void ion::AssertGraphCoherency(MIRGraph &graph) { #ifdef DEBUG // Assert successor and predecessor list coherency. uint32_t count = 0; for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { count++; for (size_t i = 0; i < block->numSuccessors(); i++) JS_ASSERT(CheckSuccessorImpliesPredecessor(*block, block->getSuccessor(i))); for (size_t i = 0; i < block->numPredecessors(); i++) JS_ASSERT(CheckPredecessorImpliesSuccessor(*block, block->getPredecessor(i))); for (MInstructionIterator ins = block->begin(); ins != block->end(); ins++) { for (uint32_t i = 0; i < ins->numOperands(); i++) JS_ASSERT(CheckMarkedAsUse(*ins, ins->getOperand(i))); } } JS_ASSERT(graph.numBlocks() == count); AssertReversePostOrder(graph); #endif }
static void ComputeImmediateDominators(MIRGraph &graph) { // The default start block is a root and therefore only self-dominates. MBasicBlock *startBlock = *graph.begin(); startBlock->setImmediateDominator(startBlock); // Any OSR block is a root and therefore only self-dominates. MBasicBlock *osrBlock = graph.osrBlock(); if (osrBlock) osrBlock->setImmediateDominator(osrBlock); bool changed = true; while (changed) { changed = false; ReversePostorderIterator block = graph.rpoBegin(); // For each block in RPO, intersect all dominators. for (; block != graph.rpoEnd(); block++) { // If a node has once been found to have no exclusive dominator, // it will never have an exclusive dominator, so it may be skipped. if (block->immediateDominator() == *block) continue; MBasicBlock *newIdom = block->getPredecessor(0); // Find the first common dominator. for (size_t i = 1; i < block->numPredecessors(); i++) { MBasicBlock *pred = block->getPredecessor(i); if (pred->immediateDominator() != NULL) newIdom = IntersectDominators(pred, newIdom); // If there is no common dominator, the block self-dominates. if (newIdom == NULL) { block->setImmediateDominator(*block); changed = true; break; } } if (newIdom && block->immediateDominator() != newIdom) { block->setImmediateDominator(newIdom); changed = true; } } } #ifdef DEBUG // Assert that all blocks have dominator information. for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { JS_ASSERT(block->immediateDominator() != NULL); } #endif }
void ion::AssertExtendedGraphCoherency(MIRGraph &graph) { // Checks the basic GraphCoherency but also other conditions that // do not hold immediately (such as the fact that critical edges // are split) #ifdef DEBUG AssertGraphCoherency(graph); uint32_t idx = 0; for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { JS_ASSERT(block->id() == idx++); // No critical edges: if (block->numSuccessors() > 1) for (size_t i = 0; i < block->numSuccessors(); i++) JS_ASSERT(block->getSuccessor(i)->numPredecessors() == 1); if (block->isLoopHeader()) { JS_ASSERT(block->numPredecessors() == 2); MBasicBlock *backedge = block->getPredecessor(1); JS_ASSERT(backedge->id() >= block->id()); JS_ASSERT(backedge->numSuccessors() == 1); JS_ASSERT(backedge->getSuccessor(0) == *block); } if (!block->phisEmpty()) { for (size_t i = 0; i < block->numPredecessors(); i++) { MBasicBlock *pred = block->getPredecessor(i); JS_ASSERT(pred->successorWithPhis() == *block); JS_ASSERT(pred->positionInPhiSuccessor() == i); } } uint32_t successorWithPhis = 0; for (size_t i = 0; i < block->numSuccessors(); i++) if (!block->getSuccessor(i)->phisEmpty()) successorWithPhis++; JS_ASSERT(successorWithPhis <= 1); JS_ASSERT_IF(successorWithPhis, block->successorWithPhis() != NULL); // I'd like to assert this, but it's not necc. true. Sometimes we set this // flag to non-NULL just because a successor has multiple preds, even if it // does not actually have any phis. // // JS_ASSERT_IF(!successorWithPhis, block->successorWithPhis() == NULL); } #endif }
