Example #1
0
inline void
MakeOneTwoOne( DistMatrix<T,U,V>& A )
{
#ifndef RELEASE
    PushCallStack("MakeOnes");
#endif
    if( A.Height() != A.Width() )
        throw std::logic_error("Cannot make a non-square matrix 1-2-1");
    MakeZeros( A );

    const int localHeight = A.LocalHeight();
    const int localWidth = A.LocalWidth();
    const int colShift = A.ColShift();
    const int rowShift = A.RowShift();
    const int colStride = A.ColStride();
    const int rowStride = A.RowStride();
    for( int jLocal=0; jLocal<localWidth; ++jLocal )
    {
        const int j = rowShift + jLocal*rowStride;
        for( int iLocal=0; iLocal<localHeight; ++iLocal )
        {
            const int i = colShift + iLocal*colStride;
            if( i == j )
                A.SetLocalEntry( iLocal, jLocal, (T)2 );
            else if( i == j-1 || i == j+1 )
                A.SetLocalEntry( iLocal, jLocal, (T)1 );
        }
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
Example #2
0
inline void
Diagonal( const std::vector<T>& d, DistMatrix<T,U,V>& D )
{
#ifndef RELEASE
    PushCallStack("Diagonal");
#endif
    const int n = d.size();
    D.ResizeTo( n, n );
    MakeZeros( D );

    const int localHeight = D.LocalHeight();
    const int localWidth = D.LocalWidth();
    const int colShift = D.ColShift();
    const int rowShift = D.RowShift();
    const int colStride = D.ColStride();
    const int rowStride = D.RowStride();
    for( int jLocal=0; jLocal<localWidth; ++jLocal )
    {
        const int j = rowShift + jLocal*rowStride;
        if( (j-colShift+colStride) % colStride == 0 )
        {
            const int iLocal = (j-colShift) / colStride;
            D.SetLocalEntry( iLocal, jLocal, d[j] );
        }
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
Example #3
0
inline void
MakeHilbert( DistMatrix<F,U,V>& A )
{
#ifndef RELEASE
    PushCallStack("MakeHilbert");
#endif
    const int m = A.Height();
    const int n = A.Width();
    if( m != n )
        throw std::logic_error("Cannot make a non-square matrix Hilbert");

    const F one = static_cast<F>(1);
    const int localHeight = A.LocalHeight();
    const int localWidth = A.LocalWidth();
    const int colShift = A.ColShift();
    const int rowShift = A.RowShift();
    const int colStride = A.ColStride();
    const int rowStride = A.RowStride();
    for( int jLocal=0; jLocal<localWidth; ++jLocal )
    {
        const int j = rowShift + jLocal*rowStride;
        for( int iLocal=0; iLocal<localHeight; ++iLocal )
        {
            const int i = colShift + iLocal*colStride;
            A.SetLocalEntry( iLocal, jLocal, one/(i+j+1) );
        }
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
Example #4
0
inline void
CauchyLike
( const std::vector<F>& r, const std::vector<F>& s, 
  const std::vector<F>& x, const std::vector<F>& y, 
  DistMatrix<F,U,V>& A )
{
#ifndef RELEASE
    PushCallStack("CauchyLike");
#endif
    const int m = r.size();
    const int n = s.size();
    if( x.size() != (unsigned)m )
        throw std::logic_error("x vector was the wrong length");
    if( y.size() != (unsigned)n )
        throw std::logic_error("y vector was the wrong length");
    A.ResizeTo( m, n );

    const int localHeight = A.LocalHeight();
    const int localWidth = A.LocalWidth();
    const int colShift = A.ColShift();
    const int rowShift = A.RowShift();
    const int colStride = A.ColStride();
    const int rowStride = A.RowStride();
    for( int jLocal=0; jLocal<localWidth; ++jLocal )
    {
        const int j = rowShift + jLocal*rowStride;
        for( int iLocal=0; iLocal<localHeight; ++iLocal )
        {
            const int i = colShift + iLocal*colStride;
#ifndef RELEASE
            // TODO: Use tolerance instead?
            if( x[i] == y[j] )
            {
                std::ostringstream msg;
                msg << "x[" << i << "] = y[" << j << "] (" << x[i] 
                    << ") is not allowed for Cauchy-like matrices";
                throw std::logic_error( msg.str().c_str() );
            }
#endif
            A.SetLocalEntry( iLocal, jLocal, r[i]*s[j]/(x[i]-y[j]) );
        }
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
Example #5
0
inline void
internal::PanelLU
( DistMatrix<F,  STAR,STAR>& A, 
  DistMatrix<F,  MC,  STAR>& B, 
  DistMatrix<int,STAR,STAR>& p, 
  int pivotOffset )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLU");
    if( A.Grid() != p.Grid() || p.Grid() != B.Grid() )
        throw std::logic_error
        ("Matrices must be distributed over the same grid");
    if( A.Width() != B.Width() )
        throw std::logic_error("A and B must be the same width");
    if( A.Height() != p.Height() || p.Width() != 1 )
        throw std::logic_error("p must be a vector that conforms with A");
#endif
    const Grid& g = A.Grid();
    const int r = g.Height();
    const int colShift = B.ColShift();
    const int colAlignment = B.ColAlignment();

    // Matrix views
    DistMatrix<F,STAR,STAR> 
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),  
                         A20(g), a21(g),     A22(g);

    DistMatrix<F,MC,STAR>
        BL(g), BR(g),
        B0(g), b1(g), B2(g);

