TEST_F(AnalysisDriverFixture, DDACE_MonteCarlo_Continuous) {
  // RETRIEVE PROBLEM
  Problem problem = retrieveProblem("Continuous",true,false);

  // DEFINE SEED
  Model model = model::exampleModel();
  openstudio::path p = toPath("./example.osm");
  model.save(p,true);
  FileReference seedModel(p);

  // CREATE ANALYSIS
  DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::random);
  Analysis analysis("DDACE Monte Carlo Sampling",
                    problem,
                    DDACEAlgorithm(algOptions),
                    seedModel);

  // RUN ANALYSIS
  {
    ProjectDatabase database = getCleanDatabase("DDACEMonteCarlo_Continuous_NoSamples");
    AnalysisDriver analysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    EXPECT_TRUE(analysisDriver.waitForFinished());
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_FALSE(jobErrors->errors().empty()); // require specification of number of samples
    EXPECT_TRUE(analysisDriver.currentAnalyses().empty());
    Table summary = currentAnalysis.analysis().summaryTable();
    EXPECT_EQ(1u,summary.nRows()); // no points
  }

  {
    algOptions.setSamples(6);
    analysis = Analysis("DDACE MonteCarlo Sampling",
                        problem,
                        DDACEAlgorithm(algOptions),
                        seedModel);
    ProjectDatabase database = getCleanDatabase("DDACEMonteCarlo_Continuous");
    AnalysisDriver analysisDriver = AnalysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    runOptions.setQueueSize(4);
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    EXPECT_TRUE(analysisDriver.waitForFinished());
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_TRUE(jobErrors->errors().empty());
    EXPECT_TRUE(analysisDriver.currentAnalyses().empty());
    Table summary = currentAnalysis.analysis().summaryTable();
    EXPECT_EQ(7u,summary.nRows()); // 6 points
    summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv"));

    BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) {
      EXPECT_TRUE(dataPoint.isComplete());
      EXPECT_FALSE(dataPoint.failed());
      // EXPECT_FALSE(dataPoint.responseValues().empty());
    }
  }
}
TEST_F(AnalysisDriverFixture,RuntimeBehavior_StopAndRestartDakotaAnalysis) {

  // RETRIEVE PROBLEM
  Problem problem = retrieveProblem("SimpleHistogramBinUQ",true,false);

  // DEFINE SEED
  Model model = model::exampleModel();
  openstudio::path p = toPath("./example.osm");
  model.save(p,true);
  FileReference seedModel(p);

  // CREATE ANALYSIS
  SamplingAlgorithmOptions algOptions;
  algOptions.setSamples(10);
  Analysis analysis("Stop and Restart Dakota Analysis",
                    problem,
                    SamplingAlgorithm(algOptions),
                    seedModel);

  // RUN ANALYSIS
  if (!dakotaExePath().empty()) {
    ProjectDatabase database = getCleanDatabase("StopAndRestartDakotaAnalysis");
    AnalysisDriver analysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    StopWatcher watcher(analysisDriver);
    watcher.watch(analysis.uuid());
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    analysisDriver.waitForFinished();
    EXPECT_FALSE(analysisDriver.isRunning());

    // check conditions afterward
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_FALSE(jobErrors->errors().empty());
    EXPECT_FALSE(currentAnalysis.analysis().dataPoints().empty());
    EXPECT_FALSE(currentAnalysis.analysis().dataPointsToQueue().empty());
    EXPECT_FALSE(currentAnalysis.analysis().completeDataPoints().empty());
    EXPECT_FALSE(currentAnalysis.analysis().successfulDataPoints().empty());
    EXPECT_TRUE(currentAnalysis.analysis().failedDataPoints().empty());
    EXPECT_FALSE(currentAnalysis.analysis().algorithm()->isComplete());
    EXPECT_FALSE(currentAnalysis.analysis().algorithm()->failed());
    EXPECT_EQ(0u,analysisDriver.currentAnalyses().size());
    LOG(Debug,"After initial stop, there are " << currentAnalysis.analysis().dataPoints().size()
        << " data points, of which " << currentAnalysis.analysis().completeDataPoints().size()
        << " are complete.");