bool ion::BuildPhiReverseMapping(MIRGraph &graph) { // Build a mapping such that given a basic block, whose successor has one or // more phis, we can find our specific input to that phi. To make this fast // mapping work we rely on a specific property of our structured control // flow graph: For a block with phis, its predecessors each have only one // successor with phis. Consider each case: // * Blocks with less than two predecessors cannot have phis. // * Breaks. A break always has exactly one successor, and the break // catch block has exactly one predecessor for each break, as // well as a final predecessor for the actual loop exit. // * Continues. A continue always has exactly one successor, and the // continue catch block has exactly one predecessor for each // continue, as well as a final predecessor for the actual // loop continuation. The continue itself has exactly one // successor. // * An if. Each branch as exactly one predecessor. // * A switch. Each branch has exactly one predecessor. // * Loop tail. A new block is always created for the exit, and if a // break statement is present, the exit block will forward // directly to the break block. for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { if (block->numPredecessors() < 2) { JS_ASSERT(block->phisEmpty()); continue; } // Assert on the above. for (size_t j = 0; j < block->numPredecessors(); j++) { MBasicBlock *pred = block->getPredecessor(j); #ifdef DEBUG size_t numSuccessorsWithPhis = 0; for (size_t k = 0; k < pred->numSuccessors(); k++) { MBasicBlock *successor = pred->getSuccessor(k); if (!successor->phisEmpty()) numSuccessorsWithPhis++; } JS_ASSERT(numSuccessorsWithPhis <= 1); #endif pred->setSuccessorWithPhis(*block, j); } } return true; }
// A critical edge is an edge which is neither its successor's only predecessor // nor its predecessor's only successor. Critical edges must be split to // prevent copy-insertion and code motion from affecting other edges. bool ion::SplitCriticalEdges(MIRGraph &graph) { for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { if (block->numSuccessors() < 2) continue; for (size_t i = 0; i < block->numSuccessors(); i++) { MBasicBlock *target = block->getSuccessor(i); if (target->numPredecessors() < 2) continue; // Create a new block inheriting from the predecessor. MBasicBlock *split = MBasicBlock::NewSplitEdge(graph, block->info(), *block); split->setLoopDepth(block->loopDepth()); graph.insertBlockAfter(*block, split); split->end(MGoto::New(target)); block->replaceSuccessor(i, split); target->replacePredecessor(*block, split); } } return true; }
// A bounds check is considered redundant if it's dominated by another bounds // check with the same length and the indexes differ by only a constant amount. // In this case we eliminate the redundant bounds check and update the other one // to cover the ranges of both checks. // // Bounds checks are added to a hash map and since the hash function ignores // differences in constant offset, this offers a fast way to find redundant // checks. bool ion::EliminateRedundantBoundsChecks(MIRGraph &graph) { BoundsCheckMap checks; if (!checks.init()) return false; // Stack for pre-order CFG traversal. Vector<MBasicBlock *, 1, IonAllocPolicy> worklist; // The index of the current block in the CFG traversal. size_t index = 0; // Add all self-dominating blocks to the worklist. // This includes all roots. Order does not matter. for (MBasicBlockIterator i(graph.begin()); i != graph.end(); i++) { MBasicBlock *block = *i; if (block->immediateDominator() == block) { if (!worklist.append(block)) return false; } } // Starting from each self-dominating block, traverse the CFG in pre-order. while (!worklist.empty()) { MBasicBlock *block = worklist.popCopy(); // Add all immediate dominators to the front of the worklist. for (size_t i = 0; i < block->numImmediatelyDominatedBlocks(); i++) { if (!worklist.append(block->getImmediatelyDominatedBlock(i))) return false; } for (MDefinitionIterator iter(block); iter; ) { if (!iter->isBoundsCheck()) { iter++; continue; } MBoundsCheck *check = iter->toBoundsCheck(); // Replace all uses of the bounds check with the actual index. // This is (a) necessary, because we can coalesce two different // bounds checks and would otherwise use the wrong index and // (b) helps register allocation. Note that this is safe since // no other pass after bounds check elimination moves instructions. check->replaceAllUsesWith(check->index()); if (!check->isMovable()) { iter++; continue; } MBoundsCheck *dominating = FindDominatingBoundsCheck(checks, check, index); if (!dominating) return false; if (dominating == check) { // We didn't find a dominating bounds check. iter++; continue; } bool eliminated = false; if (!TryEliminateBoundsCheck(dominating, check, &eliminated)) return false; if (eliminated) iter = check->block()->discardDefAt(iter); else iter++; } index++; } JS_ASSERT(index == graph.numBlocks()); return true; }
