EndCriteria::Type LevenbergMarquardt::minimize(Problem& P, const EndCriteria& endCriteria) { EndCriteria::Type ecType = EndCriteria::None; P.reset(); Array x_ = P.currentValue(); currentProblem_ = &P; initCostValues_ = P.costFunction().values(x_); int m = initCostValues_.size(); int n = x_.size(); boost::scoped_array<double> xx(new double[n]); std::copy(x_.begin(), x_.end(), xx.get()); boost::scoped_array<double> fvec(new double[m]); boost::scoped_array<double> diag(new double[n]); int mode = 1; double factor = 1; int nprint = 0; int info = 0; int nfev =0; boost::scoped_array<double> fjac(new double[m*n]); int ldfjac = m; boost::scoped_array<int> ipvt(new int[n]); boost::scoped_array<double> qtf(new double[n]); boost::scoped_array<double> wa1(new double[n]); boost::scoped_array<double> wa2(new double[n]); boost::scoped_array<double> wa3(new double[n]); boost::scoped_array<double> wa4(new double[m]); // requirements; check here to get more detailed error messages. QL_REQUIRE(n > 0, "no variables given"); QL_REQUIRE(m >= n, "less functions (" << m << ") than available variables (" << n << ")"); QL_REQUIRE(endCriteria.functionEpsilon() >= 0.0, "negative f tolerance"); QL_REQUIRE(xtol_ >= 0.0, "negative x tolerance"); QL_REQUIRE(gtol_ >= 0.0, "negative g tolerance"); QL_REQUIRE(endCriteria.maxIterations() > 0, "null number of evaluations"); // call lmdif to minimize the sum of the squares of m functions // in n variables by the Levenberg-Marquardt algorithm. MINPACK::LmdifCostFunction lmdifCostFunction = boost::bind(&LevenbergMarquardt::fcn, this, _1, _2, _3, _4, _5); MINPACK::lmdif(m, n, xx.get(), fvec.get(), static_cast<double>(endCriteria.functionEpsilon()), static_cast<double>(xtol_), static_cast<double>(gtol_), static_cast<int>(endCriteria.maxIterations()), static_cast<double>(epsfcn_), diag.get(), mode, factor, nprint, &info, &nfev, fjac.get(), ldfjac, ipvt.get(), qtf.get(), wa1.get(), wa2.get(), wa3.get(), wa4.get(), lmdifCostFunction); info_ = info; // check requirements & endCriteria evaluation QL_REQUIRE(info != 0, "MINPACK: improper input parameters"); //QL_REQUIRE(info != 6, "MINPACK: ftol is too small. no further " // "reduction in the sum of squares " // "is possible."); if (info != 6) ecType = QuantLib::EndCriteria::StationaryFunctionValue; //QL_REQUIRE(info != 5, "MINPACK: number of calls to fcn has " // "reached or exceeded maxfev."); endCriteria.checkMaxIterations(nfev, ecType); QL_REQUIRE(info != 7, "MINPACK: xtol is too small. no further " "improvement in the approximate " "solution x is possible."); QL_REQUIRE(info != 8, "MINPACK: gtol is too small. fvec is " "orthogonal to the columns of the " "jacobian to machine precision."); // set problem std::copy(xx.get(), xx.get()+n, x_.begin()); P.setCurrentValue(x_); P.setFunctionValue(P.costFunction().value(x_)); return ecType; }
EndCriteria::Type HybridSimulatedAnnealing<Sampler, Probability, Temperature, Reannealing>::minimize(Problem &P, const EndCriteria &endCriteria) { EndCriteria::Type ecType = EndCriteria::None; P.reset(); reannealing_.setProblem(P); Array x = P.currentValue(); Size n = x.size(); Size k = 1; Size kStationary = 1; Size kReAnneal = 1; Size kReset = 1; Size maxK = endCriteria.maxIterations(); Size maxKStationary = endCriteria.maxStationaryStateIterations(); bool temperatureBreached = false; Array currentTemperature(n, startTemperature_); Array annealStep(n, 1.0); Array bestPoint(x); Array currentPoint(x); Array startingPoint(x); Array newPoint(x); Real bestValue = P.value(bestPoint); Real currentValue = bestValue; Real startingValue = bestValue; //to reset to starting point if desired while (k <= maxK && kStationary <= maxKStationary && !temperatureBreached) { //Draw a new sample point sampler_(newPoint, currentPoint, currentTemperature); //Evaluate new point Real