void SpectralNoiseSuppression::process(const MatrixXR& spectrum, MatrixXR* noise, MatrixXR* result){ const int rows = spectrum.rows(); const int cols = spectrum.cols(); (*result).resize(rows, cols); (*result) = spectrum; //DEBUG("SPECTRALNOISESUPPRESSION: Calculate wrapped magnitude."); // Calculate the wrapped magnitude of the spectrum _g = (1.0 / (_k1 - _k0 + 1.0) * spectrum.block(0, _k0, rows, _k1 - _k0).cwise().pow(1.0/3.0).rowwise().sum()).cwise().cube(); //cout << (_g) << endl; for ( int i = 0; i < cols; i++ ) { (*result).col(i) = (((*result).col(i).cwise() * _g.cwise().inverse()).cwise() + 1.0).cwise().log(); } //cout << (*result) << endl; //DEBUG("SPECTRALNOISESUPPRESSION: Estimate spectral noise."); // Estimate spectral noise _bands.process((*result), noise); //DEBUG("SPECTRALNOISESUPPRESSION: Suppress spectral noise."); // Suppress spectral noise (*result) = ((*result) - (*noise)).cwise().clipUnder(); }
void PeakCOG::process(const MatrixXC& fft, const MatrixXR& peakPos, MatrixXR* peakCog) { LOUDIA_DEBUG("PEAKCOG: Processing windowed"); const int rows = fft.rows(); const int cols = fft.cols(); const int halfCols = min((int)ceil(_fftLength / 2.0), cols); const int peakCount = peakPos.cols(); LOUDIA_DEBUG("PEAKCOG: fft.shape " << fft.rows() << "," << fft.cols()); _spectrumAbs2 = fft.block(0, 0, rows, halfCols).cwise().abs2(); LOUDIA_DEBUG("PEAKCOG: Spectrum resized rows: " << rows << " halfCols: " << halfCols); unwrap(fft.block(0, 0, rows, halfCols).cwise().angle(), &_spectrumArg); derivate(_spectrumArg, &_spectrumArgDeriv); (*peakCog).resize(rows, peakCount); (*peakCog).setZero(); for(int row = 0; row < rows; row++) { for(int i = 0; i < peakCount; i++){ if (peakPos(row, i) != -1) { int start = max(0, (int)floor(peakPos(row, i) - _bandwidth / 2)); int end = min(halfCols, (int)ceil(peakPos(row, i) + _bandwidth / 2)); if ( (end - start) > 0) { (*peakCog)(row, i) = ((-_spectrumArgDeriv).block(row, start, 1, end-start).cwise() * _spectrumAbs2.block(row, start, 1, end-start)).sum() / _spectrumAbs2.block(row, start, 1, end-start).sum(); } } } } LOUDIA_DEBUG("PEAKCOG: Finished Processing"); }
void Window::setWindow( const MatrixXR& window, bool callSetup ){ if (window.cols() != _inputSize || window.rows() != 1) { // Throw exception wrong window size } setWindowType(CUSTOM, false); _window = window; if ( callSetup ) setup(); }
Real PitchSaliency::saliency(Real period, Real deltaPeriod, Real tLow, Real tUp, const MatrixXR& spectrum){ const int cols = spectrum.cols(); Real sum = 0.0; for ( int m = 1; m < _numHarmonics; m++ ) { int begin = (int)round(m * _fftSize / (period + (deltaPeriod / 2.0))); int end = min((int)round(m * _fftSize / (period - (deltaPeriod / 2.0))), cols - 1); if (begin < end) sum += harmonicWeight(period, tLow, tUp, m) * spectrum.block(0, begin, 1, end - begin).maxCoeff(); } return sum; }
void SpectralReassignment::setup(){ LOUDIA_DEBUG("SPECTRALREASSIGNMENT: Setting up..."); // Setup the window so it gets calculated and can be reused _windowAlgo.setup(); // Create the time vector LOUDIA_DEBUG("SPECTRALREASSIGNMENT: Creating time vector..."); Real timestep = 1.0 / _sampleRate; // The unit of the vectors is Time Sample fractions // So the difference between one coeff and the next is 1 // and the center of the window must be 0, so even sized windows // will have the two center coeffs to -0.5 and 0.5 // This should be a line going from [-(window_size - 1)/2 ... (window_size - 1)/2] _time.resize(_frameSize, 1); for(int i = 0; i < _time.rows(); i++){ _time(i, 0) = (i - Real(_time.rows() - 1)/2.0); } // Create the freq vector LOUDIA_DEBUG("SPECTRALREASSIGNMENT: Creating freq vector..."); // The unit of the vectors is Frequency Bin fractions // TODO: Must rethink how the frequency vector is initialized // as we did for the time vector _freq.resize(1, _fftSize); range(0, _fftSize, _fftSize, &_freq); // Calculate and set the time weighted window LOUDIA_DEBUG("SPECTRALREASSIGNMENT: Calculate time weighted window..."); MatrixXR windowInteg = _windowAlgo.window(); windowInteg = windowInteg.cwise() * _time.transpose(); _windowIntegAlgo.setWindow(windowInteg); // Calculate and set the time derivated window LOUDIA_DEBUG("SPECTRALREASSIGNMENT: Calculate time derivative window..."); MatrixXR windowDeriv = _windowAlgo.window(); for(int i = windowDeriv.cols() - 1; i > 0; i--){ windowDeriv(0, i) = (windowDeriv(0, i) - windowDeriv(0, i - 1)) / timestep; } // TODO: Check what is the initial condition for the window // Should this be 0 or just the value it was originally * dt //windowDeriv(0, 0) = 0.0; _windowDerivAlgo.setWindow(windowDeriv); // Create the necessary buffers for the windowing _window.resize(1, _frameSize); _windowInteg.resize(1, _frameSize); _windowDeriv.resize(1, _frameSize); // Create the necessary buffers for the FFT _fftAbs2.resize(1, _fftSize); _fftInteg.resize(1, _fftSize); _fftDeriv.resize(1, _fftSize); // Setup the algos _windowIntegAlgo.setup(); _windowDerivAlgo.setup(); _fftAlgo.setup(); LOUDIA_DEBUG("SPECTRALREASSIGNMENT: Finished set up..."); }
void PeakInterpolationComplex::process(const MatrixXC& input, const MatrixXR& peakPositions, const MatrixXR& peakMagnitudes, const MatrixXR& peakPhases, MatrixXR* peakPositionsInterp, MatrixXR* peakMagnitudesInterp, MatrixXR* peakPhasesInterp) { LOUDIA_DEBUG("PEAKINTERPOLATIONCOMPLEX: Processing"); Real leftMag, leftPhase; Real rightMag, rightPhase; Real mag, interpFactor; (*peakPositionsInterp).resize(input.rows(), peakPositions.cols()); (*peakMagnitudesInterp).resize(input.rows(), peakPositions.cols()); (*peakPhasesInterp).resize(input.rows(), peakPositions.cols()); _magnitudes = input.cwise().abs(); unwrap(input.cwise().angle(), &_phases); for ( int row = 0 ; row < _magnitudes.rows(); row++ ) { for ( int i = 0; i < peakPositions.cols(); i++ ) { // If the position is -1 do nothing since it means it is nothing if( peakPositions(row, i) == -1 ){ (*peakMagnitudesInterp)(row, i) = peakMagnitudes(row, i); (*peakPhasesInterp)(row, i) = peakPhases(row, i); (*peakPositionsInterp)(row, i) = peakPositions(row, i); } else { // Take the center magnitude in dB mag = 20.0 * log10( peakMagnitudes(row, i) ); // Take the left magnitude in dB if( peakPositions(row, i) <= 0 ){ leftMag = 20.0 * log10( _magnitudes(row, (int)peakPositions(row, i) + 1) ); } else { leftMag = 20.0 * log10( _magnitudes(row, (int)peakPositions(row, i) - 1) ); } // Take the right magnitude in dB if( peakPositions(row, i) >= _magnitudes.row(row).cols() - 1 ){ rightMag = 20.0 * log10( _magnitudes(row, (int)peakPositions(row, i) - 1) ); } else { rightMag = 20.0 * log10( _magnitudes(row, (int)peakPositions(row, i) + 1) ); } // Calculate the interpolated position (*peakPositionsInterp)(row, i) = peakPositions(row, i) + 0.5 * (leftMag - rightMag) / (leftMag - 2.0 * mag + rightMag); interpFactor = ((*peakPositionsInterp)(row, i) - peakPositions(row, i)); // Calculate the interpolated magnitude in dB (*peakMagnitudesInterp)(row, i) = mag - 0.25 * (leftMag - rightMag) * interpFactor; // Calculate the interpolated phase leftPhase = _phases(row, (int)floor((*peakPositionsInterp)(row, i))); rightPhase = _phases(row, (int)floor((*peakPositionsInterp)(row, i)) + 1); interpFactor = (interpFactor >= 0) ? interpFactor : interpFactor + 1; (*peakPhasesInterp)(row, i) = (leftPhase + interpFactor * (rightPhase - leftPhase)); } } } // Calculate the princarg() of the phase: remap to (-pi pi] (*peakPhasesInterp) = ((*peakPhasesInterp).cwise() != -1).select(((*peakPhasesInterp).cwise() + M_PI).cwise().modN(-2.0 * M_PI).cwise() + M_PI, (*peakPhasesInterp)); LOUDIA_DEBUG("PEAKINTERPOLATIONCOMPLEX: Finished Processing"); }