TEST_F(AnalysisDriverFixture, DDACE_MonteCarlo_Continuous) { // RETRIEVE PROBLEM Problem problem = retrieveProblem("Continuous",true,false); // DEFINE SEED Model model = model::exampleModel(); openstudio::path p = toPath("./example.osm"); model.save(p,true); FileReference seedModel(p); // CREATE ANALYSIS DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::random); Analysis analysis("DDACE Monte Carlo Sampling", problem, DDACEAlgorithm(algOptions), seedModel); // RUN ANALYSIS { ProjectDatabase database = getCleanDatabase("DDACEMonteCarlo_Continuous_NoSamples"); AnalysisDriver analysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_FALSE(jobErrors->errors().empty()); // require specification of number of samples EXPECT_TRUE(analysisDriver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(1u,summary.nRows()); // no points } { algOptions.setSamples(6); analysis = Analysis("DDACE MonteCarlo Sampling", problem, DDACEAlgorithm(algOptions), seedModel); ProjectDatabase database = getCleanDatabase("DDACEMonteCarlo_Continuous"); AnalysisDriver analysisDriver = AnalysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); runOptions.setQueueSize(4); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_TRUE(jobErrors->errors().empty()); EXPECT_TRUE(analysisDriver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(7u,summary.nRows()); // 6 points summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv")); BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) { EXPECT_TRUE(dataPoint.isComplete()); EXPECT_FALSE(dataPoint.failed()); // EXPECT_FALSE(dataPoint.responseValues().empty()); } } }
TEST_F(AnalysisDriverFixture,RuntimeBehavior_StopAndRestartDakotaAnalysis) { // RETRIEVE PROBLEM Problem problem = retrieveProblem("SimpleHistogramBinUQ",true,false); // DEFINE SEED Model model = model::exampleModel(); openstudio::path p = toPath("./example.osm"); model.save(p,true); FileReference seedModel(p); // CREATE ANALYSIS SamplingAlgorithmOptions algOptions; algOptions.setSamples(10); Analysis analysis("Stop and Restart Dakota Analysis", problem, SamplingAlgorithm(algOptions), seedModel); // RUN ANALYSIS if (!dakotaExePath().empty()) { ProjectDatabase database = getCleanDatabase("StopAndRestartDakotaAnalysis"); AnalysisDriver analysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); StopWatcher watcher(analysisDriver); watcher.watch(analysis.uuid()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); analysisDriver.waitForFinished(); EXPECT_FALSE(analysisDriver.isRunning()); // check conditions afterward boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_FALSE(jobErrors->errors().empty()); EXPECT_FALSE(currentAnalysis.analysis().dataPoints().empty()); EXPECT_FALSE(currentAnalysis.analysis().dataPointsToQueue().empty()); EXPECT_FALSE(currentAnalysis.analysis().completeDataPoints().empty()); EXPECT_FALSE(currentAnalysis.analysis().successfulDataPoints().empty()); EXPECT_TRUE(currentAnalysis.analysis().failedDataPoints().empty()); EXPECT_FALSE(currentAnalysis.analysis().algorithm()->isComplete()); EXPECT_FALSE(currentAnalysis.analysis().algorithm()->failed()); EXPECT_EQ(0u,analysisDriver.currentAnalyses().size()); LOG(Debug,"After initial stop, there are " << currentAnalysis.analysis().dataPoints().size() << " data points, of which " << currentAnalysis.analysis().completeDataPoints().size() << " are complete."); // try to restart from database contents Analysis analysis = AnalysisRecord::getAnalysisRecords(database)[0].analysis(); ASSERT_TRUE(analysis.algorithm()); EXPECT_FALSE(analysis.algorithm()->isComplete()); EXPECT_FALSE(analysis.algorithm()->failed()); currentAnalysis = analysisDriver.run(analysis,runOptions); analysisDriver.waitForFinished(); EXPECT_EQ(10u,analysis.dataPoints().size()); EXPECT_EQ(0u,analysis.dataPointsToQueue().size()); EXPECT_EQ(10u,analysis.completeDataPoints().size()); EXPECT_EQ(10u,analysis.successfulDataPoints().size()); EXPECT_EQ(0u,analysis.failedDataPoints().size()); } }
