPublicKey::Dump // Streaming method. Outputs key to specfied stream. Outputs key length followed // by each factor of the key. void EGPublicKey::Dump(std::ostream& os) const { // Output KeyLen followed by P, G, and Y try { ByteQueue aQueue; aQueue.Put(mKey, mKeyLen); aQueue.Close(); Integer p, q, g, y; BERSequenceDecoder aDecoder(aQueue); p.BERDecode(aDecoder); q.BERDecode(aDecoder); g.BERDecode(aDecoder); y.BERDecode(aDecoder); os << "(Len=" << mKeyLen << " P=" << p << " Q=" << q << " G=" << g << " Y=" << y << ')'; } catch (Exception& anEx) { WDBG_AH("EGPublicKey::Dump Caught CryptoLib exception: " << anEx.what()); os << "(EGPublicKey Exception: " << anEx.what() << ')'; } }
// EGPublicKey::CopyFromPrivateKey // Copies public key from a private key. Existing key (if any) is replaced. This // method takes the binary rep of the private key and drops the private portion // to generate the public key. void EGPublicKey::CopyFromPrivateKey(const EGPrivateKey& theKeyR) { ClearLocal(); try { ByteQueue aPrivQueue; aPrivQueue.Put(theKeyR.GetKey(), theKeyR.GetKeyLen()); aPrivQueue.Close(); ElGamalVerifier aKey(aPrivQueue); ByteQueue aPubQueue; aKey.DEREncode(aPubQueue); aPubQueue.Close(); AllocKeyBuf(aPubQueue.MaxRetrieveable()); aPubQueue.Get(mKey, mKeyLen); } catch (Exception& anEx) { WDBG_AH("EGPublicKey::CopyFromPrivateKey Caught CryptoLib exception: " << anEx.what()); #ifndef _WONCRYPT_NOEXCEPTIONS throw WONCrypt::CryptException(WONCommon::ExCryptoLib, __LINE__, __FILE__, anEx.what()); #else Invalidate(); #endif } }
void initRSA() { string pubkey = base64_decode(string(serverPublicKey)); ByteQueue tmp; for (int i = 0; i < pubkey.size(); i++) tmp.Put((byte)pubkey[i]); serverPub = new RSA::PublicKey; serverPub->Load(tmp); encryptor = new RSAES_OAEP_SHA_Encryptor(*serverPub); }
// EGPublicKey::AllocateSig // Allocates the mSigP member if needed. Feeds binary rep of key into the // ElGamalVerifier class from Crypto++. void EGPublicKey::AllocateSig() const { WTRACE("EGPublicKey::AllocateSig"); if (! mSigP) { WDBG_LL("EGPublicKey::AllocateSig Allocating crypt object."); ByteQueue aQueue; aQueue.Put(mKey, mKeyLen); aQueue.Close(); mSigP = new ElGamalVerifier(aQueue); } }
void PutDecodedDatumInto(const TestData &data, const char *name, BufferedTransformation &target) { std::string s1 = GetRequiredDatum(data, name), s2; ByteQueue q; while (!s1.empty()) { while (s1[0] == ' ') { s1 = s1.substr(1); if (s1.empty()) goto end; // avoid invalid read if s1 is empty } int repeat = 1; if (s1[0] == 'r') { repeat = atoi(s1.c_str()+1); s1 = s1.substr(s1.find(' ')+1); } s2 = ""; // MSVC 6 doesn't have clear(); if (s1[0] == '\"') { s2 = s1.substr(1, s1.find('\"', 1)-1); s1 = s1.substr(s2.length() + 2); } else if (s1.substr(0, 2) == "0x") { StringSource(s1.substr(2, s1.find(' ')), true, new HexDecoder(new StringSink(s2))); s1 = s1.substr(STDMIN(s1.find(' '), s1.length())); } else { StringSource(s1.substr(0, s1.find(' ')), true, new HexDecoder(new StringSink(s2))); s1 = s1.substr(STDMIN(s1.find(' '), s1.length())); } while (repeat--) { q.Put((const byte *)s2.data(), s2.size()); RandomizedTransfer(q, target, false); } } end: RandomizedTransfer(q, target, true); }