    // try to restart from database contents
    Analysis analysis = AnalysisRecord::getAnalysisRecords(database)[0].analysis();
    ASSERT_TRUE(analysis.algorithm());
    EXPECT_FALSE(analysis.algorithm()->isComplete());
    EXPECT_FALSE(analysis.algorithm()->failed());
    currentAnalysis = analysisDriver.run(analysis,runOptions);
    analysisDriver.waitForFinished();
    EXPECT_EQ(10u,analysis.dataPoints().size());
    EXPECT_EQ(0u,analysis.dataPointsToQueue().size());
    EXPECT_EQ(10u,analysis.completeDataPoints().size());
    EXPECT_EQ(10u,analysis.successfulDataPoints().size());
    EXPECT_EQ(0u,analysis.failedDataPoints().size());
  }
}
TEST_F(AnalysisDriverFixture,RuntimeBehavior_StopDakotaAnalysis) {
  // Tests for stopping time < 20s.

  // RETRIEVE PROBLEM
  Problem problem = retrieveProblem("SimpleHistogramBinUQ",true,false);

  // DEFINE SEED
  Model model = model::exampleModel();
  openstudio::path p = toPath("./example.osm");
  model.save(p,true);
  FileReference seedModel(p);

  // CREATE ANALYSIS
  SamplingAlgorithmOptions algOptions;
  algOptions.setSamples(100);
  Analysis analysis("Stop Dakota Analysis",
                    problem,
                    SamplingAlgorithm(algOptions),
                    seedModel);

  // RUN ANALYSIS
  if (!dakotaExePath().empty()) {
    ProjectDatabase database = getCleanDatabase("StopDakotaAnalysis");
    AnalysisDriver analysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    StopWatcher watcher(analysisDriver);
    watcher.watch(analysis.uuid());
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    analysisDriver.waitForFinished();
    EXPECT_FALSE(analysisDriver.isRunning());
    EXPECT_GE(watcher.nComplete(),watcher.stopNum());
    EXPECT_LE(watcher.stoppingTime(),openstudio::Time(0,0,0,20));

    // check conditions afterward
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_FALSE(jobErrors->errors().empty());
    EXPECT_FALSE(currentAnalysis.analysis().dataPoints().empty());
    EXPECT_FALSE(currentAnalysis.analysis().algorithm()->isComplete());
    EXPECT_FALSE(currentAnalysis.analysis().algorithm()->failed());
    EXPECT_EQ(0u,analysisDriver.currentAnalyses().size());
  }
}
TEST_F(AnalysisDriverFixture, DDACE_MonteCarlo_MixedOsmIdf_ProjectDatabaseOpen) {

  // RETRIEVE PROBLEM
  Problem problem = retrieveProblem("MixedOsmIdf",false,false);

  // DEFINE SEED
  Model model = model::exampleModel();
  openstudio::path p = toPath("./example.osm");
  model.save(p,true);
  FileReference seedModel(p);

  // CREATE ANALYSIS
  DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::oas);
  algOptions.setSamples(4);
  Analysis analysis("DDACE Monte Carlo Sampling",
                    problem,
                    DDACEAlgorithm(algOptions),
                    seedModel);

  // RUN ANALYSIS
  {
    analysis = Analysis("DDACE Monte Carlo Sampling - MixedOsmIdf",
                        problem,
                        DDACEAlgorithm(algOptions),
                        seedModel);
    ProjectDatabase database = getCleanDatabase("DDACEMonteCarlo_MixedOsmIdf");
    AnalysisDriver analysisDriver = AnalysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    EXPECT_TRUE(analysisDriver.waitForFinished());
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_TRUE(jobErrors->errors().empty());
    EXPECT_TRUE(analysisDriver.currentAnalyses().empty());
    Table summary = currentAnalysis.analysis().summaryTable();
    EXPECT_EQ(5u,summary.nRows()); // 4 points
    summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv"));

    BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) {
      EXPECT_TRUE(dataPoint.isComplete());
      EXPECT_FALSE(dataPoint.failed());
    }
  }
  {
    project::OptionalProjectDatabase oDatabase = project::ProjectDatabase::open(toPath("AnalysisDriverFixtureData/DDACEMonteCarloMixedOsmIdf/DDACEMonteCarlo_MixedOsmIdf.osp"));
    ASSERT_TRUE(oDatabase);
    project::AnalysisRecordVector analysisRecords = project::AnalysisRecord::getAnalysisRecords(*oDatabase);
    EXPECT_EQ(1u,analysisRecords.size());
    if (!analysisRecords.empty()) {
      EXPECT_NO_THROW(analysisRecords[0].analysis());
    }
  }

}
TEST_F(AnalysisDriverFixture,RuntimeBehavior_StopOpenStudioAnalysis) {
  // Tests for stopping time < 20s.

