__m256 BVH2Intersector8Chunk<TriangleIntersector>::occluded(const BVH2Intersector8Chunk* This, Ray8& ray, const __m256 valid_i)
  {
    avxb valid = valid_i;
    avxb terminated = !valid;
    const BVH2* bvh = This->bvh;
    STAT3(shadow.travs,1,popcnt(valid),8);

    NodeRef stack[1+BVH2::maxDepth]; //!< stack of nodes that still need to get traversed
    NodeRef* stackPtr = stack;                    //!< current stack pointer
    NodeRef cur = bvh->root;                      //!< in cur we track the ID of the current node

    /* let inactive rays miss all boxes */
    const avx3f rdir = rcp_safe(ray.dir);
    avxf rayFar  = select(terminated,avxf(neg_inf),ray.tfar);

    while (true)
    {
      /*! downtraversal loop */
      while (likely(cur.isNode()))
      {
        STAT3(normal.trav_nodes,1,popcnt(valid),8);

        /* intersect packet with box of both children */
        const Node* node = cur.node();
        const size_t hit0 = intersectBox(ray.org,rdir,ray.tnear,rayFar,node,0);
        const size_t hit1 = intersectBox(ray.org,rdir,ray.tnear,rayFar,node,1);
        
        /*! if two children are hit push both onto stack */
        if (likely(hit0 != 0 && hit1 != 0)) {
          *stackPtr = node->child(0); stackPtr++; cur = node->child(1);
        }
        
        /*! if one child hit, continue with that child */
        else {
          if      (likely(hit0 != 0)) cur = node->child(0);
          else if (likely(hit1 != 0)) cur = node->child(1);
          else goto pop_node;
        }
      }

      /*! leaf node, intersect all triangles */
      {
        STAT3(shadow.trav_leaves,1,popcnt(valid),8);
        size_t num; Triangle* tri = (Triangle*) cur.leaf(NULL,num);
        for (size_t i=0; i<num; i++) {
          terminated |= TriangleIntersector::occluded(valid,ray,tri[i],bvh->vertices);
          if (all(terminated)) return terminated;
        }

        /* let terminated rays miss all boxes */
        rayFar = select(terminated,avxf(neg_inf),rayFar);
      }

      /*! pop next node from stack */
pop_node:
      if (unlikely(stackPtr == stack)) break;
      cur = *(--stackPtr);
    }
    return terminated;
  }
Example #2
0
 void BVHN<N>::clearBarrier(NodeRef& node)
 {
   if (node.isBarrier())
     node.clearBarrier();
   else if (!node.isLeaf()) {
     Node* n = node.node();
     for (size_t c=0; c<N; c++)
       clearBarrier(n->child(c));
   }
 }
Example #3
0
 BVH4::NodeRef BVH4::layoutLargeNodesRecursion(NodeRef& node)
 {
   if (node.isBarrier()) {
     node.clearBarrier();
     return node;
   }
   else if (node.isNode()) 
   {
     Node* oldnode = node.node();
     Node* newnode = (BVH4::Node*) alloc.threadLocal2()->alloc0.malloc(sizeof(BVH4::Node)); // FIXME: optimize access to threadLocal2 
     *newnode = *oldnode;
     for (size_t c=0; c<BVH4::N; c++)
       newnode->child(c) = layoutLargeNodesRecursion(oldnode->child(c));
     return encodeNode(newnode);
   }
   else return node;
 }
Example #4
0
  float BVH4i::sah (NodeRef& node, const BBox3f& bounds)
  {
    float f = bounds.empty() ? 0.0f : area(bounds);

    if (node.isNode()) 
    {
      Node* n = node.node(nodePtr());
      for (size_t c=0; c<4; c++) 
        f += sah(n->child(c),n->bounds(c));
      return f;
    }
    else 
    {
      size_t num; node.leaf(triPtr(),num);
      return f*num;
    }
  }
Example #5
0
 typename BVHN<N>::NodeRef BVHN<N>::layoutLargeNodesRecursion(NodeRef& node, FastAllocator::ThreadLocal& allocator)
 {
   if (node.isBarrier()) {
     node.clearBarrier();
     return node;
   }
   else if (node.isNode()) 
   {
     Node* oldnode = node.node();
     Node* newnode = (BVHN::Node*) allocator.malloc(sizeof(BVHN::Node),byteNodeAlignment);
     *newnode = *oldnode;
     for (size_t c=0; c<N; c++)
       newnode->child(c) = layoutLargeNodesRecursion(oldnode->child(c),allocator);
     return encodeNode(newnode);
   }
   else return node;
 }
Example #6
0
  float BVH4i::sah (NodeRef& node, BBox3fa bounds)
  {
    float f = bounds.empty() ? 0.0f : area(bounds);

    if (node.isNode()) 
    {
      Node* n = node.node(nodePtr());
      for (size_t c=0; c<BVH4i::N; c++) 
	if (n->child(c) != BVH4i::invalidNode)
	  f += sah(n->child(c),n->bounds(c));
      return f;
    }
    else 
    {
      unsigned int num; node.leaf(triPtr(),num);
      return f*num;
    }
  }
Example #7
0
  void BVH4Statistics::statistics(NodeRef node, const BBox3fa& bounds, size_t& depth)
  {
    float A = bounds.empty() ? 0.0f : area(bounds);