TEST_F(AnalysisDriverFixture,RuntimeBehavior_StopDakotaAnalysis) { // Tests for stopping time < 20s. // RETRIEVE PROBLEM Problem problem = retrieveProblem("SimpleHistogramBinUQ",true,false); // DEFINE SEED Model model = model::exampleModel(); openstudio::path p = toPath("./example.osm"); model.save(p,true); FileReference seedModel(p); // CREATE ANALYSIS SamplingAlgorithmOptions algOptions; algOptions.setSamples(100); Analysis analysis("Stop Dakota Analysis", problem, SamplingAlgorithm(algOptions), seedModel); // RUN ANALYSIS if (!dakotaExePath().empty()) { ProjectDatabase database = getCleanDatabase("StopDakotaAnalysis"); AnalysisDriver analysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); StopWatcher watcher(analysisDriver); watcher.watch(analysis.uuid()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); analysisDriver.waitForFinished(); EXPECT_FALSE(analysisDriver.isRunning()); EXPECT_GE(watcher.nComplete(),watcher.stopNum()); EXPECT_LE(watcher.stoppingTime(),openstudio::Time(0,0,0,20)); // check conditions afterward boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_FALSE(jobErrors->errors().empty()); EXPECT_FALSE(currentAnalysis.analysis().dataPoints().empty()); EXPECT_FALSE(currentAnalysis.analysis().algorithm()->isComplete()); EXPECT_FALSE(currentAnalysis.analysis().algorithm()->failed()); EXPECT_EQ(0u,analysisDriver.currentAnalyses().size()); } }
TEST_F(AnalysisDriverFixture, DDACE_MonteCarlo_MixedOsmIdf_ProjectDatabaseOpen) { // RETRIEVE PROBLEM Problem problem = retrieveProblem("MixedOsmIdf",false,false); // DEFINE SEED Model model = model::exampleModel(); openstudio::path p = toPath("./example.osm"); model.save(p,true); FileReference seedModel(p); // CREATE ANALYSIS DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::oas); algOptions.setSamples(4); Analysis analysis("DDACE Monte Carlo Sampling", problem, DDACEAlgorithm(algOptions), seedModel); // RUN ANALYSIS { analysis = Analysis("DDACE Monte Carlo Sampling - MixedOsmIdf", problem, DDACEAlgorithm(algOptions), seedModel); ProjectDatabase database = getCleanDatabase("DDACEMonteCarlo_MixedOsmIdf"); AnalysisDriver analysisDriver = AnalysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_TRUE(jobErrors->errors().empty()); EXPECT_TRUE(analysisDriver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(5u,summary.nRows()); // 4 points summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv")); BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) { EXPECT_TRUE(dataPoint.isComplete()); EXPECT_FALSE(dataPoint.failed()); } } { project::OptionalProjectDatabase oDatabase = project::ProjectDatabase::open(toPath("AnalysisDriverFixtureData/DDACEMonteCarloMixedOsmIdf/DDACEMonteCarlo_MixedOsmIdf.osp")); ASSERT_TRUE(oDatabase); project::AnalysisRecordVector analysisRecords = project::AnalysisRecord::getAnalysisRecords(*oDatabase); EXPECT_EQ(1u,analysisRecords.size()); if (!analysisRecords.empty()) { EXPECT_NO_THROW(analysisRecords[0].analysis()); } } }
TEST_F(AnalysisDriverFixture,RuntimeBehavior_StopOpenStudioAnalysis) { // Tests for stopping time < 20s. // RETRIEVE PROBLEM Problem problem = retrieveProblem("IdfOnly",false,false); // DEFINE SEED FileReference seedModel(resourcesPath() / openstudio::toPath("energyplus/5ZoneAirCooled/in.idf")); // CREATE ANALYSIS DesignOfExperimentsOptions algOptions(DesignOfExperimentsType::FullFactorial); Analysis analysis("Stop OpenStudio Analysis", problem, DesignOfExperiments(algOptions), seedModel); // RUN ANALYSIS ProjectDatabase database = getCleanDatabase("StopOpenStudioAnalysis"); AnalysisDriver analysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); runOptions.setQueueSize(2); StopWatcher watcher(analysisDriver); watcher.watch(analysis.uuid()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_EQ(2,currentAnalysis.numQueuedJobs()); EXPECT_EQ(0,currentAnalysis.numQueuedDakotaJobs()); EXPECT_GE(currentAnalysis.totalNumJobsInOSIteration(),10); EXPECT_EQ(0,currentAnalysis.numCompletedJobsInOSIteration()); analysisDriver.waitForFinished(); EXPECT_FALSE(analysisDriver.isRunning()); EXPECT_GE(watcher.nComplete(),watcher.stopNum()); EXPECT_LE(watcher.stoppingTime(),openstudio::Time(0,0,0,20)); // check conditions afterward EXPECT_TRUE(currentAnalysis.numCompletedJobsInOSIteration() > 0); EXPECT_TRUE(currentAnalysis.analysis().dataPointsToQueue().size() > 0u); EXPECT_TRUE(currentAnalysis.analysis().dataPointsToQueue().size() < currentAnalysis.analysis().dataPoints().size()); EXPECT_EQ(0u,analysisDriver.currentAnalyses().size()); }