  // RETRIEVE PROBLEM
  Problem problem = retrieveProblem("IdfOnly",false,false);

  // DEFINE SEED
  FileReference seedModel(resourcesPath() / openstudio::toPath("energyplus/5ZoneAirCooled/in.idf"));

  // CREATE ANALYSIS
  DesignOfExperimentsOptions algOptions(DesignOfExperimentsType::FullFactorial);
  Analysis analysis("Stop OpenStudio Analysis",
                    problem,
                    DesignOfExperiments(algOptions),
                    seedModel);

  // RUN ANALYSIS
  ProjectDatabase database = getCleanDatabase("StopOpenStudioAnalysis");
  AnalysisDriver analysisDriver(database);
  AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
  runOptions.setQueueSize(2);
  StopWatcher watcher(analysisDriver);
  watcher.watch(analysis.uuid());
  CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
  EXPECT_EQ(2,currentAnalysis.numQueuedJobs());
  EXPECT_EQ(0,currentAnalysis.numQueuedDakotaJobs());
  EXPECT_GE(currentAnalysis.totalNumJobsInOSIteration(),10);
  EXPECT_EQ(0,currentAnalysis.numCompletedJobsInOSIteration());
  analysisDriver.waitForFinished();
  EXPECT_FALSE(analysisDriver.isRunning());
  EXPECT_GE(watcher.nComplete(),watcher.stopNum());
  EXPECT_LE(watcher.stoppingTime(),openstudio::Time(0,0,0,20));

  // check conditions afterward
  EXPECT_TRUE(currentAnalysis.numCompletedJobsInOSIteration() > 0);
  EXPECT_TRUE(currentAnalysis.analysis().dataPointsToQueue().size() > 0u);
  EXPECT_TRUE(currentAnalysis.analysis().dataPointsToQueue().size() <
              currentAnalysis.analysis().dataPoints().size());
  EXPECT_EQ(0u,analysisDriver.currentAnalyses().size());
}
TEST_F(AnalysisDriverFixture, FSUDace_CVT_MixedOsmIdf) {

  // RETRIEVE PROBLEM
  Problem problem = retrieveProblem("MixedOsmIdf",false,false);

  // DEFINE SEED
  Model model = model::exampleModel();
  openstudio::path p = toPath("./example.osm");
  model.save(p,true);
  FileReference seedModel(p);

  // CREATE ANALYSIS
  FSUDaceAlgorithmOptions algOptions(FSUDaceAlgorithmType::cvt);
  algOptions.setSamples(3);
  Analysis analysis("FSUDace CVT",
                    problem,
                    FSUDaceAlgorithm(algOptions),
                    seedModel);

  // RUN ANALYSIS
  analysis = Analysis("FSUDace CVT - MixedOsmIdf",
                      problem,
                      FSUDaceAlgorithm(algOptions),
                      seedModel);
  ProjectDatabase database = getCleanDatabase("FSUDaceCVT_MixedOsmIdf");
  AnalysisDriver analysisDriver = AnalysisDriver(database);
  AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
  CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
  EXPECT_TRUE(analysisDriver.waitForFinished());
  boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
  ASSERT_TRUE(jobErrors);
  EXPECT_TRUE(jobErrors->errors().empty());
  EXPECT_TRUE(analysisDriver.currentAnalyses().empty());
  Table summary = currentAnalysis.analysis().summaryTable();
  // EXPECT_EQ(10u,summary.nRows()); // 9 points
  summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv"));

  BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) {
    EXPECT_TRUE(dataPoint.isComplete());
    EXPECT_FALSE(dataPoint.failed());
  }

}
TEST_F(AnalysisDriverFixture, DDACE_CentralComposite_Continuous) {

  // RETRIEVE PROBLEM
  Problem problem = retrieveProblem("Continuous",true,false);

  // DEFINE SEED
  Model model = model::exampleModel();
  openstudio::path p = toPath("./example.osm");
  model.save(p,true);
  FileReference seedModel(p);

  // CREATE ANALYSIS
  DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::central_composite);
  Analysis analysis("DDACE Central Composite",
                    problem,
                    DDACEAlgorithm(algOptions),
                    seedModel);