void PutDecodedDatumInto(const TestData &data, const char *name, BufferedTransformation &target) { std::string s1 = GetRequiredDatum(data, name), s2; while (!s1.empty()) { while (s1[0] == ' ') s1 = s1.substr(1); int repeat = 1; if (s1[0] == 'r') { repeat = atoi(s1.c_str()+1); s1 = s1.substr(s1.find(' ')+1); } s2 = ""; // MSVC 6 doesn't have clear(); if (s1[0] == '\"') { s2 = s1.substr(1, s1.find('\"', 1)-1); s1 = s1.substr(s2.length() + 2); } else if (s1.substr(0, 2) == "0x") { StringSource(s1.substr(2, s1.find(' ')), true, new HexDecoder(new StringSink(s2))); s1 = s1.substr(STDMIN(s1.find(' '), s1.length())); } else { StringSource(s1.substr(0, s1.find(' ')), true, new HexDecoder(new StringSink(s2))); s1 = s1.substr(STDMIN(s1.find(' '), s1.length())); } ByteQueue q; while (repeat--) { q.Put((const byte *)s2.data(), s2.size()); if (q.MaxRetrievable() > 4*1024 || repeat == 0) q.TransferTo(target); } } }
// EGPublicKey::AllocateCrypt // Allocates the mCryptP member if needed. Manually decodes binary rep into factors // and feeds appropriate factor to the ElGamalEncryptor class from Crypto++. void EGPublicKey::AllocateCrypt() const { WTRACE("EGPublicKey::AllocateCrypt"); if (! mCryptP) { WDBG_LL("EGPublicKey::AllocateCrypt Allocating crypt object."); ByteQueue aQueue; aQueue.Put(mKey, mKeyLen); aQueue.Close(); // *HACK* // Manually build the ElGamalEncryptor object. See notes at // top of this file. Integer p, q, g, y; BERSequenceDecoder seq(aQueue); p.BERDecode(seq); q.BERDecode(seq); g.BERDecode(seq); y.BERDecode(seq); mCryptP = new ElGamalEncryptor(p, g, y); } }
bool ValidateRSA() { cout << "\nRSA validation suite running...\n\n"; byte out[100], outPlain[100]; bool pass = true, fail; { static const char plain[] = "Everyone gets Friday off."; byte *signature = (byte *) "\x05\xfa\x6a\x81\x2f\xc7\xdf\x8b\xf4\xf2\x54\x25\x09\xe0\x3e\x84" "\x6e\x11\xb9\xc6\x20\xbe\x20\x09\xef\xb4\x40\xef\xbc\xc6\x69\x21" "\x69\x94\xac\x04\xf3\x41\xb5\x7d\x05\x20\x2d\x42\x8f\xb2\xa2\x7b" "\x5c\x77\xdf\xd9\xb1\x5b\xfc\x3d\x55\x93\x53\x50\x34\x10\xc1\xe1"; FileSource keys("TestData/rsa512a.dat", true, new HexDecoder); Weak::RSASSA_PKCS1v15_MD2_Signer rsaPriv(keys); Weak::RSASSA_PKCS1v15_MD2_Verifier rsaPub(rsaPriv); size_t signatureLength = rsaPriv.SignMessage(GlobalRNG(), (byte *)plain, strlen(plain), out); fail = !VerifyBufsEqual(signature, out, 64); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "signature check against test vector\n"; fail = !rsaPub.VerifyMessage((byte *)plain, strlen(plain), out, signatureLength); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "verification check against test vector\n"; out[10]++; fail = rsaPub.VerifyMessage((byte *)plain, strlen(plain), out, signatureLength); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "invalid signature verification\n"; } { FileSource keys("TestData/rsa1024.dat", true, new HexDecoder); RSAES_PKCS1v15_Decryptor rsaPriv(keys); RSAES_PKCS1v15_Encryptor