Example #1
0
    void InitSEIUserData()
    {
        List<mfxU8> payload;

        const mfxU8 UUID[] = { 0x6d, 0x1a, 0x26, 0xa0, 0xbd, 0xdc, 0x11, 0xe2,   //ISO-11578 UUID
                               0x90, 0x24, 0x00, 0x50, 0xc2, 0x49, 0x00, 0x48 }; //6d1a26a0-bddc-11e2-9024-0050c2490048
        payload.AppendArray(UUID, 16);

        String str;
        str << TEXT("QSV hardware encoder options:")
            << TEXT(" rate control: ") << (bUseCBR ? TEXT("cbr") : TEXT("vbr"))
            << TEXT("; target bitrate: ") << params.mfx.TargetKbps
            << TEXT("; max bitrate: ") << query.mfx.MaxKbps
            << TEXT("; buffersize: ") << query.mfx.BufferSizeInKB*8
            << TEXT("; API level: ") << ver.Major << TEXT(".") << ver.Minor;

        LPSTR info = str.CreateUTF8String();
        payload.AppendArray((LPBYTE)info, (unsigned)strlen(info)+1);
        Free(info);

        AddSEIData(payload, SEI_USER_DATA_UNREGISTERED);
    }
Example #2
0
void RTMPPublisher::BeginPublishingInternal()
{
    RTMPPacket packet;

    char pbuf[2048], *pend = pbuf+sizeof(pbuf);

    packet.m_nChannel = 0x03;     // control channel (invoke)
    packet.m_headerType = RTMP_PACKET_SIZE_LARGE;
    packet.m_packetType = RTMP_PACKET_TYPE_INFO;
    packet.m_nTimeStamp = 0;
    packet.m_nInfoField2 = rtmp->m_stream_id;
    packet.m_hasAbsTimestamp = TRUE;
    packet.m_body = pbuf + RTMP_MAX_HEADER_SIZE;

    char *enc = packet.m_body;
    enc = AMF_EncodeString(enc, pend, &av_setDataFrame);
    enc = AMF_EncodeString(enc, pend, &av_onMetaData);
    enc = App->EncMetaData(enc, pend);

    packet.m_nBodySize = enc - packet.m_body;
    if(!RTMP_SendPacket(rtmp, &packet, FALSE))
    {
        App->PostStopMessage();
        return;
    }

    //----------------------------------------------

    List<BYTE> packetPadding;
    DataPacket mediaHeaders;

    //----------------------------------------------

    packet.m_nChannel = 0x05; // source channel
    packet.m_packetType = RTMP_PACKET_TYPE_AUDIO;

    App->GetAudioHeaders(mediaHeaders);

    packetPadding.SetSize(RTMP_MAX_HEADER_SIZE);
    packetPadding.AppendArray(mediaHeaders.lpPacket, mediaHeaders.size);

    packet.m_body = (char*)packetPadding.Array()+RTMP_MAX_HEADER_SIZE;
    packet.m_nBodySize = mediaHeaders.size;
    if(!RTMP_SendPacket(rtmp, &packet, FALSE))
    {
        App->PostStopMessage();
        return;
    }

    //----------------------------------------------

    packet.m_nChannel = 0x04; // source channel
    packet.m_headerType = RTMP_PACKET_SIZE_LARGE;
    packet.m_packetType = RTMP_PACKET_TYPE_VIDEO;

    App->GetVideoHeaders(mediaHeaders);

    packetPadding.SetSize(RTMP_MAX_HEADER_SIZE);
    packetPadding.AppendArray(mediaHeaders.lpPacket, mediaHeaders.size);

    packet.m_body = (char*)packetPadding.Array()+RTMP_MAX_HEADER_SIZE;
    packet.m_nBodySize = mediaHeaders.size;
    if(!RTMP_SendPacket(rtmp, &packet, FALSE))
    {
        App->PostStopMessage();
        return;
    }
}
Example #3
0
UINT MMDeviceAudioSource::GetNextBuffer(float curVolume)
{
    UINT captureSize = 0;
    HRESULT err = mmCapture->GetNextPacketSize(&captureSize);
    if(FAILED(err))
    {
        RUNONCE AppWarning(TEXT("MMDeviceAudioSource::GetBuffer: GetNextPacketSize failed"));
        return NoAudioAvailable;
    }

    float *outputBuffer = NULL;

    if(captureSize)
    {
        LPBYTE captureBuffer;
        DWORD dwFlags = 0;
        UINT numAudioFrames = 0;