newValue = P.value(newPoint); //Determine if new point is accepted if (probability_(currentValue, newValue, currentTemperature)) { if (optimizeScheme_ == EveryNewPoint) { P.setCurrentValue(newPoint); P.setFunctionValue(newValue); localOptimizer_->minimize(P, endCriteria); newPoint = P.currentValue(); newValue = P.functionValue(); } currentPoint = newPoint; currentValue = newValue; } //Check if we have a new best point if (newValue < bestValue) { if (optimizeScheme_ == EveryBestPoint) { P.setCurrentValue(newPoint); P.setFunctionValue(newValue); localOptimizer_->minimize(P, endCriteria); newPoint = P.currentValue(); newValue = P.functionValue(); } kStationary = 0; bestValue = newValue; bestPoint = newPoint; } //Increase steps k++; kStationary++; for (Size i = 0; i < annealStep.size(); i++) annealStep[i]++; //Reanneal if necessary if (kReAnneal == reAnnealSteps_) { kReAnneal = 0; reannealing_(annealStep, currentPoint, currentValue, currentTemperature); } kReAnneal++; //Reset if necessary if (kReset == resetSteps_) { kReset = 0; switch (resetScheme_) { case NoResetScheme: break; case ResetToBestPoint: currentPoint = startingPoint; currentValue = startingValue; break; case ResetToOrigin: currentPoint = bestPoint; currentValue = bestValue; break; } } kReset++; //Update the current temperature according to current step temperature_(currentTemperature, currentTemperature, annealStep); //Check if temperature condition is breached for (Size i = 0; i < n; i++) temperatureBreached = temperatureBreached && currentTemperature[i] < endTemperature_; } //Change end criteria type if appropriate if (k > maxK) ecType = EndCriteria::MaxIterations; else if (kStationary > maxKStationary) ecType = EndCriteria::StationaryPoint; //Set result to best point P.setCurrentValue(bestPoint); P.setFunctionValue(bestValue); return ecType; }
EndCriteria::Type FireflyAlgorithm::minimize(Problem &P, const EndCriteria &endCriteria) { QL_REQUIRE(!P.constraint().empty(), "Firefly Algorithm is a constrained optimizer"); EndCriteria::Type ecType = EndCriteria::None; P.reset(); Size iteration = 0; Size iterationStat = 0; Size maxIteration = endCriteria.maxIterations(); Size maxIStationary = endCriteria.maxStationaryStateIterations(); startState(P, endCriteria); bool isFA = Mfa_ > 0 ? true : false; //Variables for DE Array z(N_, 0.0); Size indexBest, indexR1, indexR2; //Set best value & position Real bestValue = values_[0].first; Size bestPosition = 0; for (Size i = 1; i < M_; i++) { if (values_[i].first < bestValue) { bestPosition = i; bestValue = values_[i].first; } } Array bestX = x_[bestPosition]; //Run optimization do { iteration++; iterationStat++; //Check if stopping criteria is met if (iteration > maxIteration || iterationStat > maxIStationary) break; //Divide into two subpopulations //First sort values std::sort(values_.begin(), values_.end()); //Differential evolution if(Mfa_ < M_){ Size indexBest = values_[0].second; Array& xBest = x_[indexBest]; for (Size i = Mfa_; i < M_; i++) { if (!isFA) { //Pure DE requires random index indexBest = drawIndex_(); xBest = x_[indexBest]; } do { indexR1 = drawIndex_(); } while(indexR1 == indexBest); do { indexR2 = drawIndex_(); } while(indexR2 == indexBest || indexR2 == indexR1); Size index = values_[i].second; Array& x = x_[index]; Array& xR1 = x_[indexR1]; Array& xR2 = x_[indexR2]; for (Size j = 0; j < N_; j++) { if (rng_.nextReal() <= crossover_) { //Change x[j] according to crossover z[j] = xBest[j] + mutation_*(xR1[j] - xR2[j]); } else { z[j] = x[j]; } } Real val = P.value(z); if (val < values_[index].first) { //Accept new point x = z; values_[index].first = val; //mark best if (val < bestValue) { bestValue = val; bestX = x; iterationStat = 0; } } } } //Firefly algorithm if(isFA){ //According to the intensity, determine best global position