Example #1
0
double Interval::delta(const Interval& x) const {
	if (is_empty()) return 0;
	if (x.is_empty()) return diam();

	// ** warning **
	// checking if *this or x is infinite by
	// testing if the lower/upper bounds are -oo/+oo
	// is not enough because diam() may return +oo even
	// with finite bounds (e.g, very large intervals like [-DBL_MAX,DBL_MAX]).
    // ("almost-unboundedness")

	volatile double d=diam();
	volatile double dx=x.diam();
	// furthermore, if these variables are not declared volatile
	// conditions like d==POS_INFINITY are evaluated
	// to FALSE for intervals like [-DBL_MAX,DBL_MAX] (with -O3 option)
	// while the returned expression (d-dx) evaluates to +oo (instead of 0).

	if (d==POS_INFINITY) {
		//cout << "d=" << d << " dx=" << dx << endl;
		if (dx==POS_INFINITY) {
			double left=(x.lb()==NEG_INFINITY? 0 : x.lb()-lb());
			double right=(x.ub()==POS_INFINITY? 0 : ub()-x.ub());
			//cout << "left=" << left << " right=" << right << endl;
			return left+right;
		} else
			return POS_INFINITY;
	}
	else return d-dx;
}
Example #2
0
void TestIbex::check(const Interval& y_actual, const Interval& y_expected) {
	//cout << "TestIbex::check:    " << y_expected << " (expected)        " << y_actual << " (actual)"<< endl;
	if (y_expected.is_empty()) { TEST_ASSERT(y_actual.is_empty()); return; }

	TEST_ASSERT(!y_actual.is_empty());
	TEST_ASSERT(!isnan(y_actual.lb()));
	TEST_ASSERT(!isnan(y_actual.ub()));
	TEST_ASSERT_DELTA(y_actual.lb(),y_expected.lb(),ERROR);
	TEST_ASSERT_DELTA(y_actual.ub(),y_expected.ub(),ERROR);
}
Example #3
0
CtcPolytopeHull::CtcPolytopeHull(LinearRelax& lr, ctc_mode cmode, int max_iter, int time_out, double eps, Interval limit_diam, bool init_lp) : Ctc(lr.sys.nb_var), lr(lr), sys(lr.sys),
		goal_var(-1), cmode(cmode), limit_diam_box(eps>limit_diam.lb()? eps : limit_diam.lb(), limit_diam.ub()) {

	if (dynamic_cast<const ExtendedSystem*>(&lr.sys)) {
		(int&) goal_var=((const ExtendedSystem&) lr.sys).goal_var();
	}

	mylinearsolver = NULL;
	if (init_lp) mylinearsolver = new LinearSolver(nb_var, lr.sys.nb_ctr, max_iter, time_out, eps);

}
Example #4
0
bool TestIbex::almost_eq(const Interval& y_actual, const Interval& y_expected, double err) {
	if (y_actual.is_empty() && y_expected.is_empty()) return true;

	if (y_actual.lb()==NEG_INFINITY)
		if (y_expected.lb()!=NEG_INFINITY) return false;
		else;
	else if (fabs(y_actual.lb()-y_expected.lb())> err) return false;

	if (y_actual.ub()==POS_INFINITY)
		if (y_expected.ub()!=POS_INFINITY) return false;
		else;
	else if (fabs(y_actual.ub()-y_expected.ub())> err) return false;

	return true;
}
Example #5
0
Interval Tube::at(const Interval& time) const {
	assert(time.lb()>=_t0 && time.ub()<=_tf);
	Interval temp(Interval::EMPTY_SET);
	int first_idx=(int)round(time.lb()/_deltaT);
	int last_idx=(int)round(time.ub()/_deltaT);
	for(int i=first_idx;i<last_idx;i++) {
		temp=temp|(*this)[i];
	}
	/*
    for(double t=time.lb();t<time.ub();t+=_deltaT){
        temp=temp|(*this)[(int)round((t-_t0)/_deltaT)];
    }
	 */
	return temp;
}
Example #6
0
const pair<Interval,Interval> Tube::getEnclosedBounds(const Interval& intv_t) const
{  
  if(intv_t.lb() == intv_t.ub())
    return make_pair(Interval((*this)[intv_t.lb()].lb()), Interval((*this)[intv_t.lb()].ub()));