rsaPub(rsaPriv); pass = CryptoSystemValidate(rsaPriv, rsaPub) && pass; } { RSAES<OAEP<SHA> >::Decryptor rsaPriv(GlobalRNG(), 512); RSAES<OAEP<SHA> >::Encryptor rsaPub(rsaPriv); pass = CryptoSystemValidate(rsaPriv, rsaPub) && pass; } { byte *plain = (byte *) "\x54\x85\x9b\x34\x2c\x49\xea\x2a"; byte *encrypted = (byte *) "\x14\xbd\xdd\x28\xc9\x83\x35\x19\x23\x80\xe8\xe5\x49\xb1\x58\x2a" "\x8b\x40\xb4\x48\x6d\x03\xa6\xa5\x31\x1f\x1f\xd5\xf0\xa1\x80\xe4" "\x17\x53\x03\x29\xa9\x34\x90\x74\xb1\x52\x13\x54\x29\x08\x24\x52" "\x62\x51"; byte *oaepSeed = (byte *) "\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2" "\xf0\x6c\xb5\x8f"; ByteQueue bq; bq.Put(oaepSeed, 20); FixedRNG rng(bq); FileSource privFile("TestData/rsa400pv.dat", true, new HexDecoder); FileSource pubFile("TestData/rsa400pb.dat", true, new HexDecoder); RSAES_OAEP_SHA_Decryptor rsaPriv; rsaPriv.AccessKey().BERDecodePrivateKey(privFile, false, 0); RSAES_OAEP_SHA_Encryptor rsaPub(pubFile); memset(out, 0, 50); memset(outPlain, 0, 8); rsaPub.Encrypt(rng, plain, 8, out); DecodingResult result = rsaPriv.FixedLengthDecrypt(GlobalRNG(), encrypted, outPlain); fail = !result.isValidCoding || (result.messageLength!=8) || !VerifyBufsEqual(out, encrypted, 50) || !VerifyBufsEqual(plain, outPlain, 8); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "PKCS 2.0 encryption and decryption\n"; } return pass; }
void CAuthenticationProfileImpl::onBufferReceived(const iviLink::Channel::tChannelId channel, Buffer const& buffer) { LOG4CPLUS_TRACE_METHOD(msLogger, __PRETTY_FUNCTION__); LOG4CPLUS_TRACE(msLogger, "CBuffer write position = "+convertIntegerToString(buffer.getWritePosition()) + "; CBuffer size = " + convertIntegerToString(buffer.getSize()) + "; Channel = "+ convertIntegerToString(channel)); assert(this); UInt8 *incomingData = buffer.getBuffer(); int read_size = buffer.getSize(); LOG4CPLUS_INFO(msLogger, "Procedure ID = " + convertIntegerToString(incomingData[0])); if(incomingData[0] == SEND_ENCRYPTED_PIN) { LOG4CPLUS_INFO(msLogger, "Encrypted PIN received"); string encryptedPIN((char*)(incomingData + 1), read_size - 1); LOG4CPLUS_INFO(msLogger, "Engrypted PIN length = " + convertIntegerToString(encryptedPIN.length())); LOG4CPLUS_INFO(msLogger, "Encrypted PIN = " + encryptedPIN); string decryptedRemotePIN = CRSAEncryptDecrypt::decrypt(encryptedPIN, CRSAEncryptDecrypt::getPrivateKey(mpAppCallbacks->getInternalPath())); LOG4CPLUS_INFO(msLogger, "Decrypted remote PIN = " + decryptedRemotePIN); mpAppCallbacks->gotPIN(decryptedRemotePIN[0] - '0', decryptedRemotePIN[1] - '0', decryptedRemotePIN[2] - '0', decryptedRemotePIN[3] - '0'); } else if(incomingData[0] == SEND_PUBLIC_KEY) { LOG4CPLUS_INFO(msLogger, "PublicKey received"); UInt8* keyBytes = new UInt8[read_size - 1]; memcpy(keyBytes, incomingData + 1, read_size - 1); ByteQueue queue; queue.Put(keyBytes, read_size - 1); remoteHostPublicKey.Load(queue); } else if(incomingData[0] == SEND_UID) { LOG4CPLUS_INFO(msLogger, "Remote UID received"); string uid((char*)(incomingData + 1), read_size - 