Example #1
0
VectorXf EMclustering::logsumexp(MatrixXf x, int dim)
{
	int r = x.rows();
	int c = x.cols();

	VectorXf y(r);
	MatrixXf tmp1(r,c);
	VectorXf tmp2(r);
	VectorXf s(r);

	y = x.rowwise().maxCoeff();//cerr<<"y"<<y<<endl<<endl;
	x = x.colwise() - y;	
	//cerr<<"x"<<x<<endl<<endl;
	tmp1 = x.array().exp();	
	//cerr<<"t"<<tmp1<<endl<<endl;
	tmp2 = tmp1.rowwise().sum();	
	//cerr<<"t"<<tmp2<<endl<<endl;
	s = y.array() + tmp2.array().log();

	for(int i=0;i<s.size();i++)
	{
		if(!isfinite(s(i)))
		{
			s(i) = y(i);
		}
	}

	y.resize(0);
	tmp1.resize(0,0);
	tmp2.resize(0);
	
	return s;
}
Example #2
0
MatrixXf Sphere::make_initial_simplex( const VectorXf &pars, float size )
{
    /*
    * Make the initial tetrahedron
    */
    int npar = pars.size();

    MatrixXf simplex = MatrixXf::Zero(npar+1,npar);

    simplex.rowwise() += pars.transpose();

    for (int k = 1; k < npar+1; k++) {
        simplex(k,k-1) += size;
    }

    return simplex;
}
Example #3
0
float Sphere::fit_eval ( const VectorXf &fitpar, const void  *user_data)
{
    /*
    * Calculate the cost function value
    * Optimize for the radius inside here
    */
    const fitUserNew& user = (fitUserNew)user_data;
    const VectorXf& r0 = fitpar;

    float F;

    MatrixXf diff = user->rr.rowwise() - r0.transpose();
    VectorXf one = diff.rowwise().norm();

    float sum = one.sum();
    float sum2 = one.dot(one);

    F = sum2 - sum*sum/user->rr.rows();

    if(user->report)
        std::cout << "r0: " << 1000*r0[0] << ", r1: " << 1000*r0[1] << ", r2: " << 1000*r0[2] << "; R: " << 1000*sum/user->rr.rows() << "; fval: "<<F<<std::endl;

    return F;
}
Example #4
0
float Sphere::opt_rad(const VectorXf &r0,const fitUserNew user)
{
  MatrixXf diff = user->rr.rowwise() - r0.transpose();
  return diff.rowwise().norm().mean();
}
Example #5
0
void Sphere::calculate_cm_ave_dist (const MatrixXf &rr, VectorXf &cm, float &avep)
{
    cm = rr.colwise().mean();
    MatrixXf diff = rr.rowwise() - cm.transpose();
    avep = diff.rowwise().norm().mean();
}
Example #6
0
void MapOptimizer::constrain_direction (MatrixXf & dJ, float tol) const
{
  // Enforce the simultaneous constraints
  //
  //   /\x. sum y. dJ(y,x) = 0
  //   /\y. sum x. dJ(y,x) = 0
  //
  // We combine the two constraints by iteratively weakly enforcing both:
  // Let Px,Py project to the feasible subspaces for constraints 1,2, resp.
  // Each projection has eigenvalues in {0,1}.
  // We approximate the desired projection Pxy as a linear combination of Px,Py
  //   Pxy' = 1 - alpha ((1-Px) + (1-Py))
  // which has eigenvalues in {1} u [1 - alpha, 1 - 2 alpha].
  // Hence Pxy = lim n->infty Pxy'^n, where convergence rate depends on alpha.
  // The optimal alpha is 2/3, yielding Pxy' eigenvalues in {1} u [-1/3,1/3],
  // and resulting in project_scale = -alpha below.

  if (logging) LOG("  constraining direction");

  const size_t X = dom.size;
  const size_t Y = cod.size;

  const MatrixXf & J = m_joint;
  const VectorXf & sum_y_J = m_dom_prior;
  const VectorXf & sum_x_J = m_cod_prior;
  const float sum_xy_J = m_cod_prior.sum();

  VectorXf sum_y_dJ(J.cols());
  VectorXf sum_x_dJ(J.rows());

  // this is iterative, so we hand-optimize by merging loops

  const float * restrict J_ = J.data();
  const float * restrict sum_y_J_ = sum_y_J.data();
  const float * restrict sum_x_J_ = sum_x_J.data();

  float * restrict dJ_ = dJ.data();
  float * restrict project_y_ = sum_y_dJ.data();
  float * restrict project_x_ = sum_x_dJ.data();
  const float project_scale = -2/3.0;