    if (node.isNode())
    {
      numNodes++;
      depth = 0;
      size_t cdepth = 0;
      Node* n = node.node();
      bvhSAH += A*BVH4::travCost;
      for (size_t i=0; i<BVH4::N; i++) {
        statistics(n->child(i),n->bounds(i),cdepth); 
        depth=max(depth,cdepth);
      }
      for (size_t i=0; i<BVH4::N; i++) {
        if (n->child(i) == BVH4::emptyNode) {
          for (; i<BVH4::N; i++) {
            if (n->child(i) != BVH4::emptyNode)
              throw std::runtime_error("invalid node");
          }
          break;
        }
      }    
      depth++;
      return;
    }
    else
    {
      depth = 0;
      size_t num; const char* tri = node.leaf(num);
      if (!num) return;
      
      numLeaves++;
      numPrimBlocks += num;
      for (size_t i=0; i<num; i++) {
        numPrims += bvh->primTy.size(tri+i*bvh->primTy.bytes);
      }
      float sah = A * bvh->primTy.intCost * num;
      bvhSAH += sah;
      leafSAH += sah;
    }
  }
    __forceinline void BVH8iIntersector8Hybrid<TriangleIntersector8>::intersect1(const BVH8i* bvh, NodeRef root, const size_t k, Ray8& ray,const avx3f &ray_org, const avx3f &ray_dir, const avx3f &ray_rdir, const avxf &ray_tnear, const avxf &ray_tfar, const avx3i& nearXYZ)
    {
      /*! stack state */
      StackItemInt64 stack[stackSizeSingle];  //!< stack of nodes 
      StackItemInt64* stackPtr = stack+1;        //!< current stack pointer
      StackItemInt64* stackEnd = stack+stackSizeSingle;
      stack[0].ptr = root;
      stack[0].dist = neg_inf;
      
      /*! offsets to select the side that becomes the lower or upper bound */
      const size_t nearX = nearXYZ.x[k];
      const size_t nearY = nearXYZ.y[k];
      const size_t nearZ = nearXYZ.z[k];

      /*! load the ray into SIMD registers */
      const avx3f org (ray_org .x[k],ray_org .y[k],ray_org .z[k]);
      const avx3f rdir(ray_rdir.x[k],ray_rdir.y[k],ray_rdir.z[k]);
      const avx3f org_rdir(org*rdir);
      avxf rayNear(ray_tnear[k]), rayFar(ray_tfar[k]);
     
      const Node     * __restrict__ nodes = (Node    *)bvh->nodePtr();
      const Triangle * __restrict__ accel = (Triangle*)bvh->triPtr();
 
      /* pop loop */
      while (true) pop:
      {
        /*! pop next node */
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = NodeRef(stackPtr->ptr);
        
        /*! if popped node is too far, pop next one */
        if (unlikely(*(float*)&stackPtr->dist > ray.tfar[k]))
          continue;
        
        /* downtraversal loop */
        while (true)
        {
          /*! stop if we found a leaf */
          if (unlikely(cur.isLeaf())) break;
          STAT3(normal.trav_nodes,1,1,1);
          
          /*! single ray intersection with 4 boxes */
          const Node* node = (Node*)cur.node(nodes);
          const size_t farX  = nearX ^ sizeof(avxf), farY  = nearY ^ sizeof(avxf), farZ  = nearZ ^ sizeof(avxf);
#if defined (__AVX2__)
          const avxf tNearX = msub(load8f((const char*)node+nearX), rdir.x, org_rdir.x);
          const avxf tNearY = msub(load8f((const char*)node+nearY), rdir.y, org_rdir.y);
          const avxf tNearZ = msub(load8f((const char*)node+nearZ), rdir.z, org_rdir.z);
          const avxf tFarX  = msub(load8f((const char*)node+farX ), rdir.x, org_rdir.x);
          const avxf tFarY  = msub(load8f((const char*)node+farY ), rdir.y, org_rdir.y);
          const avxf tFarZ  = msub(load8f((const char*)node+farZ ), rdir.z, org_rdir.z);
#else
          const avxf tNearX = (load8f((const char*)node+nearX) - org.x) * rdir.x;
          const avxf tNearY = (load8f((const char*)node+nearY) - org.y) * rdir.y;
          const avxf tNearZ = (load8f((const char*)node+nearZ) - org.z) * rdir.z;
          const avxf tFarX  = (load8f((const char*)node+farX ) - org.x) * rdir.x;
          const avxf tFarY  = (load8f((const char*)node+farY ) - org.y) * rdir.y;
          const avxf tFarZ  = (load8f((const char*)node+farZ ) - org.z) * rdir.z;
#endif