1); LOG4CPLUS_INFO(msLogger, "UID = " + uid); mRemoteUID = iviLink::BaseUid(uid); if(mpTrustList->isKnownUid(mRemoteUID)) { LOG4CPLUS_INFO(msLogger, "Remote UID is known"); remoteUIDIsChecked = true; remoteUIDIsOK = true; sendYourUIDIsKnow(); validateUIDs(); } else { LOG4CPLUS_INFO(msLogger, "Remote UID is unknown"); remoteUIDIsChecked = true; remoteUIDIsOK = false; sendYourUIDIsUnknown(); validateUIDs(); } } else if(incomingData[0] == YOUR_UID_IS_OK) { localUIDIsChecked = true; localUIDIsOK = true; validateUIDs(); } else if(incomingData[0] == YOUR_UID_IS_NOK) { localUIDIsChecked = true; localUIDIsOK = false; validateUIDs(); } else if(incomingData[0] == READY_TO_EXIT) { mpAppCallbacks->onReadyToExit(); } }
bool RSAValidate() { cout << "\nRSA validation suite running...\n\n"; byte out[100], outPlain[100]; unsigned int outLen; bool pass = true, fail; try { { char *plain = "Everyone gets Friday off."; byte *signature = (byte *) "\x05\xfa\x6a\x81\x2f\xc7\xdf\x8b\xf4\xf2\x54\x25\x09\xe0\x3e\x84" "\x6e\x11\xb9\xc6\x20\xbe\x20\x09\xef\xb4\x40\xef\xbc\xc6\x69\x21" "\x69\x94\xac\x04\xf3\x41\xb5\x7d\x05\x20\x2d\x42\x8f\xb2\xa2\x7b" "\x5c\x77\xdf\xd9\xb1\x5b\xfc\x3d\x55\x93\x53\x50\x34\x10\xc1\xe1"; LC_RNG rng(765); FileSource keys("rsa512a.dat", true, new HexDecoder); RSASSA_PKCS1v15_MD2_Signer rsaPriv(keys); RSASSA_PKCS1v15_MD2_Verifier rsaPub(rsaPriv); rsaPriv.SignMessage(rng, (byte *)plain, strlen(plain), out); fail = memcmp(signature, out, 64) != 0; pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "signature check against test vector\n"; fail = !rsaPub.VerifyMessage((byte *)plain, strlen(plain), out); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "verification check against test vector\n"; out[10]++; fail = rsaPub.VerifyMessage((byte *)plain, strlen(plain), out); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "invalid signature verification\n"; } { FileSource keys("rsa512.dat", true, new HexDecoder); RSAES_PKCS1v15_Decryptor rsaPriv(keys); RSAES_PKCS1v15_Encryptor rsaPub(rsaPriv); pass = CryptoSystemValidate(rsaPriv, rsaPub) && pass; } { byte *plain = (byte *) "\x54\x85\x9b\x34\x2c\x49\xea\x2a"; byte *encrypted = (byte *) "\x14\xbd\xdd\x28\xc9\x83\x35\x19\x23\x80\xe8\xe5\x49\xb1\x58\x2a" "\x8b\x40\xb4\x48\x6d\x03\xa6\xa5\x31\x1f\x1f\xd5\xf0\xa1\x80\xe4" "\x17\x53\x03\x29\xa9\x34\x90\x74\xb1\x52\x13\x54\x29\x08\x24\x52" "\x62\x51"; byte *oaepSeed = (byte *) "\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2" "\xf0\x6c\xb5\x8f"; ByteQueue bq; bq.Put(oaepSeed, 20); FixedRNG rng(bq); FileSource privFile("rsa400pv.dat", true, new HexDecoder); FileSource pubFile("rsa400pb.dat", true, new HexDecoder); RSAES_OAEP_SHA_Decryptor rsaPriv(privFile); RSAES_OAEP_SHA_Encryptor rsaPub(pubFile); memset(out, 0, 50); memset(outPlain, 0, 8); rsaPub.Encrypt(rng, plain, 8, out); outLen = rsaPriv.Decrypt(encrypted, outPlain); fail = (outLen!=8) || memcmp(out, encrypted, 50) || memcmp(plain, outPlain, 8); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "PKCS 2.0 encryption and decryption\n"; } } catch (BERDecodeErr) { cout << "FAILED Error decoding RSA key\n"; pass = false; } return pass; }