  Vector<float> accum_x_dJ(Y);
  float * restrict accum_x_dJ_ = accum_x_dJ;

  // accumulate first projection
  accum_x_dJ.zero();

  for (size_t x = 0; x < X; ++x) {

    const float * restrict dJ_x_ = dJ_ + Y * x;

    float accum_y_dJ = 0;

    for (size_t y = 0; y < Y; ++y) {

      float dJ_xy = dJ_x_[y];

      accum_y_dJ += dJ_xy;
      accum_x_dJ_[y] += dJ_xy;
    }

    project_y_[x] = project_scale * accum_y_dJ / sum_y_J_[x];
  }

  for (size_t y = 0; y < Y; ++y) {
    project_x_[y] = project_scale * accum_x_dJ_[y] / sum_x_J_[y];
    accum_x_dJ_[y] = 0;
  }

  // apply previous projection and accumulate next projection
  for (size_t iter = 0; iter < 100; ++iter) {

    float error = 0;

    for (size_t x = 0; x < X; ++x) {

      const float * restrict J_x_ = J_ + Y * x;
      float * restrict dJ_x_ = dJ_ + Y * x;

      float accum_y_dJ = 0;

      for (size_t y = 0; y < Y; ++y) {

        float dJ_xy = dJ_x_[y] += J_x_[y] * (project_x_[y] + project_y_[x]);

        accum_y_dJ += dJ_xy;
        accum_x_dJ_[y] += dJ_xy;
      }

      project_y_[x] = project_scale * accum_y_dJ / sum_y_J_[x];
      imax(error, max(-accum_y_dJ, accum_y_dJ));
    }

    for (size_t y = 0; y < Y; ++y) {

      float accum_x_dJ_y = accum_x_dJ_[y];
      accum_x_dJ_[y] = 0;

      project_x_[y] = project_scale * accum_x_dJ_y / sum_x_J_[y];
      imax(error, max(-accum_x_dJ_y, accum_x_dJ_y));
    }

    if (error < tol) {
      if (logging) {
        LOG("   after " << (1+iter) << " iterations, error < " << error);
      }
      break;
    }
  }

  // apply final projection
  for (size_t x = 0; x < X; ++x) {

    const float * restrict J_x_ = J_ + Y * x;
    float * restrict dJ_x_ = dJ_ + Y * x;

    for (size_t y = 0; y < Y; ++y) {
      dJ_x_[y] += J_x_[y] * (project_x_[y] + project_y_[x]);
    }
  }

  if (debug) {

    sum_y_dJ = dJ.colwise().sum();
    sum_x_dJ = dJ.rowwise().sum();
    float sum_xy_dJ = sum_x_dJ.sum();

    DEBUG("max constraint errors = "
        << sqrt(sum_x_dJ.array().square().maxCoeff())<< ", "
        << sqrt(sum_y_dJ.array().square().maxCoeff())<< ", "
        << sum_xy_dJ);

    sum_y_dJ.array() /= sum_y_J.array();
    sum_x_dJ.array() /= sum_x_J.array();
    sum_xy_dJ /= sum_xy_J;

    DEBUG("max relative constraints errors = "
        << sqrt(sum_x_dJ.array().square().maxCoeff()) << ", "
        << sqrt(sum_y_dJ.array().square().maxCoeff()) << ", "
        << sum_xy_dJ);

    DEBUG("max(|dJ|) = " << dJ.array().abs().maxCoeff()
        << ", rms(dJ) = " << sqrt(dJ.array().square().mean()));
    DEBUG("max(J) / min(J) = " << (J.maxCoeff() / J.minCoeff()));
    DEBUG("max(sum x. J) / min(sum x. J) = "
        << (sum_x_J.maxCoeff() / sum_x_J.minCoeff()));
    DEBUG("max(sum y. J) / min(sum y. J) = "
        << (sum_y_J.maxCoeff() / sum_y_J.minCoeff()));
  }
}
Example #7
0
int main(void)
{
  cout << "Eigen v" << EIGEN_WORLD_VERSION << "." << EIGEN_MAJOR_VERSION << "." << EIGEN_MINOR_VERSION << endl;
  static const int R = 288;
  static const int N = R*(R+1)/2;
  static const int M = 63;
  static const int HALF_M = M/2;
  static const float nsigma = 2.5f;