TEST_F(AnalysisDriverFixture, FSUDace_CVT_MixedOsmIdf) { // RETRIEVE PROBLEM Problem problem = retrieveProblem("MixedOsmIdf",false,false); // DEFINE SEED Model model = model::exampleModel(); openstudio::path p = toPath("./example.osm"); model.save(p,true); FileReference seedModel(p); // CREATE ANALYSIS FSUDaceAlgorithmOptions algOptions(FSUDaceAlgorithmType::cvt); algOptions.setSamples(3); Analysis analysis("FSUDace CVT", problem, FSUDaceAlgorithm(algOptions), seedModel); // RUN ANALYSIS analysis = Analysis("FSUDace CVT - MixedOsmIdf", problem, FSUDaceAlgorithm(algOptions), seedModel); ProjectDatabase database = getCleanDatabase("FSUDaceCVT_MixedOsmIdf"); AnalysisDriver analysisDriver = AnalysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_TRUE(jobErrors->errors().empty()); EXPECT_TRUE(analysisDriver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); // EXPECT_EQ(10u,summary.nRows()); // 9 points summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv")); BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) { EXPECT_TRUE(dataPoint.isComplete()); EXPECT_FALSE(dataPoint.failed()); } }
TEST_F(AnalysisDriverFixture, DDACE_CentralComposite_Continuous) { // RETRIEVE PROBLEM Problem problem = retrieveProblem("Continuous",true,false); // DEFINE SEED Model model = model::exampleModel(); openstudio::path p = toPath("./example.osm"); model.save(p,true); FileReference seedModel(p); // CREATE ANALYSIS DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::central_composite); Analysis analysis("DDACE Central Composite", problem, DDACEAlgorithm(algOptions), seedModel); // RUN ANALYSIS if (!dakotaExePath().empty()) { ProjectDatabase database = getCleanDatabase("DDACECentralComposite"); AnalysisDriver analysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_TRUE(jobErrors->errors().empty()); // output csv summary of data points Table summary = currentAnalysis.analysis().summaryTable(); summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv")); EXPECT_EQ(DDACEAlgorithmOptions::samplesForCentralComposite(problem),int(summary.nRows()-1)); BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) { EXPECT_TRUE(dataPoint.isComplete()); EXPECT_FALSE(dataPoint.failed()); EXPECT_FALSE(dataPoint.responseValues().empty()); } }
TEST_F(AnalysisDriverFixture, DDACE_LatinHypercube_UserScriptContinuous) { // RETRIEVE PROBLEM Problem problem = retrieveProblem("UserScriptContinuous",true,false); // DEFINE SEED Model model = model::exampleModel(); openstudio::path p = toPath("./example.osm"); model.save(p,true); FileReference seedModel(p); // CREATE ANALYSIS DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::lhs); algOptions.setSamples(10); // RUN ANALYSIS Analysis analysis("DDACE Latin Hypercube Sampling - UserScriptContinuous", problem, DDACEAlgorithm(algOptions), seedModel); ProjectDatabase database = getCleanDatabase("DDACELatinHypercube_UserScriptContinuous"); AnalysisDriver analysisDriver = AnalysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_TRUE(jobErrors->errors().empty()); EXPECT_TRUE(analysisDriver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(11u,summary.nRows()); summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv")); BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) { EXPECT_TRUE(dataPoint.isComplete()); EXPECT_FALSE(dataPoint.failed()); } }