        UINT64 devPosition;
        UINT64 qpcTimestamp;
        err = mmCapture->GetBuffer(&captureBuffer, &numAudioFrames, &dwFlags, &devPosition, &qpcTimestamp);
        if(FAILED(err))
        {
            RUNONCE AppWarning(TEXT("MMDeviceAudioSource::GetBuffer: GetBuffer failed"));
            return NoAudioAvailable;
        }

        QWORD newTimestamp;

        if(dwFlags & AUDCLNT_BUFFERFLAGS_TIMESTAMP_ERROR)
        {
            RUNONCE AppWarning(TEXT("MMDeviceAudioSource::GetBuffer: woa woa woa, getting timestamp errors from the audio subsystem.  device = %s"), GetDeviceName().Array());
            if(!bBrokenTimestamp)
                newTimestamp = lastUsedTimestamp + numAudioFrames*1000/inputSamplesPerSec;
        }
        else
        {
            if(!bBrokenTimestamp)
                newTimestamp = qpcTimestamp/10000;

            /*UINT64 freq;
            mmClock->GetFrequency(&freq);
            Log(TEXT("position: %llu, numAudioFrames: %u, freq: %llu, newTimestamp: %llu, test: %llu"), devPosition, numAudioFrames, freq, newTimestamp, devPosition*8000/freq);*/
        }

        //have to do this crap to account for broken devices or device drivers.  absolutely unbelievable.
        if(!bFirstFrameReceived)
        {
            LARGE_INTEGER clockFreq;
            QueryPerformanceFrequency(&clockFreq);
            QWORD curTime = GetQPCTimeMS(clockFreq.QuadPart);

            if(newTimestamp < (curTime-1000) || newTimestamp > (curTime+1000))
            {
                bBrokenTimestamp = true;

                Log(TEXT("MMDeviceAudioSource::GetNextBuffer: Got bad audio timestamp offset %lld from device: '%s', timestamps for this device will be calculated.  curTime: %llu, newTimestamp: %llu"), (LONGLONG)(newTimestamp - curTime), GetDeviceName().Array(), curTime, newTimestamp);
                lastUsedTimestamp = newTimestamp = curTime;
            }
            else
                lastUsedTimestamp = newTimestamp;

            bFirstFrameReceived = true;
        }

        if(tempBuffer.Num() < numAudioFrames*2)
            tempBuffer.SetSize(numAudioFrames*2);

        outputBuffer = tempBuffer.Array();
        float *tempOut = outputBuffer;

        //------------------------------------------------------------
        // channel upmix/downmix

        if(inputChannels == 1)
        {
            UINT  numFloats   = numAudioFrames;
            float *inputTemp  = (float*)captureBuffer;
            float *outputTemp = outputBuffer;

            if(App->SSE2Available() && (UPARAM(inputTemp) & 0xF) == 0 && (UPARAM(outputTemp) & 0xF) == 0)
            {
                UINT alignedFloats = numFloats & 0xFFFFFFFC;
                for(UINT i=0; i<alignedFloats; i += 4)
                {
                    __m128 inVal   = _mm_load_ps(inputTemp+i);

                    __m128 outVal1 = _mm_unpacklo_ps(inVal, inVal);
                    __m128 outVal2 = _mm_unpackhi_ps(inVal, inVal);

                    _mm_store_ps(outputTemp+(i*2),   outVal1);
                    _mm_store_ps(outputTemp+(i*2)+4, outVal2);
                }

                numFloats  -= alignedFloats;
                inputTemp  += alignedFloats;
                outputTemp += alignedFloats*2;
            }

            while(numFloats--)
            {
                float inputVal = *inputTemp;
                *(outputTemp++) = inputVal;
                *(outputTemp++) = inputVal;

                inputTemp++;
            }
        }
        else if(inputChannels == 2) //straight up copy
        {
            if(App->SSE2Available())
                SSECopy(outputBuffer, captureBuffer, numAudioFrames*2*sizeof(float));
            else
                mcpy(outputBuffer, captureBuffer, numAudioFrames*2*sizeof(float));
        }
        else
        {
            //todo: downmix optimization, also support for other speaker configurations than ones I can merely "think" of.  ugh.
            float *inputTemp  = (float*)captureBuffer;
            float *outputTemp = outputBuffer;

            if(inputChannelMask == KSAUDIO_SPEAKER_QUAD)
            {
                UINT numFloats = numAudioFrames*4;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float rear      = (inputTemp[2]+inputTemp[3])*surroundMix;

