static void ComputeImmediateDominators(MIRGraph &graph) { // The default start block is a root and therefore only self-dominates. MBasicBlock *startBlock = *graph.begin(); startBlock->setImmediateDominator(startBlock); // Any OSR block is a root and therefore only self-dominates. MBasicBlock *osrBlock = graph.osrBlock(); if (osrBlock) osrBlock->setImmediateDominator(osrBlock); bool changed = true; while (changed) { changed = false; ReversePostorderIterator block = graph.rpoBegin(); // For each block in RPO, intersect all dominators. for (; block != graph.rpoEnd(); block++) { // If a node has once been found to have no exclusive dominator, // it will never have an exclusive dominator, so it may be skipped. if (block->immediateDominator() == *block) continue; MBasicBlock *newIdom = block->getPredecessor(0); // Find the first common dominator. for (size_t i = 1; i < block->numPredecessors(); i++) { MBasicBlock *pred = block->getPredecessor(i); if (pred->immediateDominator() != NULL) newIdom = IntersectDominators(pred, newIdom); // If there is no common dominator, the block self-dominates. if (newIdom == NULL) { block->setImmediateDominator(*block); changed = true; break; } } if (newIdom && block->immediateDominator() != newIdom) { block->setImmediateDominator(newIdom); changed = true; } } } #ifdef DEBUG // Assert that all blocks have dominator information. for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { JS_ASSERT(block->immediateDominator() != NULL); } #endif }
bool ion::BuildDominatorTree(MIRGraph &graph) { ComputeImmediateDominators(graph); // Traversing through the graph in post-order means that every use // of a definition is visited before the def itself. Since a def // dominates its uses, by the time we reach a particular // block, we have processed all of its dominated children, so // block->numDominated() is accurate. for (PostorderIterator i(graph.poBegin()); i != graph.poEnd(); i++) { MBasicBlock *child = *i; MBasicBlock *parent = child->immediateDominator(); // If the block only self-dominates, it has no definite parent. if (child == parent) continue; if (!parent->addImmediatelyDominatedBlock(child)) return false; // An additional +1 for the child block. parent->addNumDominated(child->numDominated() + 1); } #ifdef DEBUG // If compiling with OSR, many blocks will self-dominate. // Without OSR, there is only one root block which dominates all. if (!graph.osrBlock()) JS_ASSERT(graph.begin()->numDominated() == graph.numBlocks() - 1); #endif // Now, iterate through the dominator tree and annotate every // block with its index in the pre-order traversal of the // dominator tree. Vector<MBasicBlock *, 1, IonAllocPolicy> worklist; // The index of the current block in the CFG traversal. size_t index = 0; // Add all self-dominating blocks to the worklist. // This includes all roots. Order does not matter. for (MBasicBlockIterator i(graph.begin()); i != graph.end(); i++) { MBasicBlock *block = *i; if (block->immediateDominator() == block) { if (!worklist.append(block)) return false; } } // Starting from each self-dominating block, traverse the CFG in pre-order. while (!worklist.empty()) { MBasicBlock *block = worklist.popCopy(); block->setDomIndex(index); for (size_t i = 0; i < block->numImmediatelyDominatedBlocks(); i++) { if (!worklist.append(block->getImmediatelyDominatedBlock(i))) return false; } index++; } return true; }
bool jit::ReorderInstructions(MIRGraph& graph) { // Renumber all instructions in the graph as we go. size_t nextId = 0; // List of the headers of any loops we are in. Vector<MBasicBlock*, 4, SystemAllocPolicy> loopHeaders; for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) { // Renumber all definitions inside the basic blocks. for (MPhiIterator iter(block->phisBegin()); iter != block->phisEnd(); iter++) iter->setId(nextId++); for (MInstructionIterator iter(block->begin()); iter != block->end(); iter++) iter->setId(nextId++); // Don't reorder instructions within entry blocks, which have special requirements. if (*block == graph.entryBlock() || *block == graph.osrBlock()) continue; if (block->isLoopHeader()) { if (!loopHeaders.append(*block)) return false; } MBasicBlock* innerLoop = loopHeaders.empty() ? nullptr : loopHeaders.back(); MInstruction* top = block->safeInsertTop(); MInstructionReverseIterator rtop = ++block->rbegin(top); for (MInstructionIterator iter(block->begin(top)); iter != block->end(); ) { MInstruction* ins = *iter; // Filter out some instructions which are never reordered. if (ins->isEffectful() || !ins->isMovable() || ins->resumePoint() || ins == block->lastIns()) { iter++; continue; } // Move constants with a single use in the current block to the // start of the block. Constants won't be reordered by the logic // below, as they have no inputs. Moving them up as high as // possible can allow their use to be moved up further, though, // and has no cost if the constant is emitted at its use. if (ins->isConstant() && ins->hasOneUse() && ins->usesBegin()->consumer()->block() == *block && !IsFloatingPointType(ins->type())) { iter++; MInstructionIterator targetIter = block->begin(); while (targetIter->isConstant() || targetIter->isInterruptCheck()) { if (*targetIter == ins) break; targetIter++; } MoveBefore(*block, *targetIter, ins); continue; } // Look for inputs where this instruction is the last use of that // input. If we move this instruction up, the input's lifetime will // be shortened, modulo resume point uses (which don't need to be // stored in a register, and can be handled by the register // allocator by just spilling at some point with no reload). Vector<MDefinition*, 4, SystemAllocPolicy> lastUsedInputs; for (size_t i = 0; i < ins->numOperands(); i++) { MDefinition* input = ins->getOperand(i); if (!input->isConstant() && IsLastUse(ins, input, innerLoop)) { if (!lastUsedInputs.append(input)) return false; } } // Don't try to move instructions which aren't the last use of any // of their inputs (we really ought to move these down instead). if (lastUsedInputs.length() < 2) { iter++; continue; } MInstruction* target = ins; for (MInstructionReverseIterator riter = ++block->rbegin(ins); riter != rtop; riter++) { MInstruction* prev = *riter; if (prev->isInterruptCheck()) break; // The instruction can't be moved before any of its uses. bool isUse = false; for (size_t i = 0; i < ins->numOperands(); i++) { if (ins->getOperand(i) == prev) { isUse = true; break; } } if (isUse) break; // The instruction can't be moved before an instruction that // stores to a location read by the instruction. if (prev->isEffectful() && (ins->getAliasSet().flags() & prev->getAliasSet().flags()) && ins->mightAlias(prev) != MDefinition::AliasType::NoAlias) { break; } // Make sure the instruction will still be the last use of one // of its inputs when moved up this far. for (size_t i = 0; i < lastUsedInputs.length(); ) { bool found = false; for (size_t j = 0; j < prev->numOperands(); j++) { if (prev->getOperand(j) == lastUsedInputs[i]) { found = true; break; } } if (found) { lastUsedInputs[i] = lastUsedInputs.back(); lastUsedInputs.popBack(); } else { i++; } } if (lastUsedInputs.length() < 2) break; // We can move the instruction before this one. target = prev; } iter++; MoveBefore(*block, target, ins); } if (block->isLoopBackedge()) loopHeaders.popBack(); } return true; }