TEST_F(AnalysisDriverFixture, DDACE_LatinHypercube_Continuous) { { // GET SIMPLE PROJECT SimpleProject project = getCleanSimpleProject("DDACE_LatinHypercube_Continuous"); Analysis analysis = project.analysis(); // SET PROBLEM Problem problem = retrieveProblem("Continuous",true,false); analysis.setProblem(problem); // DEFINE SEED Model model = model::exampleModel(); openstudio::path p = toPath("./example.osm"); model.save(p,true); FileReference seedModel(p); analysis.setSeed(seedModel); // CREATE ANALYSIS DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::lhs); DDACEAlgorithm algorithm(algOptions); analysis.setAlgorithm(algorithm); // RUN ANALYSIS AnalysisDriver driver = project.analysisDriver(); AnalysisRunOptions runOptions = standardRunOptions(project.projectDir()); CurrentAnalysis currentAnalysis = driver.run(analysis,runOptions); EXPECT_TRUE(driver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_FALSE(jobErrors->errors().empty()); // require specification of number of samples EXPECT_TRUE(driver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(1u,summary.nRows()); // no points project.clearAllResults(); algOptions.setSamples(4); EXPECT_EQ(4,analysis.algorithm()->cast<DDACEAlgorithm>().ddaceAlgorithmOptions().samples()); currentAnalysis = driver.run(analysis,runOptions); EXPECT_TRUE(driver.waitForFinished()); jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_TRUE(jobErrors->errors().empty()); EXPECT_TRUE(driver.currentAnalyses().empty()); summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(5u,summary.nRows()); summary.save(project.projectDir() / toPath("summary.csv")); BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) { EXPECT_TRUE(dataPoint.isComplete()); EXPECT_FALSE(dataPoint.failed()); // EXPECT_FALSE(dataPoint.responseValues().empty()); } ASSERT_TRUE(analysis.algorithm()); EXPECT_TRUE(analysis.algorithm()->isComplete()); EXPECT_FALSE(analysis.algorithm()->failed()); { AnalysisRecord analysisRecord = project.analysisRecord(); Analysis analysisCopy = analysisRecord.analysis(); ASSERT_TRUE(analysisCopy.algorithm()); EXPECT_TRUE(analysisCopy.algorithm()->isComplete()); EXPECT_FALSE(analysisCopy.algorithm()->failed()); } } LOG(Info,"Restart from existing project."); // Get existing project SimpleProject project = getSimpleProject("DDACE_LatinHypercube_Continuous"); EXPECT_FALSE(project.analysisIsLoaded()); // make sure starting fresh Analysis analysis = project.analysis(); EXPECT_FALSE(analysis.isDirty()); // Add custom data point std::vector<QVariant> values; values.push_back(0.0); values.push_back(0.8); values.push_back(int(0)); OptionalDataPoint dataPoint = analysis.problem().createDataPoint(values); ASSERT_TRUE(dataPoint); analysis.addDataPoint(*dataPoint); EXPECT_EQ(1u,analysis.dataPointsToQueue().size()); ASSERT_TRUE(analysis.algorithm()); EXPECT_TRUE(analysis.algorithm()->isComplete()); EXPECT_FALSE(analysis.algorithm()->failed()); EXPECT_TRUE(analysis.isDirty()); EXPECT_FALSE(analysis.resultsAreInvalid()); EXPECT_FALSE(analysis.dataPointsAreInvalid()); // get last modified time of a file in a completed data point to make sure nothing is re-run DataPointVector completePoints = analysis.completeDataPoints(); ASSERT_FALSE(completePoints.empty()); OptionalFileReference inputFileRef = completePoints[0].osmInputData(); ASSERT_TRUE(inputFileRef); QFileInfo inputFileInfo(toQString(inputFileRef->path())); QDateTime inputFileModifiedTestTime = inputFileInfo.lastModified(); EXPECT_EQ(1u,analysis.dataPointsToQueue().size()); AnalysisDriver driver = project.analysisDriver(); CurrentAnalysis currentAnalysis = driver.run( analysis, standardRunOptions(project.projectDir())); EXPECT_TRUE(driver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); EXPECT_FALSE(jobErrors); // should not try to re-run DakotaAlgorithm EXPECT_TRUE(driver.currentAnalyses().empty()); EXPECT_TRUE(analysis.dataPointsToQueue().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(6u,summary.nRows()); summary.save(project.projectDir() / toPath("summary_post_restart.csv")); // RunManager should not re-run any data points EXPECT_EQ(inputFileModifiedTestTime,inputFileInfo.lastModified()); }