                    *(outputTemp++) = left  - rear;
                    *(outputTemp++) = right + rear;

                    inputTemp  += 4;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_2POINT1)
            {
                UINT numFloats = numAudioFrames*3;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float lfe       = inputTemp[2]*lowFreqMix;

                    *(outputTemp++) = left  + lfe;
                    *(outputTemp++) = right + lfe;

                    inputTemp  += 3;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_4POINT1)
            {
                UINT numFloats = numAudioFrames*5;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float lfe       = inputTemp[2]*lowFreqMix;
                    float rear      = (inputTemp[3]+inputTemp[4])*surroundMix;

                    *(outputTemp++) = left  + lfe - rear;
                    *(outputTemp++) = right + lfe + rear;

                    inputTemp  += 5;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_SURROUND)
            {
                UINT numFloats = numAudioFrames*4;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float center    = inputTemp[2]*centerMix;
                    float rear      = inputTemp[3]*(surroundMix*dbMinus3);

                    *(outputTemp++) = left  + center - rear;
                    *(outputTemp++) = right + center + rear;

                    inputTemp  += 4;
                }
            }
            //don't think this will work for both
            else if(inputChannelMask == KSAUDIO_SPEAKER_5POINT1)
            {
                UINT numFloats = numAudioFrames*6;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float center    = inputTemp[2]*centerMix;
                    float lowFreq   = inputTemp[3]*lowFreqMix;
                    float rear      = (inputTemp[4]+inputTemp[5])*surroundMix;

                    *(outputTemp++) = left  + center + lowFreq - rear;
                    *(outputTemp++) = right + center + lowFreq + rear;

                    inputTemp  += 6;
                }
            }
            //todo ------------------
            //not sure if my 5.1/7.1 downmixes are correct
            else if(inputChannelMask == KSAUDIO_SPEAKER_5POINT1_SURROUND)
            {
                UINT numFloats = numAudioFrames*6;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float center    = inputTemp[2]*centerMix;
                    float lowFreq   = inputTemp[3]*lowFreqMix;
                    float sideLeft  = inputTemp[4]*dbMinus3;
                    float sideRight = inputTemp[5]*dbMinus3;

                    *(outputTemp++) = left  + center + sideLeft  + lowFreq;
                    *(outputTemp++) = right + center + sideRight + lowFreq;

                    inputTemp  += 6;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_7POINT1)
            {
                UINT numFloats = numAudioFrames*8;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left          = inputTemp[0];
                    float right         = inputTemp[1];
                    float center        = inputTemp[2]*(centerMix*dbMinus3);
                    float lowFreq       = inputTemp[3]*lowFreqMix;
                    float rear          = (inputTemp[4]+inputTemp[5])*surroundMix;
                    float centerLeft    = inputTemp[6]*dbMinus6;
                    float centerRight   = inputTemp[7]*dbMinus6;

                    *(outputTemp++) = left  + centerLeft  + center + lowFreq - rear;
                    *(outputTemp++) = right + centerRight + center + lowFreq + rear;

                    inputTemp  += 8;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_7POINT1_SURROUND)
            {
                UINT numFloats = numAudioFrames*8;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float center    = inputTemp[2]*centerMix;
                    float lowFreq   = inputTemp[3]*lowFreqMix;
                    float rear      = (inputTemp[4]+inputTemp[5])*(surroundMix*dbMinus3);
                    float sideLeft  = inputTemp[6]*dbMinus6;
                    float sideRight = inputTemp[7]*dbMinus6;

                    *(outputTemp++) = left  + sideLeft + center + lowFreq - rear;
                    *(outputTemp++) = right + sideLeft + center + lowFreq + rear;

                    inputTemp  += 8;
                }
            }
        }

        mmCapture->ReleaseBuffer(numAudioFrames);

        //------------------------------------------------------------
        // resample

        if(bResample)
        {
            UINT frameAdjust = UINT((double(numAudioFrames) * resampleRatio) + 1.0);
            UINT newFrameSize = frameAdjust*2;

            if(tempResampleBuffer.Num() < newFrameSize)
                tempResampleBuffer.SetSize(newFrameSize);