bool ion::BuildDominatorTree(MIRGraph &graph) { ComputeImmediateDominators(graph); // Traversing through the graph in post-order means that every use // of a definition is visited before the def itself. Since a def // dominates its uses, by the time we reach a particular // block, we have processed all of its dominated children, so // block->numDominated() is accurate. for (PostorderIterator i(graph.poBegin()); i != graph.poEnd(); i++) { MBasicBlock *child = *i; MBasicBlock *parent = child->immediateDominator(); // If the block only self-dominates, it has no definite parent. if (child == parent) continue; if (!parent->addImmediatelyDominatedBlock(child)) return false; // An additional +1 for the child block. parent->addNumDominated(child->numDominated() + 1); } #ifdef DEBUG // If compiling with OSR, many blocks will self-dominate. // Without OSR, there is only one root block which dominates all. if (!graph.osrBlock()) JS_ASSERT(graph.begin()->numDominated() == graph.numBlocks() - 1); #endif // Now, iterate through the dominator tree and annotate every // block with its index in the pre-order traversal of the // dominator tree. Vector<MBasicBlock *, 1, IonAllocPolicy> worklist; // The index of the current block in the CFG traversal. size_t index = 0; // Add all self-dominating blocks to the worklist. // This includes all roots. Order does not matter. for (MBasicBlockIterator i(graph.begin()); i != graph.end(); i++) { MBasicBlock *block = *i; if (block->immediateDominator() == block) { if (!worklist.append(block)) return false; } } // Starting from each self-dominating block, traverse the CFG in pre-order. while (!worklist.empty()) { MBasicBlock *block = worklist.popCopy(); block->setDomIndex(index); for (size_t i = 0; i < block->numImmediatelyDominatedBlocks(); i++) { if (!worklist.append(block->getImmediatelyDominatedBlock(i))) return false; } index++; } return true; }
// Eliminate checks which are redundant given each other or other instructions. // // A type barrier is considered redundant if all missing types have been tested // for by earlier control instructions. // // A bounds check is considered redundant if it's dominated by another bounds // check with the same length and the indexes differ by only a constant amount. // In this case we eliminate the redundant bounds check and update the other one // to cover the ranges of both checks. // // Bounds checks are added to a hash map and since the hash function ignores // differences in constant offset, this offers a fast way to find redundant // checks. bool ion::EliminateRedundantChecks(MIRGraph &graph) { BoundsCheckMap checks; if (!checks.init()) return false; // Stack for pre-order CFG traversal. Vector<MBasicBlock *, 1, IonAllocPolicy> worklist; // The index of the current block in the CFG traversal. size_t index = 0; // Add all self-dominating blocks to the worklist. // This includes all roots. Order does not matter. for (MBasicBlockIterator i(graph.begin()); i != graph.end(); i++) { MBasicBlock *block = *i; if (block->immediateDominator() == block) { if (!worklist.append(block)) return false; } } // Starting from each self-dominating block, traverse the CFG in pre-order. while (!worklist.empty()) { MBasicBlock *block = worklist.popCopy(); // Add all immediate dominators to the front of the worklist. for (size_t i = 0; i < block->numImmediatelyDominatedBlocks(); i++) { if (!worklist.append(block->getImmediatelyDominatedBlock(i))) return false; } for (MDefinitionIterator iter(block); iter; ) { bool eliminated = false; if (iter->isBoundsCheck()) { if (!TryEliminateBoundsCheck(checks, index, iter->toBoundsCheck(), &eliminated)) return false; } else if (iter->isTypeBarrier()) { if (!TryEliminateTypeBarrier(iter->toTypeBarrier(), &eliminated)) return false; } else if (iter->isConvertElementsToDoubles()) { // Now that code motion passes have finished, replace any // ConvertElementsToDoubles with the actual elements. MConvertElementsToDoubles *ins = iter->toConvertElementsToDoubles(); ins->replaceAllUsesWith(ins->elements()); } if (eliminated) iter = block->discardDefAt(iter); else iter++; } index++; } JS_ASSERT(index == graph.numBlocks()); return true; }