TEST_F(AnalysisDriverFixture, DDACE_Grid_Continuous) { // RETRIEVE PROBLEM Problem problem = retrieveProblem("Continuous",true,false); // DEFINE SEED Model model = model::exampleModel(); openstudio::path p = toPath("./example.osm"); model.save(p,true); FileReference seedModel(p); // CREATE ANALYSIS DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::grid); Analysis analysis("DDACE Grid Sampling", problem, DDACEAlgorithm(algOptions), seedModel); // RUN ANALYSIS { ProjectDatabase database = getCleanDatabase("DDACEGridSampling_NoSamples"); AnalysisDriver analysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); runOptions.setQueueSize(4); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_FALSE(jobErrors->errors().empty()); // require specification of number of samples EXPECT_TRUE(analysisDriver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(1u,summary.nRows()); // no points } // ETH@20120120 At first tried just using the same database, analysisdriver, etc., but // it did not go well. Restarting an initially failed Dakota analysis should be part of // enabling Dakota restart more generally. { // algorithm rounds samples up to next one that fits n**(problem.numVariables()) algOptions.setSamples(6); analysis = Analysis("DDACE Grid Sampling - Wrong Samples", problem, DDACEAlgorithm(algOptions), seedModel); ProjectDatabase database = getCleanDatabase("DDACEGridSampling_WrongSamples"); AnalysisDriver analysisDriver = AnalysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_TRUE(jobErrors->errors().empty()); EXPECT_TRUE(analysisDriver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(10u,summary.nRows()); // 9 points summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv")); BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) { EXPECT_TRUE(dataPoint.isComplete()); EXPECT_FALSE(dataPoint.failed()); // EXPECT_FALSE(dataPoint.responseValues().empty()); } } { // algorithm rounds samples up to next one that fits n**(problem.numVariables()) algOptions.setSamplesForGrid(2,problem); analysis = Analysis("DDACE Grid Sampling - Correct Samples", problem, DDACEAlgorithm(algOptions), seedModel); ProjectDatabase database = getCleanDatabase("DDACEGridSampling_CorrectSamples"); AnalysisDriver analysisDriver = AnalysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_TRUE(jobErrors->errors().empty()); EXPECT_TRUE(analysisDriver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(5u,summary.nRows()); // 4 points summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv")); BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) { EXPECT_TRUE(dataPoint.isComplete()); EXPECT_FALSE(dataPoint.failed()); // EXPECT_FALSE(dataPoint.responseValues().empty()); } } }
TEST_F(AnalysisDriverFixture, DDACE_OrthogonalArray_Continuous) { // RETRIEVE PROBLEM Problem problem = retrieveProblem("Continuous",true,false); // DEFINE SEED Model model = model::exampleModel(); openstudio::path p = toPath("./example.osm"); model.save(p,true); FileReference seedModel(p); // CREATE ANALYSIS DDACEAlgorithmOptions algOptions(DDACEAlgorithmType::oas); Analysis analysis("DDACE Orthogonal Array Sampling", problem, DDACEAlgorithm(algOptions), seedModel); // RUN ANALYSIS { ProjectDatabase database = getCleanDatabase("DDACEOrthogonalArray_NoSamples"); AnalysisDriver analysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_FALSE(jobErrors->errors().empty()); // require specification of number of samples EXPECT_TRUE(analysisDriver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(1u,summary.nRows()); // no points } { algOptions.setSamples(6); // symbols = 0 analysis = Analysis("DDACE Orthogonal Array Sampling - Wrong Samples", problem, DDACEAlgorithm(algOptions), seedModel); ProjectDatabase database = getCleanDatabase("DDACEOrthogonalArray_WrongSamples"); AnalysisDriver analysisDriver = AnalysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_TRUE(jobErrors->errors().empty()); EXPECT_TRUE(analysisDriver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(10u,summary.nRows()); // 9 points summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv")); BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) { EXPECT_TRUE(dataPoint.isComplete()); EXPECT_FALSE(dataPoint.failed()); // EXPECT_FALSE(dataPoint.responseValues().empty()); } } { bool