Example #1
0
// Exactly like TestRaySquare with u=(1,0), v=(0,1)
bool Geometry::TestRayAASquare(const CFixedVector2D& a, const CFixedVector2D& b, const CFixedVector2D& halfSize)
{
	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	if (-hw <= a.X && a.X <= hw && -hh <= a.Y && a.Y <= hh)
		return false; // a is inside

	if (-hw <= b.X && b.X <= hw && -hh <= b.Y && b.Y <= hh) // TODO: isn't this subsumed by the next checks?
		return true; // a is outside, b is inside

	if ((a.X < -hw && b.X < -hw) || (a.X > hw && b.X > hw) || (a.Y < -hh && b.Y < -hh) || (a.Y > hh && b.Y > hh))
		return false; // ab is entirely above/below/side the square

	CFixedVector2D abp = (b - a).Perpendicular();
	fixed s0 = abp.Dot(CFixedVector2D(hw, hh) - a);
	fixed s1 = abp.Dot(CFixedVector2D(hw, -hh) - a);
	fixed s2 = abp.Dot(CFixedVector2D(-hw, -hh) - a);
	fixed s3 = abp.Dot(CFixedVector2D(-hw, hh) - a);
	if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
		return true; // ray intersects the corner

	bool sign = (s0 < fixed::Zero());
	if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
		return true; // ray cuts through the square

	return false;
}
Example #2
0
bool Geometry::TestRaySquare(const CFixedVector2D& a, const CFixedVector2D& b, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
	/*
	 * We only consider collisions to be when the ray goes from outside to inside the shape (and possibly out again).
	 * Various cases to consider:
	 *   'a' inside, 'b' inside -> no collision
	 *   'a' inside, 'b' outside -> no collision
	 *   'a' outside, 'b' inside -> collision
	 *   'a' outside, 'b' outside -> depends; use separating axis theorem:
	 *     if the ray's bounding box is outside the square -> no collision
	 *     if the whole square is on the same side of the ray -> no collision
	 *     otherwise -> collision
	 * (Points on the edge are considered 'inside'.)
	 */

	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	fixed au = a.Dot(u);
	fixed av = a.Dot(v);

	if (-hw <= au && au <= hw && -hh <= av && av <= hh)
		return false; // a is inside

	fixed bu = b.Dot(u);
	fixed bv = b.Dot(v);

	if (-hw <= bu && bu <= hw && -hh <= bv && bv <= hh) // TODO: isn't this subsumed by the next checks?
		return true; // a is outside, b is inside

	if ((au < -hw && bu < -hw) || (au > hw && bu > hw) || (av < -hh && bv < -hh) || (av > hh && bv > hh))
		return false; // ab is entirely above/below/side the square

	CFixedVector2D abp = (b - a).Perpendicular();
	fixed s0 = abp.Dot((u.Multiply(hw) + v.Multiply(hh)) - a);
	fixed s1 = abp.Dot((u.Multiply(hw) - v.Multiply(hh)) - a);
	fixed s2 = abp.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a);
	fixed s3 = abp.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a);
	if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
		return true; // ray intersects the corner

	bool sign = (s0 < fixed::Zero());
	if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
		return true; // ray cuts through the square

	return false;
}
Example #3
0
/**
 * Separating axis test; returns true if the square defined by u/v/halfSize at the origin
 * is not entirely on the clockwise side of a line in direction 'axis' passing through 'a'
 */
static bool SquareSAT(const CFixedVector2D& a, const CFixedVector2D& axis, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	CFixedVector2D p = axis.Perpendicular();
	if (p.Dot((u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero())
		return true;
	if (p.Dot((u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero())
		return true;
	if (p.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero())
		return true;
	if (p.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero())
		return true;

	return false;
}
Example #4
0
fixed Geometry::DistanceToSquare(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize, bool countInsideAsZero)
{
	/*
	 * Relative to its own coordinate system, we have a square like:
	 *
	 *  A  :    B    :  C
	 *     :         :
	 * - - ########### - -
	 *     #         #
	 *     # I       #
	 *  D  #    0    #  E     v
	 *     #         #        ^
	 *     #         #        |
	 * - - ########### - -      -->u
	 *     :         :
	 *  F  :    G    :  H
	 *
	 * where 0 is the center, u and v are unit axes,
	 * and the square is hw*2 by hh*2 units in size.
	 *
	 * Points in the BIG regions should check distance to horizontal edges.
	 * Points in the DIE regions should check distance to vertical edges.
	 * Points in the ACFH regions should check distance to the corresponding corner.
	 *
	 * So we just need to check all of the regions to work out which calculations to apply.
	 *
	 */