  // RUN ANALYSIS
  if (!dakotaExePath().empty()) {
    ProjectDatabase database = getCleanDatabase("DDACECentralComposite");
    AnalysisDriver analysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    EXPECT_TRUE(analysisDriver.waitForFinished());
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_TRUE(jobErrors->errors().empty());

    // output csv summary of data points
    Table summary = currentAnalysis.analysis().summaryTable();
    summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv"));
    EXPECT_EQ(DDACEAlgorithmOptions::samplesForCentralComposite(problem),int(summary.nRows()-1));

    BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) {
      EXPECT_TRUE(dataPoint.isComplete());
      EXPECT_FALSE(dataPoint.failed());
      EXPECT_FALSE(dataPoint.responseValues().empty());
    }
  }
TEST_F(AnalysisDriverFixture, DDACE_LatinHypercube_UserScriptContinuous) {

  // RETRIEVE PROBLEM
  Problem problem = retrieveProblem("UserScriptContinuous",true,false);

  // DEFINE SEED
  Model model = model::exampleModel();
  openstudio::path p = toPath("./example.osm");
  model.save(p,true);
  FileReference seedModel(p);

  // CREATE ANALYSIS
  DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::lhs);
  algOptions.setSamples(10);

  // RUN ANALYSIS
  Analysis analysis("DDACE Latin Hypercube Sampling - UserScriptContinuous",
                    problem,
                    DDACEAlgorithm(algOptions),
                    seedModel);
  ProjectDatabase database = getCleanDatabase("DDACELatinHypercube_UserScriptContinuous");
  AnalysisDriver analysisDriver = AnalysisDriver(database);
  AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
  CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
  EXPECT_TRUE(analysisDriver.waitForFinished());
  boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
  ASSERT_TRUE(jobErrors);
  EXPECT_TRUE(jobErrors->errors().empty());
  EXPECT_TRUE(analysisDriver.currentAnalyses().empty());
  Table summary = currentAnalysis.analysis().summaryTable();
  EXPECT_EQ(11u,summary.nRows());
  summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv"));

  BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) {
    EXPECT_TRUE(dataPoint.isComplete());
    EXPECT_FALSE(dataPoint.failed());
  }

}
TEST_F(AnalysisDriverFixture, DDACE_LatinHypercube_Continuous) {
  {
    // GET SIMPLE PROJECT
    SimpleProject project = getCleanSimpleProject("DDACE_LatinHypercube_Continuous");
    Analysis analysis = project.analysis();

    // SET PROBLEM
    Problem problem = retrieveProblem("Continuous",true,false);
    analysis.setProblem(problem);

    // DEFINE SEED
    Model model = model::exampleModel();
    openstudio::path p = toPath("./example.osm");
    model.save(p,true);
    FileReference seedModel(p);
    analysis.setSeed(seedModel);

    // CREATE ANALYSIS
    DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::lhs);
    DDACEAlgorithm algorithm(algOptions);
    analysis.setAlgorithm(algorithm);

    // RUN ANALYSIS
    AnalysisDriver driver = project.analysisDriver();
    AnalysisRunOptions runOptions = standardRunOptions(project.projectDir());
    CurrentAnalysis currentAnalysis = driver.run(analysis,runOptions);
    EXPECT_TRUE(driver.waitForFinished());
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_FALSE(jobErrors->errors().empty()); // require specification of number of samples
    EXPECT_TRUE(driver.currentAnalyses().empty());
    Table summary = currentAnalysis.analysis().summaryTable();
    EXPECT_EQ(1u,summary.nRows()); // no points

    project.clearAllResults();
    algOptions.setSamples(4);
    EXPECT_EQ(4,analysis.algorithm()->cast<DDACEAlgorithm>().ddaceAlgorithmOptions().samples());
    currentAnalysis = driver.run(analysis,runOptions);
    EXPECT_TRUE(driver.waitForFinished());
    jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_TRUE(jobErrors->errors().empty());
    EXPECT_TRUE(driver.currentAnalyses().empty());
    summary = currentAnalysis.analysis().summaryTable();
    EXPECT_EQ(5u,summary.nRows());
    summary.save(project.projectDir() / toPath("summary.csv"));

    BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) {
      EXPECT_TRUE(dataPoint.isComplete());
      EXPECT_FALSE(dataPoint.failed());
      // EXPECT_FALSE(dataPoint.responseValues().empty());
    }

    ASSERT_TRUE(analysis.algorithm());
    EXPECT_TRUE(analysis.algorithm()->isComplete());
    EXPECT_FALSE(analysis.algorithm()->failed());