ok = algOptions.setSamplesAndSymbolsForOrthogonalArray(6,1); EXPECT_FALSE(ok); ok = algOptions.setSamplesAndSymbolsForOrthogonalArray(2,2); // 2,3 not ok for no apparent reason EXPECT_TRUE(ok); ASSERT_TRUE(algOptions.symbols()); EXPECT_EQ(2,algOptions.symbols().get()); ASSERT_TRUE(algOptions.samples()); EXPECT_EQ(8,algOptions.samples().get()); analysis = Analysis("DDACE Orthogonal Array Sampling - Correct Samples", problem, DDACEAlgorithm(algOptions), seedModel); ProjectDatabase database = getCleanDatabase("DDACEOrthogonalArray_CorrectSamples"); AnalysisDriver analysisDriver = AnalysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_TRUE(analysisDriver.waitForFinished()); boost::optional<runmanager::JobErrors> jobErrors = currentAnalysis.dakotaJobErrors(); ASSERT_TRUE(jobErrors); EXPECT_TRUE(jobErrors->errors().empty()); EXPECT_TRUE(analysisDriver.currentAnalyses().empty()); Table summary = currentAnalysis.analysis().summaryTable(); EXPECT_EQ(9u,summary.nRows()); summary.save(analysisDriver.database().path().parent_path() / toPath("summary.csv")); BOOST_FOREACH(const DataPoint& dataPoint,analysis.dataPoints()) { EXPECT_TRUE(dataPoint.isComplete()); EXPECT_FALSE(dataPoint.failed()); } } }
TEST_F(AnalysisDriverFixture,RuntimeBehavior_StopCustomAnalysis) { // Tests for stopping time < 20s. // RETRIEVE PROBLEM Problem problem = retrieveProblem("UserScriptContinuous",true,false); // DEFINE SEED Model model = model::exampleModel(); openstudio::path p = toPath("./example.osm"); model.save(p,true); FileReference seedModel(p); // CREATE ANALYSIS Analysis analysis("Stop Custom Analysis", problem, seedModel); // generate 100 random points boost::mt19937 mt; typedef boost::uniform_real<> dist_type; typedef boost::variate_generator<boost::mt19937&, dist_type > gen_type; InputVariableVector variables = problem.variables(); ContinuousVariable cvar = variables[0].cast<ContinuousVariable>(); gen_type generator0(mt,dist_type(cvar.minimum().get(),cvar.maximum().get())); cvar = variables[1].cast<ContinuousVariable>(); gen_type generator1(mt,dist_type(cvar.minimum().get(),cvar.maximum().get())); cvar = variables[2].cast<ContinuousVariable>(); gen_type generator2(mt,dist_type(cvar.minimum().get(),cvar.maximum().get())); for (int i = 0, n = 100; i < n; ++i) { std::vector<QVariant> values; double value = generator0(); values.push_back(value); value = generator1(); values.push_back(value); value = generator2(); values.push_back(value); OptionalDataPoint dataPoint = problem.createDataPoint(values); ASSERT_TRUE(dataPoint); ASSERT_TRUE(analysis.addDataPoint(*dataPoint)); } // RUN ANALYSIS ProjectDatabase database = getCleanDatabase("StopCustomAnalysis"); AnalysisDriver analysisDriver(database); AnalysisRunOptions runOptions = standardRunOptions(analysisDriver.database().path().parent_path()); runOptions.setQueueSize(2); StopWatcher watcher(analysisDriver); watcher.watch(analysis.uuid()); CurrentAnalysis currentAnalysis = analysisDriver.run(analysis,runOptions); EXPECT_EQ(2,currentAnalysis.numQueuedJobs()); EXPECT_EQ(0,currentAnalysis.numQueuedDakotaJobs()); EXPECT_EQ(100,currentAnalysis.totalNumJobsInOSIteration()); EXPECT_EQ(0,currentAnalysis.numCompletedJobsInOSIteration()); analysisDriver.waitForFinished(); EXPECT_FALSE(analysisDriver.isRunning()); EXPECT_GE(watcher.nComplete(),watcher.stopNum()); EXPECT_LE(watcher.stoppingTime(),openstudio::Time(0,0,0,20)); // check conditions afterward RunManager runManager = analysisDriver.database().runManager(); EXPECT_FALSE(runManager.workPending()); BOOST_FOREACH(const Job& job,runManager.getJobs()) { EXPECT_FALSE(job.running()); EXPECT_FALSE(job.treeRunning()); } EXPECT_TRUE(currentAnalysis.numCompletedJobsInOSIteration() > 0); EXPECT_TRUE(currentAnalysis.analysis().dataPointsToQueue().size() > 0u); EXPECT_TRUE(currentAnalysis.analysis().dataPointsToQueue().size() < 100u); EXPECT_EQ(0u,analysisDriver.currentAnalyses().size()); }