size_t PEM_ReadLine(BufferedTransformation& source, SecByteBlock& line, SecByteBlock& ending) { if(!source.AnyRetrievable()) { line.New(0); ending.New(0); return 0; } ByteQueue temp; while(source.AnyRetrievable()) { byte b; if(!source.Get(b)) throw Exception(Exception::OTHER_ERROR, "PEM_ReadLine: failed to read byte"); // LF ? if(b == '\n') { ending = LF; break; } // CR ? if(b == '\r') { // CRLF ? if(source.AnyRetrievable() && source.Peek(b)) { if(b == '\n') { source.Skip(1); ending = CRLF; break; } } ending = CR; break; } // Not End-of-Line, accumulate it. temp.Put(b); } if(temp.AnyRetrievable()) { line.Grow(temp.MaxRetrievable()); temp.Get(line.data(), line.size()); } else { line.New(0); ending.New(0); } // We return a line stripped of CRs and LFs. However, we return the actual number of // of bytes processed, including the CR and LF. A return of 0 means nothing was read. // A return of 1 means an empty line was read (CR or LF). A return of 2 could // mean an empty line was read (CRLF), or could mean 1 character was read. In // any case, line will hold whatever was parsed. return line.size() + ending.size(); }
bool Validator::verifySignature(const uint8_t* buf, const size_t size, const Signature& sig, const v1::PublicKey& key) { try { using namespace CryptoPP; switch (sig.getType()) { case tlv::SignatureSha256WithRsa: { if (key.getKeyType() != KeyType::RSA) return false; RSA::PublicKey publicKey; ByteQueue queue; queue.Put(reinterpret_cast<const byte*>(key.get().buf()), key.get().size()); publicKey.Load(queue); RSASS<PKCS1v15, SHA256>::Verifier verifier(publicKey); return verifier.VerifyMessage(buf, size, sig.getValue().value(), sig.getValue().value_size()); } case tlv::SignatureSha256WithEcdsa: { if (key.getKeyType() != KeyType::EC) return false; ECDSA<ECP, SHA256>::PublicKey publicKey; ByteQueue queue; queue.Put(reinterpret_cast<const byte*>(key.get().buf()), key.get().size()); publicKey.Load(queue); ECDSA<ECP, SHA256>::Verifier verifier(publicKey); uint32_t length = 0; StringSource src(key.get().buf(), key.get().size(), true); BERSequenceDecoder subjectPublicKeyInfo(src); { BERSequenceDecoder algorithmInfo(subjectPublicKeyInfo); { Oid algorithm; algorithm.decode(algorithmInfo); Oid curveId; curveId.decode(algorithmInfo); if (curveId == SECP256R1) length = 256; else if (curveId == SECP384R1) length = 384; else return false; } } switch (length) { case 256: { uint8_t buffer[64]; size_t usedSize = DSAConvertSignatureFormat(buffer, sizeof(buffer), DSA_P1363, sig.getValue().value(), sig.getValue().value_size(), DSA_DER); return verifier.VerifyMessage(buf, size, buffer, usedSize); } case 384: { uint8_t buffer[96]; size_t usedSize = DSAConvertSignatureFormat(buffer, sizeof(buffer), DSA_P1363, sig.getValue().value(), sig.getValue().value_size(), DSA_DER); return verifier.VerifyMessage(buf, size, buffer, usedSize); } default: return false; } } default: // Unsupported sig type return false; } } catch (const CryptoPP::Exception& e) { return false; } }