    {
      AnalysisRecord analysisRecord = project.analysisRecord();
      Analysis analysisCopy = analysisRecord.analysis();
      ASSERT_TRUE(analysisCopy.algorithm());
      EXPECT_TRUE(analysisCopy.algorithm()->isComplete());
      EXPECT_FALSE(analysisCopy.algorithm()->failed());
    }
  }

  LOG(Info,"Restart from existing project.");

  // Get existing project
  SimpleProject project = getSimpleProject("DDACE_LatinHypercube_Continuous");
  EXPECT_FALSE(project.analysisIsLoaded()); // make sure starting fresh
  Analysis analysis = project.analysis();
  EXPECT_FALSE(analysis.isDirty());

  // Add custom data point
  std::vector<QVariant> values;
  values.push_back(0.0);
  values.push_back(0.8);
  values.push_back(int(0));
  OptionalDataPoint dataPoint = analysis.problem().createDataPoint(values);
  ASSERT_TRUE(dataPoint);
  analysis.addDataPoint(*dataPoint);
  EXPECT_EQ(1u,analysis.dataPointsToQueue().size());
  ASSERT_TRUE(analysis.algorithm());
  EXPECT_TRUE(analysis.algorithm()->isComplete());
  EXPECT_FALSE(analysis.algorithm()->failed());
  EXPECT_TRUE(analysis.isDirty());
  EXPECT_FALSE(analysis.resultsAreInvalid());
  EXPECT_FALSE(analysis.dataPointsAreInvalid());

  // get last modified time of a file in a completed data point to make sure nothing is re-run
  DataPointVector completePoints = analysis.completeDataPoints();
  ASSERT_FALSE(completePoints.empty());
  OptionalFileReference inputFileRef = completePoints[0].osmInputData();
  ASSERT_TRUE(inputFileRef);
  QFileInfo inputFileInfo(toQString(inputFileRef->path()));
  QDateTime inputFileModifiedTestTime = inputFileInfo.lastModified();
  EXPECT_EQ(1u,analysis.dataPointsToQueue().size());

  AnalysisDriver driver = project.analysisDriver();
  CurrentAnalysis currentAnalysis = driver.run(
        analysis,
        standardRunOptions(project.projectDir()));
  EXPECT_TRUE(driver.waitForFinished());
  boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
  EXPECT_FALSE(jobErrors); // should not try to re-run DakotaAlgorithm
  EXPECT_TRUE(driver.currentAnalyses().empty());
  EXPECT_TRUE(analysis.dataPointsToQueue().empty());
  Table summary = currentAnalysis.analysis().summaryTable();
  EXPECT_EQ(6u,summary.nRows());
  summary.save(project.projectDir() / toPath("summary_post_restart.csv"));
  // RunManager should not re-run any data points
  EXPECT_EQ(inputFileModifiedTestTime,inputFileInfo.lastModified());
}
TEST_F(AnalysisDriverFixture, DDACE_Grid_Continuous) {
  // RETRIEVE PROBLEM
  Problem problem = retrieveProblem("Continuous",true,false);

  // DEFINE SEED
  Model model = model::exampleModel();
  openstudio::path p = toPath("./example.osm");
  model.save(p,true);
  FileReference seedModel(p);

  // CREATE ANALYSIS
  DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::grid);
  Analysis analysis("DDACE Grid Sampling",
                    problem,
                    DDACEAlgorithm(algOptions),
                    seedModel);

  // RUN ANALYSIS
  {
    ProjectDatabase database = getCleanDatabase("DDACEGridSampling_NoSamples");
    AnalysisDriver analysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    runOptions.setQueueSize(4);
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    EXPECT_TRUE(analysisDriver.waitForFinished());
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_FALSE(jobErrors->errors().empty()); // require specification of number of samples
    EXPECT_TRUE(analysisDriver.currentAnalyses().empty());
    Table summary = currentAnalysis.analysis().summaryTable();
    EXPECT_EQ(1u,summary.nRows()); // no points
  }

  // ETH@20120120 At first tried just using the same database, analysisdriver, etc., but
  // it did not go well. Restarting an initially failed Dakota analysis should be part of
  // enabling Dakota restart more generally.