    DistMatrix<int,STAR,STAR>
        pT(g),  p0(g),
        pB(g),  psi1(g),
                p2(g);

    const int width = A.Width();
    const int numBytes = (width+1)*sizeof(F)+sizeof(int);
    std::vector<byte> sendData(numBytes);
    std::vector<byte> recvData(numBytes);

    // Extract pointers to send and recv data
    F* sendBufFloat = (F*) &sendData[0];
    F* recvBufFloat = (F*) &recvData[0];
    int* sendBufInt = (int*) &sendData[(width+1)*sizeof(F)];
    int* recvBufInt = (int*) &recvData[(width+1)*sizeof(F)];

    // Start the algorithm
    PushBlocksizeStack( 1 );
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionRight( B, BL, BR, 0 );
    PartitionDown
    ( p, pT,
         pB, 0 );
    while( ATL.Height() < A.Height() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        RepartitionRight
        ( BL, /**/ BR,  
          B0, /**/ b1, B2 );

        RepartitionDown
        ( pT,  p0,
         /**/ /****/
               psi1,
          pB,  p2 );

        //--------------------------------------------------------------------//
        
        // Store the index/value of the pivot candidate in A
        F pivotValue = alpha11.GetLocalEntry(0,0);
        int pivotIndex = a01.Height();
        for( int i=0; i<a21.Height(); ++i )
        {
            F value = a21.GetLocalEntry(i,0);
            if( FastAbs(value) > FastAbs(pivotValue) )
            {
                pivotValue = value;
                pivotIndex = a01.Height() + i + 1;
            }
        }

        // Update the pivot candidate to include local data from B
        for( int i=0; i<B.LocalHeight(); ++i )
        {
            F value = b1.GetLocalEntry(i,0);
            if( FastAbs(value) > FastAbs(pivotValue) )
            {
                pivotValue = value;
                pivotIndex = A.Height() + colShift + i*r;
            }
        }

        // Fill the send buffer with:
        // [ pivotValue | pivotRow | pivotIndex ]
        if( pivotIndex < A.Height() )
        {
            sendBufFloat[0] = A.GetLocalEntry(pivotIndex,a10.Width());

            const int ALDim = A.LocalLDim();
            const F* ABuffer = A.LocalBuffer(pivotIndex,0);
            for( int j=0; j<width; ++j )
                sendBufFloat[j+1] = ABuffer[j*ALDim];
        }
        else
        {
            const int localIndex = ((pivotIndex-A.Height())-colShift)/r;
            sendBufFloat[0] = b1.GetLocalEntry(localIndex,0);

            const int BLDim = B.LocalLDim();
            const F* BBuffer = B.LocalBuffer(localIndex,0);
            for( int j=0; j<width; ++j )
                sendBufFloat[j+1] = BBuffer[j*BLDim];
        }
        *sendBufInt = pivotIndex;

        // Communicate to establish the pivot information
        mpi::AllReduce
        ( &sendData[0], &recvData[0], numBytes, PivotOp<F>(), g.ColComm() );

        // Update the pivot vector
        const int maxIndex = *recvBufInt;
        p.SetLocalEntry(a01.Height(),0,maxIndex+pivotOffset);

        // Copy the current row into the pivot row
        if( maxIndex < A.Height() )
        {
            const int ALDim = A.LocalLDim();
            F* ASetBuffer = A.LocalBuffer(maxIndex,0);
            const F* AGetBuffer = A.LocalBuffer(A00.Height(),0);
            for( int j=0; j<width; ++j )
                ASetBuffer[j*ALDim] = AGetBuffer[j*ALDim];
        }
        else
        {
            const int ownerRank = (colAlignment+(maxIndex-A.Height())) % r;
            if( g.Row() == ownerRank )
            {
                const int localIndex = ((maxIndex-A.Height())-colShift) / r;

                const int ALDim = A.LocalLDim();
                const int BLDim = B.LocalLDim();
                F* BBuffer = B.LocalBuffer(localIndex,0);
                const F* ABuffer = A.LocalBuffer(A00.Height(),0);
                for( int j=0; j<width; ++j )
                    BBuffer[j*BLDim] = ABuffer[j*ALDim];
            }
        }

        // Copy the pivot row into the current row
        {
            F* ABuffer = A.LocalBuffer(A00.Height(),0);
            const int ALDim = A.LocalLDim();
            for( int j=0; j<width; ++j )
                ABuffer[j*ALDim] = recvBufFloat[j+1];
        }

        // Now we can perform the update of the current panel
        F alpha = alpha11.GetLocalEntry(0,0);
        if( alpha == (F)0 )
            throw SingularMatrixException();
        F alpha11Inv = ((F)1) / alpha;
        Scal( alpha11Inv, a21.LocalMatrix() );
        Scal( alpha11Inv, b1.LocalMatrix()  );
        Geru( (F)-1, a21.LocalMatrix(), a12.LocalMatrix(), A22.LocalMatrix() );
        Geru( (F)-1, b1.LocalMatrix(), a12.LocalMatrix(), B2.LocalMatrix() );
        //--------------------------------------------------------------------//

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );

        SlidePartitionRight
        ( BL,     /**/ BR,  
          B0, b1, /**/ B2 );

        SlidePartitionDown
        ( pT,  p0,
               psi1,
         /**/ /****/
          pB,  p2 );
    }
    PopBlocksizeStack();

#ifndef RELEASE
    PopCallStack();
#endif
}