	// By symmetry (taking absolute values), we work only in the 0-B-C-E quadrant
	// du, dv are the location of the point in the square's coordinate system
	fixed du = point.Dot(u).Absolute();
	fixed dv = point.Dot(v).Absolute();

	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	if (du < hw) // regions B, I, G
	{
		if (dv < hh) // region I
			return countInsideAsZero ? fixed::Zero() : std::min(hw - du, hh - dv);
		else
			return dv - hh;
	}
	else if (dv < hh) // regions D, E
	{
		return du - hw; // vertical edges
	}
	else // regions A, C, F, H
	{
		CFixedVector2D distance(du - hw, dv - hh);
		return distance.Length();
	}
}
Example #5
0
// Same as above except it does not use Length
// For explanations refer to DistanceToSquare
fixed Geometry::DistanceToSquareSquared(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize, bool countInsideAsZero)
{
	fixed du = point.Dot(u).Absolute();
	fixed dv = point.Dot(v).Absolute();
	
	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;
	
	if (du < hw) // regions B, I, G
	{
		if (dv < hh) // region I
			return countInsideAsZero ? fixed::Zero() : std::min((hw - du).Square(), (hh - dv).Square());
		else
			return (dv - hh).Square(); // horizontal edges
	}
	else if (dv < hh) // regions D, E
	{
		return (du - hw).Square(); // vertical edges
	}
	else // regions A, C, F, H
	{
		return (du - hw).Square() + (dv - hh).Square();
	}
}
Example #6
0
CFixedVector2D Geometry::NearestPointOnSquare(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
	/*
	 * Relative to its own coordinate system, we have a square like:
	 *
	 *  A  :         :  C
	 *     :         :
	 * - - #### B #### - -
	 *     #\       /#
	 *     # \     / #
	 *     D  --0--  E        v
	 *     # /     \ #        ^
	 *     #/       \#        |
	 * - - #### G #### - -      -->u
	 *     :         :
	 *  F  :         :  H
	 *
	 * where 0 is the center, u and v are unit axes,
	 * and the square is hw*2 by hh*2 units in size.
	 *
	 * Points in the BDEG regions are nearest to the corresponding edge.
	 * Points in the ACFH regions are nearest to the corresponding corner.
	 *
	 * So we just need to check all of the regions to work out which calculations to apply.
	 *
	 */

	// du, dv are the location of the point in the square's coordinate system
	fixed du = point.Dot(u);
	fixed dv = point.Dot(v);

	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	if (-hw < du && du < hw) // regions B, G; or regions D, E inside the square
	{
		if (-hh < dv && dv < hh && (du.Absolute() - hw).Absolute() < (dv.Absolute() - hh).Absolute()) // regions D, E
		{
			if (du >= fixed::Zero()) // E
				return u.Multiply(hw) + v.Multiply(dv);
			else // D
				return -u.Multiply(hw) + v.Multiply(dv);
		}
		else // B, G
		{
			if (dv >= fixed::Zero()) // B
				return v.Multiply(hh) + u.Multiply(du);
			else // G
				return -v.Multiply(hh) + u.Multiply(du);
		}
	}
	else if (-hh < dv && dv < hh) // regions D, E outside the square
	{
		if (du >= fixed::Zero()) // E
			return u.Multiply(hw) + v.Multiply(dv);
		else // D
			return -u.Multiply(hw) + v.Multiply(dv);
	}
	else // regions A, C, F, H
	{
		CFixedVector2D corner;
		if (du < fixed::Zero()) // A, F
			corner -= u.Multiply(hw);
		else // C, H
			corner += u.Multiply(hw);
		if (dv < fixed::Zero()) // F, H
			corner -= v.Multiply(hh);
		else // A, C
			corner += v.Multiply(hh);

		return corner;
	}
}