bool ImageTransformation::findHomography( const Keypoints& source, const Keypoints& result, const Matches& input, Matches& inliers, cv::Mat& homography)
{
    if (input.size() < 8)
        return false;

    std::vector<cv::Point2f> srcPoints, dstPoints;
    const int pointsCount = input.size();

    for (int i=0; i<pointsCount; i++)
    {
        srcPoints.push_back(source[input[i].trainIdx].pt);
        dstPoints.push_back(result[input[i].queryIdx].pt);
    }

    std::vector<unsigned char> status;
    cv::findHomography(srcPoints, dstPoints, CV_FM_RANSAC, 3, status);

    inliers.clear();
    for (int i=0; i<pointsCount; i++)
    {
        if (status[i])
        {
            inliers.push_back(input[i]);
        }
    }

    return true;
}
Example #2
0
    MatchPersistence MatchPersistenceFromJSON(const Value &value) {
        auto executableName = value["executableName"].GetString();
        auto matcherName = value["matcherName"].GetString();
		auto executableArchitecture = value["executableArchitecture"].GetString();
		auto realTime = value["realTime"].GetDouble();
        auto cpuTime = value["cpuTime"].GetDouble();

        Matches matches;
        auto &matchesValue = value["matches"];
        for (rapidjson::SizeType i = 0; i < matchesValue.Size(); ++i) {
            auto match = MatchFromJSON(matchesValue[i]);
            if (match) {
                matches.push_back(match);
            }
        }
        return MatchPersistence(executableName,matcherName,executableArchitecture,realTime,cpuTime,matches);
    }
void ratioTest(const std::vector<Matches>& knMatches, float maxRatio, Matches& goodMatches)
{
  goodMatches.clear();

  for (size_t i=0; i< knMatches.size(); i++)
  {
    const cv::DMatch& best = knMatches[i][0];
    const cv::DMatch& good = knMatches[i][1];

    assert(best.distance <= good.distance);
    float ratio = (best.distance / good.distance);

    if (ratio <= maxRatio)
    {
      goodMatches.push_back(best);
    }
  }
}
Example #4
0
/*
 * Function:		initRouteMatrix()
 * Comments:		Initializes global route matrix for this Solution
 */
void Solution::initRouteMatrix()
{
	if(matrixInitType == FLUSH || myInternalMatrix.use_count() == 0)
	{
		Matches matches;
		Riders riders;
		for(MatchesMap::iterator it = myMatches.begin();
				it != myMatches.end();
				it++)
		{
			matches.push_back(it->second);
			for(Riders::iterator rider = it->second.confirmedRiders.begin();
					rider != it->second.confirmedRiders.end();
					rider++){
				riders.push_back(*rider);
			}
		}
		for(RidersMap::iterator it = myRiders.begin();
				it != myRiders.end();
				it++)
		{
			riders.push_back(it->second);
		}

		Drivers emptyDrivers;
		if(useLocalMatrix){
			myInternalMatrix.reset(new RouteMatrixLocal(emptyDrivers,riders,matches));
		}else{
			myInternalMatrix.reset(new RouteMatrix<>(emptyDrivers,riders,matches));
		}
	}
	else
	{
		//std::cout << "Using old route Matrix" <<std::endl;
	}
	routeMatrix = myInternalMatrix;
}
bool ImageTransformation::findHomography( const Keypoints& source, const Keypoints& result, const Matches& input, Matches& inliers, cv::Mat& homography)
{
    if (input.size() < 4)
        return false;
    
    const int pointsCount = input.size();
    const float reprojectionThreshold = 2;

    //Prepare src and dst points
    std::vector<cv::Point2f> srcPoints, dstPoints;    
    for (int i = 0; i < pointsCount; i++)
    {
        srcPoints.push_back(source[input[i].trainIdx].pt);
        dstPoints.push_back(result[input[i].queryIdx].pt);
    }
      
    // Find homography using RANSAC algorithm
    std::vector<unsigned char> status;
    homography = cv::findHomography(srcPoints, dstPoints, cv::RANSAC, reprojectionThreshold, status);
    
    // Warp dstPoints to srcPoints domain using inverted homography transformation
    std::vector<cv::Point2f> srcReprojected;
    cv::perspectiveTransform(dstPoints, srcReprojected, homography.inv());

    // Pass only matches with low reprojection error (less than reprojectionThreshold value in pixels)
    inliers.clear();
    for (int i = 0; i < pointsCount; i++)
    {
        cv::Point2f actual = srcPoints[i];
        cv::Point2f expect = srcReprojected[i];
        cv::Point2f v = actual - expect;
        float distanceSquared = v.dot(v);
        
        if (/*status[i] && */distanceSquared <= reprojectionThreshold * reprojectionThreshold)
        {
            inliers.push_back(input[i]);
        }
    }
    
    // Test for bad case
    if (inliers.size() < 4)
        return false;
    
    // Now use only good points to find refined homography:
    std::vector<cv::Point2f> refinedSrc, refinedDst;
    for (int i = 0; i < inliers.size(); i++)
    {
        refinedSrc.push_back(source[inliers[i].trainIdx].pt);
        refinedDst.push_back(result[inliers[i].queryIdx].pt);
    }
    
    // Use least squares method to find precise homography
    cv::Mat homography2 = cv::findHomography(refinedSrc, refinedDst, 0, reprojectionThreshold);

    // Reproject again:
    cv::perspectiveTransform(dstPoints, srcReprojected, homography2.inv());
    inliers.clear();

    for (int i = 0; i < pointsCount; i++)
    {
        cv::Point2f actual = srcPoints[i];
        cv::Point2f expect = srcReprojected[i];
        cv::Point2f v = actual - expect;
        float distanceSquared = v.dot(v);

        if (distanceSquared <= reprojectionThreshold * reprojectionThreshold)
        {
            inliers.push_back(input[i]);
        }
    }
 
    homography = homography2;
    return inliers.size() >= 4;
}