intensity_->findBrightest(); //Prepare random walk randomWalk_->walk(); //Loop over particles for (Size i = 0; i < Mfa_; i++) { Size index = values_[i].second; Array& x = x_[index]; Array& xI = xI_[index]; Array& xRW = xRW_[index]; //Loop over dimensions for (Size j = 0; j < N_; j++) { //Update position x[j] += xI[j] + xRW[j]; //Enforce bounds on positions if (x[j] < lX_[j]) { x[j] = lX_[j]; } else if (x[j] > uX_[j]) { x[j] = uX_[j]; } } //Evaluate x & mark best values_[index].first = P.value(x); if (values_[index].first < bestValue) { bestValue = values_[index].first; bestX = x; iterationStat = 0; } } } } while (true); if (iteration > maxIteration) ecType = EndCriteria::MaxIterations; else ecType = EndCriteria::StationaryPoint; //Set result to best point P.setCurrentValue(bestX); P.setFunctionValue(bestValue); return ecType; }
EndCriteria::Type DifferentialEvolution::minimize(Problem& P, const EndCriteria& endCriteria) { EndCriteria::Type ecType = EndCriteria::MaxIterations; QL_REQUIRE(P.currentValue().size() == nParam_, "Number of parameters mismatch between problem and DE optimizer"); P.reset(); init(); Real bestCost = QL_MAX_REAL; Size bestPop = 0; for (Size p = 0; p < nPop_; ++p) { Array tmp(currGen_[p].pop_); try { currGen_[p].cost_ = P.costFunction().value(tmp); } catch (Error&) { currGen_[p].cost_ = QL_MAX_REAL; } if (currGen_[p].cost_ < bestCost) { bestPop = p; bestCost = currGen_[p].cost_; } } Size lastChange = 0; Size lastParamChange = 0; for(Size i=0; i<endCriteria.maxIterations(); ++i) { Size newBestPop = bestPop; Real newBestCost = bestCost; for (Size p=0; p<nPop_; ++p) { // Find 3 different populations randomly Size r1; do { r1 = static_cast <Size> (uniformRng_.nextInt32() % nPop_); } while(r1 == p || r1 == bestPop); Size r2; do { r2 = static_cast <Size> (uniformRng_.nextInt32() % nPop_); } while ( r2 == p || r2 == bestPop || r2 == r1); Size r3; do { r3 = static_cast <Size> (uniformRng_.nextInt32() % nPop_); } while ( r3 == p || r3 == bestPop || r3 == r1 || r3 == r2); for(Size j=0; j<nParam_; ++j) { nextGen_[p].pop_[j] = currGen_[p].pop_[j]; } Size j = static_cast <Size> (uniformRng_.nextInt32() % nParam_); Size L = 0; do { const double tmp = currGen_[ p].pop_[j] * a0_ + currGen_[ r1].pop_[j] * a1_ + currGen_[ r2].pop_[j] * a2_ + currGen_[ r3].pop_[j] * a3_ + currGen_[bestPop].pop_[j] * aBest_; nextGen_[p].pop_[j] = std::min(maxParams_[j], std::max(minParams_[j], tmp)); j = (j+1)%nParam_; ++L; } while ((uniformRng_.nextReal() < CR_) && (L < nParam_)); // Evaluate the new population Array tmp(nextGen_[p].pop_); try { nextGen_[p].cost_ = P.costFunction().value(tmp); } catch (Error&) { nextGen_[p].cost_ = QL_MAX_REAL; } // Not better, discard it and keep the old one. if (nextGen_[p].cost_ >= currGen_[p].cost_) { nextGen_[p] = currGen_[p]; } // Better, keep it. else { // New best? if (nextGen_[p].cost_ < newBestCost) { newBestPop = p; newBestCost = nextGen_[p].cost_; } } } if(std::abs(newBestCost-bestCost) > endCriteria.functionEpsilon()) { lastChange = i; } const Array absDiff = Abs(nextGen_[newBestPop].pop_-currGen_[bestPop].pop_); if(*std::max_element(absDiff.begin(), absDiff.end()) > endCriteria.rootEpsilon()) { lastParamChange = i; } bestPop = newBestPop; bestCost = newBestCost; currGen_ = nextGen_; if(i-lastChange > endCriteria.maxStationaryStateIterations()) { ecType = EndCriteria::StationaryFunctionValue; break; } if(i-lastParamChange > endCriteria.maxStationaryStateIterations()) { ecType = EndCriteria::StationaryPoint; break; } if (adaptive_) adaptParameters(); } const Array res(currGen_[bestPop].pop_); P.setCurrentValue(res); P.setFunctionValue(bestCost); return ecType; }
inline void setSize(Size M, Size N, Real c0, const EndCriteria &endCriteria) { N_ = N; c0_ = c0; iteration_ = 0; maxIterations_ = endCriteria.maxIterations(); }