  Interval intersection = m_intv_t & intv_t;

  if(intersection.is_empty())
    return make_pair(Interval::EMPTY_SET, Interval::EMPTY_SET);

  else if(isSlice() || intv_t == m_intv_t || intv_t.is_unbounded() || intv_t.is_superset(m_intv_t))
  {
    if(m_tree_computation_needed)
      computeTree();

    return m_enclosed_bounds; // pre-computed
  }

  else
  {
    Interval inter_firstsubtube = m_first_subtube->getT() & intersection;
    Interval inter_secondsubtube = m_second_subtube->getT() & intersection;

    if(inter_firstsubtube.lb() == inter_firstsubtube.ub() && inter_secondsubtube.lb() == inter_secondsubtube.ub())
      return make_pair((*m_first_subtube)[inter_firstsubtube.lb()] & (*m_second_subtube)[inter_secondsubtube.lb()],
                       (*m_first_subtube)[inter_firstsubtube.ub()] & (*m_second_subtube)[inter_secondsubtube.ub()]);

    else if(inter_firstsubtube.is_empty() || inter_firstsubtube.lb() == inter_firstsubtube.ub())
      return m_second_subtube->getEnclosedBounds(inter_secondsubtube);

    else if(inter_secondsubtube.is_empty() || inter_secondsubtube.lb() == inter_secondsubtube.ub())
      return m_first_subtube->getEnclosedBounds(inter_firstsubtube);

    else
    {
      pair<Interval,Interval> ui_past = m_first_subtube->getEnclosedBounds(inter_firstsubtube);
      pair<Interval,Interval> ui_future = m_second_subtube->getEnclosedBounds(inter_secondsubtube);
      return make_pair(ui_past.first | ui_future.first, ui_past.second | ui_future.second);
    }
  }
}
Example #7
0
Affine2Main<AF_iAF>::Affine2Main(const Interval & itv):
			_n 		(0),
			_elt	(NULL,0.0) {

	if (itv.is_empty()) {
		_n = -1;
		_elt._err = itv;
	} else if (itv.ub()>= POS_INFINITY && itv.lb()<= NEG_INFINITY ) {
		_n = -2;
		_elt._err = itv;
	} else if (itv.ub()>= POS_INFINITY ) {
		_n = -3;
		_elt._err = itv;
	} else if (itv.lb()<= NEG_INFINITY ) {
		_n = -4;
		_elt._err = itv;
	} else  {
		_n = 0;
		_elt._val	= new Interval[1];
		_elt._val[0] = itv.mid();
		_elt._err	= itv.rad();
	}
}
Example #8
0
Tube::Tube(const Interval &intv_t, double time_step, const Interval& default_value)
{
  double lb, ub = intv_t.lb();
  vector<Interval> vector_dt; // a vector of slices is created only once
  do
  {
    lb = ub; // we guarantee all slices are adjacent
    ub = lb + time_step;
    vector_dt.push_back(Interval(lb, ub));
  } while(ub < intv_t.ub());

  createFromSlicesVector(vector_dt, default_value);
  m_dt = time_step;
}
Example #9
0
void Tube::setInversion(const Interval& intv_y, vector<Interval> &v_intv_t, bool concatenate_results) const
{
  v_intv_t.clear();
  Interval intv_t = setInversion(intv_y);

  if(!intv_t.is_empty())
  {
    pair<Interval,Interval> enc_bounds = getEnclosedBounds(intv_t);

    if(!concatenate_results)
    {
      if(enc_bounds.first.ub() > intv_y.ub() || enc_bounds.second.lb() < intv_y.lb())
      {
        // Bisection is needed
        vector<Interval> v1;
        m_first_subtube->setInversion(intv_y, v1, false);
        v_intv_t.insert(v_intv_t.end(), v1.begin(), v1.end());
        vector<Interval> v2;
        m_second_subtube->setInversion(intv_y, v2, false);
        v_intv_t.insert(v_intv_t.end(), v2.begin(), v2.end());
      }

      else
        v_intv_t.push_back(intv_t);
    }

    else
    {
      vector<Interval> v;
      setInversion(intv_y, v, false);