  MatrixXf data = MatrixXf::Random(M, N);
  MatrixXf mask = MatrixXf::Zero(M, N);
  MatrixXf result = MatrixXf::Zero(1, N);
  VectorXf std = VectorXf::Zero(N);
  VectorXf centroid = VectorXf::Zero(N);
  VectorXf mean = VectorXf::Zero(N);
  VectorXf minval = VectorXf::Zero(N);
  VectorXf maxval = VectorXf::Zero(N);

  cout << "computing..." << flush;
  double t = GetRealTime();

  // computes the exact median
  if (M&1)
  {
#pragma omp parallel for
    for (int i = 0; i < N; i++)
    {
      vector<float> row(data.data()+i*M, data.data()+(i+1)*M);
      nth_element(row.begin(), row.begin()+HALF_M, row.end());
      centroid(i) = row[HALF_M];
    }
  }
  // nth_element guarantees x_0,...,x_{n-1} < x_n
  else
  {
#pragma omp parallel for
    for (int i = 0; i < N; i++)
    {
      vector<float> row(data.data()+i*M, data.data()+(i+1)*M);
      nth_element(row.begin(), row.begin()+HALF_M, row.end());
      centroid(i) = row[HALF_M];
      centroid(i) += *max_element(row.begin(), row.begin()+HALF_M);
      centroid(i) *= 0.5f;
    }
  }

  // compute the mean
  mean = data.colwise().mean();

  // compute std (x) = sqrt ( 1/N SUM_i (x(i) - mean(x))^2 )
  std = (((data.rowwise() - mean.transpose()).array().square()).colwise().sum() *
         (1.0f / M))
            .array()
            .sqrt();

  // compute n sigmas from centroid
  minval = centroid - std * nsigma;
  maxval = centroid + std * nsigma;
  
  // compute clip mask
  for (int i = 0; i < N; i++)
  {
    mask.col(i) = (data.col(i).array() > minval(i)).select(VectorXf::Ones(M), 0.0f);
    mask.col(i) = (data.col(i).array() < maxval(i)).select(VectorXf::Ones(M), 0.0f);
  }

  // apply clip mask to data
  data.array() *= mask.array();

  // compute mean such that we ignore clipped data, this is our final result
  result = data.colwise().sum().array() / mask.colwise().sum().array();

  t = GetRealTime() - t;
  cout << "[done]" << endl << endl;

  size_t bytes = data.size()*sizeof(float);
  cout << "data: " << M << "x" << N << endl;
  cout << "size: " << bytes*1e-6f << " MB" << endl;
  cout << "rate: " << bytes/(1e6f*t) << " MB/s" << endl;
  cout << "time: " << t << " s" << endl;

  return 0;
}
/*
 * Get centroid
 */
Vector3f getCentroid(const MatrixXf m) {
    return m.rowwise().sum() / m.cols();
}
Example #9
0
void sparsify_soft_relative_to_row_col_max (
    const MatrixXf & dense,
    MatrixSf & sparse,
    float relthresh,
    bool ignore_diagonal)
{
  ASSERT_LT(0, relthresh);

  LOG("sparsifying " << dense.rows() << " x " << dense.cols()
      << " positive matrix to relative threshold " << relthresh);

  VectorXf row_max;
  VectorXf col_max;

  if (ignore_diagonal) {

    VectorXf diag = dense.diagonal();
    const_cast<MatrixXf &>(dense).diagonal().setZero();

    row_max = dense.rowwise().maxCoeff();
    col_max = dense.colwise().maxCoeff();

    const_cast<MatrixXf &>(dense).diagonal() = diag;

  } else {

    row_max = dense.rowwise().maxCoeff();
    col_max = dense.colwise().maxCoeff();

  }

  const int I = dense.rows();
  const int J = dense.cols();

  sparse.resize(I,J);

  double sum_dense = 0;
  double sum_sparse = 0;

  for (int j = 0; j < J; ++j) {
    for (int i = 0; i < I; ++i) {

      const float dense_ij = dense(i,j);
      sum_dense += dense_ij;

      const float thresh = relthresh * min(row_max(i), col_max(j));
      if (dense_ij > thresh) {

        sparse.insert(i,j) = dense_ij;
        sum_sparse += dense_ij;
      }
    }
  }

  sparse.finalize();

  float density = sparse.nonZeros() / float(I * J);
  float loss = (sum_dense - sum_sparse) / sum_dense;
  LOG("sparsifying to density " << density
      << " loses " << (100 * loss) << "% of mass");
}