  {
    // algorithm rounds samples up to next one that fits n**(problem.numVariables())
    algOptions.setSamples(6);
    analysis = Analysis("DDACE Grid Sampling - Wrong Samples",
                        problem,
                        DDACEAlgorithm(algOptions),
                        seedModel);
    ProjectDatabase database = getCleanDatabase("DDACEGridSampling_WrongSamples");
    AnalysisDriver analysisDriver = AnalysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    EXPECT_TRUE(analysisDriver.waitForFinished());
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_TRUE(jobErrors->errors().empty());
    EXPECT_TRUE(analysisDriver.currentAnalyses().empty());
    Table summary = currentAnalysis.analysis().summaryTable();
    EXPECT_EQ(10u,summary.nRows()); // 9 points
    summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv"));

    BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) {
      EXPECT_TRUE(dataPoint.isComplete());
      EXPECT_FALSE(dataPoint.failed());
      // EXPECT_FALSE(dataPoint.responseValues().empty());
    }
  }

  {
    // algorithm rounds samples up to next one that fits n**(problem.numVariables())
    algOptions.setSamplesForGrid(2,problem);
    analysis = Analysis("DDACE Grid Sampling - Correct Samples",
                        problem,
                        DDACEAlgorithm(algOptions),
                        seedModel);
    ProjectDatabase database = getCleanDatabase("DDACEGridSampling_CorrectSamples");
    AnalysisDriver analysisDriver = AnalysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    EXPECT_TRUE(analysisDriver.waitForFinished());
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_TRUE(jobErrors->errors().empty());
    EXPECT_TRUE(analysisDriver.currentAnalyses().empty());
    Table summary = currentAnalysis.analysis().summaryTable();
    EXPECT_EQ(5u,summary.nRows()); // 4 points
    summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv"));

    BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) {
      EXPECT_TRUE(dataPoint.isComplete());
      EXPECT_FALSE(dataPoint.failed());
      // EXPECT_FALSE(dataPoint.responseValues().empty());
    }
  }
}
TEST_F(AnalysisDriverFixture, DDACE_OrthogonalArray_Continuous) {
  // RETRIEVE PROBLEM
  Problem problem = retrieveProblem("Continuous",true,false);

  // DEFINE SEED
  Model model = model::exampleModel();
  openstudio::path p = toPath("./example.osm");
  model.save(p,true);
  FileReference seedModel(p);

  // CREATE ANALYSIS
  DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::oas);
  Analysis analysis("DDACE Orthogonal Array Sampling",
                    problem,
                    DDACEAlgorithm(algOptions),
                    seedModel);

  // RUN ANALYSIS
  {
    ProjectDatabase database = getCleanDatabase("DDACEOrthogonalArray_NoSamples");
    AnalysisDriver analysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    EXPECT_TRUE(analysisDriver.waitForFinished());
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_FALSE(jobErrors->errors().empty()); // require specification of number of samples
    EXPECT_TRUE(analysisDriver.currentAnalyses().empty());
    Table summary = currentAnalysis.analysis().summaryTable();
    EXPECT_EQ(1u,summary.nRows()); // no points
  }

  {
    algOptions.setSamples(6); // symbols = 0
    analysis = Analysis("DDACE Orthogonal Array Sampling - Wrong Samples",
                        problem,
                        DDACEAlgorithm(algOptions),
                        seedModel);
    ProjectDatabase database = getCleanDatabase("DDACEOrthogonalArray_WrongSamples");
    AnalysisDriver analysisDriver = AnalysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    EXPECT_TRUE(analysisDriver.waitForFinished());
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_TRUE(jobErrors->errors().empty());
    EXPECT_TRUE(analysisDriver.currentAnalyses().empty());
    Table summary = currentAnalysis.analysis().summaryTable();
    EXPECT_EQ(10u,summary.nRows()); // 9 points
    summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv"));

    BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) {
      EXPECT_TRUE(dataPoint.isComplete());
      EXPECT_FALSE(dataPoint.failed());
      // EXPECT_FALSE(dataPoint.responseValues().empty());
    }
  }