      // Concatenation (solutions may be adjacent)
      int i = 0;
      while(i < v.size())
      {
        int j = i;
        while(j + 1 < v.size() && v[i].ub() == v[j + 1].lb())
          j ++;
        v_intv_t.push_back(v[i] | v[j]);
        i = j + 1;
      }
    }
  }
}
Example #10
0
void div2(const Interval& num, const Interval& div, Interval& out1, Interval& out2) {

	if (num.is_empty() || div.is_empty()) {
		out1.set_empty();
		out2.set_empty();
		return;
	}

	const double& a(num.lb());
	const double& b(num.ub());
	const double& c(div.lb());
	const double& d(div.ub());

	// notice : we do not consider 0/0=0 but 0/0=emptyset
	if (c==0 && d==0) {
		out1.set_empty();
		out2.set_empty();
		return;
	}

	if (a==0 && b==0) {
		out1 = num;
		out2.set_empty();
		return;
	}

	if (c>0 || d<0) {
		out1 = num/div;
		out2.set_empty();
		return;
	}

	if (b<=0 && d==0) {
		if (c==NEG_INFINITY)
			out1 = Interval::POS_REALS;
		else
			out1 = Interval(INF_DIV(b,c), POS_INFINITY);
		out2.set_empty();
		return;
	}

	if (b<=0 && c<0 && d>0) {
		if (b==0 || (c==NEG_INFINITY && d==POS_INFINITY)) {
			out1 = Interval::ALL_REALS;
			out2.set_empty();
			return;
		} else {
			out1 = Interval(NEG_INFINITY, d==POS_INFINITY? 0 : SUP_DIV(b,d));
			out2 = Interval(c==NEG_INFINITY? 0 : INF_DIV(b,c), POS_INFINITY);
			return;
		}
	}

	if (b<=0 && c==0) {
		if (d==POS_INFINITY)
			out1 = Interval::NEG_REALS;
		else
			out1 = Interval(NEG_INFINITY, SUP_DIV(b,d));
		out2.set_empty();
		return;
	}

	if (a>=0 && d==0) {
		if (c==NEG_INFINITY)
			out1 = Interval::NEG_REALS;
		else
			out1 = Interval(NEG_INFINITY, SUP_DIV(a,c));
		out2.set_empty();
		return;
	}

	if (a>=0 && c<0 && d>0) {
		if (a==0 || (c==NEG_INFINITY && d==POS_INFINITY)) {
			out1 = Interval::ALL_REALS;
			out2.set_empty();
			return;
		} else {
			out1 = Interval(NEG_INFINITY, c==NEG_INFINITY? 0 : SUP_DIV(a,c));
			out2 = Interval(d==POS_INFINITY? 0 : INF_DIV(a,d), POS_INFINITY);
			return;
		}

	}

	if (a>=0 && c==0) {
		if (d==POS_INFINITY)
			out1 = Interval::POS_REALS;
		else
			out1 = Interval(INF_DIV(a,d), POS_INFINITY);
		out2.set_empty();
		return;
	}

	out1 = Interval::ALL_REALS;
	out2.set_empty();
}
Example #11
0
CtcNotIn::CtcNotIn(Function& f, const Interval& y) : Ctc(f.nb_var()), f(f), d1(Dim()), d2(Dim()) {
	assert(f.expr().dim.is_scalar());
	d1.i()=Interval(NEG_INFINITY,y.lb());
	d2.i()=Interval(y.ub(),POS_INFINITY);
}
Example #12
0
bool compare(const Interval& intv1, const Interval& intv2)
{
  return intv1 == intv2 ||
         fabs(intv1.lb() - intv2.lb()) < 1.0e-10 && fabs(intv1.ub() - intv2.ub()) < 1.0e-10;
}
Example #13
0
void Tube::setY(const Interval& intv_y, const Interval& intv_t)
{
  if(intv_t == ibex::Interval::ALL_REALS ||
     (m_intv_t.intersects(intv_t) && m_intv_t.lb() != intv_t.ub() && m_intv_t.ub() != intv_t.lb()))
  {
    if(isSlice())
      m_intv_y = intv_y;

    else
    {
      m_first_subtube->setY(intv_y, intv_t);
      m_second_subtube->setY(intv_y, intv_t);
    }

    requestFutureTreeComputation();
  }
}
Example #14
0
QString interval2String(Interval &i){
    QString s;
    s+= "[" + QString::number(i.lb()) + "," + QString::number(i.ub()) + "]";
    return s;
}