            SRC_DATA data;
            data.src_ratio = resampleRatio;

            data.data_in = tempBuffer.Array();
            data.input_frames = numAudioFrames;

            data.data_out = tempResampleBuffer.Array();
            data.output_frames = frameAdjust;

            data.end_of_input = 0;

            int err = src_process(resampler, &data);
            if(err)
            {
                RUNONCE AppWarning(TEXT("Was unable to resample audio"));
                return NoAudioAvailable;
            }

            if(data.input_frames_used != numAudioFrames)
            {
                RUNONCE AppWarning(TEXT("Failed to downsample buffer completely, which shouldn't actually happen because it should be using 10ms of samples"));
                return NoAudioAvailable;
            }

            numAudioFrames = data.output_frames_gen;
        }

        //-----------------------------------------------------------------------------
        // sort all audio frames into 10 millisecond increments (done because not all devices output in 10ms increments)
        // NOTE: 0.457+ - instead of using the timestamps from windows, just compare and make sure it stays within a 100ms of their timestamps

        float *newBuffer = (bResample) ? tempResampleBuffer.Array() : tempBuffer.Array();

        if(storageBuffer.Num() == 0 && numAudioFrames == 441)
        {
            lastUsedTimestamp += 10;
            if(!bBrokenTimestamp) 
            {
                QWORD difVal = GetQWDif(newTimestamp, lastUsedTimestamp);
                if(difVal > 70)
                    lastUsedTimestamp = newTimestamp;
            }

            if(lastUsedTimestamp > lastSentTimestamp)
            {
                QWORD adjustVal = (lastUsedTimestamp-lastSentTimestamp);
                if(adjustVal < 10)
                    lastUsedTimestamp += 10-adjustVal;

                AudioSegment &newSegment = *audioSegments.CreateNew();
                newSegment.audioData.CopyArray(newBuffer, numAudioFrames*2);
                newSegment.timestamp = lastUsedTimestamp;
                MultiplyAudioBuffer(newSegment.audioData.Array(), numAudioFrames*2, curVolume);

                lastSentTimestamp = lastUsedTimestamp;
            }
        }
        else
        {
            UINT storedFrames = storageBuffer.Num();

            storageBuffer.AppendArray(newBuffer, numAudioFrames*2);
            if(storageBuffer.Num() >= (441*2))
            {
                lastUsedTimestamp += 10;
                if(!bBrokenTimestamp)
                {
                    QWORD difVal = GetQWDif(newTimestamp, lastUsedTimestamp);
                    if(difVal > 70)
                        lastUsedTimestamp = newTimestamp - (QWORD(storedFrames)/2*1000/44100);
                }

                //------------------------
                // add new data

                if(lastUsedTimestamp > lastSentTimestamp)
                {
                    QWORD adjustVal = (lastUsedTimestamp-lastSentTimestamp);
                    if(adjustVal < 10)
                        lastUsedTimestamp += 10-adjustVal;

                    AudioSegment &newSegment = *audioSegments.CreateNew();
                    newSegment.audioData.CopyArray(storageBuffer.Array(), (441*2));
                    newSegment.timestamp = lastUsedTimestamp;
                    MultiplyAudioBuffer(newSegment.audioData.Array(), 441*2, curVolume);

                    storageBuffer.RemoveRange(0, (441*2));
                }

                //------------------------
                // if still data pending (can happen)

                while(storageBuffer.Num() >= (441*2))
                {
                    lastUsedTimestamp += 10;

                    if(lastUsedTimestamp > lastSentTimestamp)
                    {
                        QWORD adjustVal = (lastUsedTimestamp-lastSentTimestamp);
                        if(adjustVal < 10)
                            lastUsedTimestamp += 10-adjustVal;

                        AudioSegment &newSegment = *audioSegments.CreateNew();
                        newSegment.audioData.CopyArray(storageBuffer.Array(), (441*2));
                        storageBuffer.RemoveRange(0, (441*2));
                        MultiplyAudioBuffer(newSegment.audioData.Array(), 441*2, curVolume);

                        newSegment.timestamp = lastUsedTimestamp;

                        lastSentTimestamp = lastUsedTimestamp;
                    }
                }
            }
        }

        //-----------------------------------------------------------------------------

        return ContinueAudioRequest;
    }

    return NoAudioAvailable;
}