  {
    bool ok = algOptions.setSamplesAndSymbolsForOrthogonalArray(6,1);
    EXPECT_FALSE(ok);
    ok = algOptions.setSamplesAndSymbolsForOrthogonalArray(2,2); // 2,3 not ok for no apparent reason
    EXPECT_TRUE(ok);
    ASSERT_TRUE(algOptions.symbols());
    EXPECT_EQ(2,algOptions.symbols().get());
    ASSERT_TRUE(algOptions.samples());
    EXPECT_EQ(8,algOptions.samples().get());
    analysis = Analysis("DDACE Orthogonal Array Sampling - Correct Samples",
                        problem,
                        DDACEAlgorithm(algOptions),
                        seedModel);
    ProjectDatabase database = getCleanDatabase("DDACEOrthogonalArray_CorrectSamples");
    AnalysisDriver analysisDriver = AnalysisDriver(database);
    AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
    CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
    EXPECT_TRUE(analysisDriver.waitForFinished());
    boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors();
    ASSERT_TRUE(jobErrors);
    EXPECT_TRUE(jobErrors->errors().empty());
    EXPECT_TRUE(analysisDriver.currentAnalyses().empty());
    Table summary = currentAnalysis.analysis().summaryTable();
    EXPECT_EQ(9u,summary.nRows());
    summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv"));

    BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) {
      EXPECT_TRUE(dataPoint.isComplete());
      EXPECT_FALSE(dataPoint.failed());
    }
  }
}
TEST_F(AnalysisDriverFixture,RuntimeBehavior_StopCustomAnalysis) {
  // Tests for stopping time < 20s.

  // RETRIEVE PROBLEM
  Problem problem = retrieveProblem("UserScriptContinuous",true,false);

  // DEFINE SEED
  Model model = model::exampleModel();
  openstudio::path p = toPath("./example.osm");
  model.save(p,true);
  FileReference seedModel(p);

  // CREATE ANALYSIS
  Analysis analysis("Stop Custom Analysis",
                    problem,
                    seedModel);
  // generate 100 random points
  boost::mt19937 mt;
  typedef boost::uniform_real<> dist_type;
  typedef boost::variate_generator<boost::mt19937&, dist_type > gen_type;
  InputVariableVector variables = problem.variables();
  ContinuousVariable cvar = variables[0].cast<ContinuousVariable>();
  gen_type generator0(mt,dist_type(cvar.minimum().get(),cvar.maximum().get()));
  cvar = variables[1].cast<ContinuousVariable>();
  gen_type generator1(mt,dist_type(cvar.minimum().get(),cvar.maximum().get()));
  cvar = variables[2].cast<ContinuousVariable>();
  gen_type generator2(mt,dist_type(cvar.minimum().get(),cvar.maximum().get()));

  for (int i = 0, n = 100; i < n; ++i) {
    std::vector<QVariant> values;
    double value = generator0();
    values.push_back(value);
    value = generator1();
    values.push_back(value);
    value = generator2();
    values.push_back(value);
    OptionalDataPoint dataPoint = problem.createDataPoint(values);
    ASSERT_TRUE(dataPoint);
    ASSERT_TRUE(analysis.addDataPoint(*dataPoint));
  }

  // RUN ANALYSIS
  ProjectDatabase database = getCleanDatabase("StopCustomAnalysis");
  AnalysisDriver analysisDriver(database);
  AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path());
  runOptions.setQueueSize(2);
  StopWatcher watcher(analysisDriver);
  watcher.watch(analysis.uuid());
  CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions);
  EXPECT_EQ(2,currentAnalysis.numQueuedJobs());
  EXPECT_EQ(0,currentAnalysis.numQueuedDakotaJobs());
  EXPECT_EQ(100,currentAnalysis.totalNumJobsInOSIteration());
  EXPECT_EQ(0,currentAnalysis.numCompletedJobsInOSIteration());
  analysisDriver.waitForFinished();
  EXPECT_FALSE(analysisDriver.isRunning());
  EXPECT_GE(watcher.nComplete(),watcher.stopNum());
  EXPECT_LE(watcher.stoppingTime(),openstudio::Time(0,0,0,20));

  // check conditions afterward
  RunManager runManager = analysisDriver.database().runManager();
  EXPECT_FALSE(runManager.workPending());
  BOOST_FOREACH(const Job& job,runManager.getJobs()) {
    EXPECT_FALSE(job.running());
    EXPECT_FALSE(job.treeRunning());
  }
  EXPECT_TRUE(currentAnalysis.numCompletedJobsInOSIteration() > 0);
  EXPECT_TRUE(currentAnalysis.analysis().dataPointsToQueue().size() > 0u);
  EXPECT_TRUE(currentAnalysis.analysis().dataPointsToQueue().size() < 100u);
  EXPECT_EQ(0u,analysisDriver.currentAnalyses().size());
}