#if defined(__AVX2__)
          const avxf tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,rayNear));
          const avxf tFar  = mini(mini(tFarX ,tFarY ),mini(tFarZ ,rayFar ));
          const avxb vmask = cast(tNear) > cast(tFar);
          unsigned int mask = movemask(vmask)^0xff;
#else
          const avxf tNear = max(tNearX,tNearY,tNearZ,rayNear);
          const avxf tFar  = min(tFarX ,tFarY ,tFarZ ,rayFar);
          const avxb vmask = tNear <= tFar;
          unsigned int mask = movemask(vmask);
#endif
          
          /*! if no child is hit, pop next node */
          if (unlikely(mask == 0))
            goto pop;
          
          /*! one child is hit, continue with that child */
          size_t r = __bscf(mask);
          if (likely(mask == 0)) {
            cur = node->child(r);
            assert(cur != BVH4i::emptyNode);
            continue;
          }
          
          /*! two children are hit, push far child, and continue with closer child */
          NodeRef c0 = node->child(r); const unsigned int d0 = ((unsigned int*)&tNear)[r];
          r = __bscf(mask);
          NodeRef c1 = node->child(r); const unsigned int d1 = ((unsigned int*)&tNear)[r];
          assert(c0 != BVH4i::emptyNode);
          assert(c1 != BVH4i::emptyNode);
          if (likely(mask == 0)) {
            assert(stackPtr < stackEnd); 
            if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; }
            else         { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; }
          }
          
          /*! Here starts the slow path for 3 or 4 hit children. We push
           *  all nodes onto the stack to sort them there. */
          assert(stackPtr < stackEnd); 
          stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++;
          assert(stackPtr < stackEnd); 
          stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++;
          
          /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */
          assert(stackPtr < stackEnd); 
          r = __bscf(mask);
          NodeRef c = node->child(r); unsigned int d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
          assert(c0 != BVH4i::emptyNode);
          if (likely(mask == 0)) {
            sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
            cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
            continue;
          }
          
          /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */
          assert(stackPtr < stackEnd); 
          r = __bscf(mask);
          c = node->child(r); d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
          assert(c != BVH4i::emptyNode);
	  if (likely(mask == 0)) {
	    sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
	    cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
	    continue;
	  }

	  while(1)
	    {
	      r = __bscf(mask);
	      c = node->child(r); d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
	      if (unlikely(mask == 0)) break;
	    }
	  cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
	  
        }
        
        /*! this is a leaf node */
        STAT3(normal.trav_leaves,1,1,1);
        size_t num; Triangle* prim = (Triangle*) cur.leaf(accel,num);
        TriangleIntersector8::intersect(ray,k,prim,num,bvh->geometry);
        rayFar = ray.tfar[k];
      }
    }
    __forceinline bool BVH8iIntersector8Hybrid<TriangleIntersector8>::occluded1(const BVH8i* bvh, NodeRef root, const size_t k, Ray8& ray,const avx3f &ray_org, const avx3f &ray_dir, const avx3f &ray_rdir, const avxf &ray_tnear, const avxf &ray_tfar, const avx3i& nearXYZ)
    {
      /*! stack state */
      NodeRef stack[stackSizeSingle];  //!< stack of nodes that still need to get traversed
      NodeRef* stackPtr = stack+1;        //!< current stack pointer
      NodeRef* stackEnd = stack+stackSizeSingle;
      stack[0]  = root;
      
      /*! offsets to select the side that becomes the lower or upper bound */
      const size_t nearX = nearXYZ.x[k];
      const size_t nearY = nearXYZ.y[k];
      const size_t nearZ = nearXYZ.z[k];
      
      /*! load the ray into SIMD registers */
      const avx3f org (ray_org .x[k],ray_org .y[k],ray_org .z[k]);
      const avx3f rdir(ray_rdir.x[k],ray_rdir.y[k],ray_rdir.z[k]);
      const avx3f norg = -org, org_rdir(org*rdir);
      const avxf rayNear(ray_tnear[k]), rayFar(ray_tfar[k]); 

      const Node     * __restrict__ nodes = (Node    *)bvh->nodePtr();
      const Triangle * __restrict__ accel = (Triangle*)bvh->triPtr();
      
      /* pop loop */
      while (true) pop:
      {
        /*! pop next node */
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = (NodeRef) *stackPtr;
        
        /* downtraversal loop */
        while (true)
        {
          /*! stop if we found a leaf */
          if (unlikely(cur.isLeaf())) break;
          STAT3(shadow.trav_nodes,1,1,1);
          
          /*! single ray intersection with 4 boxes */
          const Node* node = (Node*)cur.node(nodes);
          const size_t farX  = nearX ^ sizeof(avxf), farY  = nearY ^ sizeof(avxf), farZ  = nearZ ^ sizeof(avxf);
#if defined (__AVX2__)
          const avxf tNearX = msub(load8f((const char*)node+nearX), rdir.x, org_rdir.x);
          const avxf tNearY = msub(load8f((const char*)node+nearY), rdir.y, org_rdir.y);
          const avxf tNearZ = msub(load8f((const char*)node+nearZ), rdir.z, org_rdir.z);
          const avxf tFarX  = msub(load8f((const char*)node+farX ), rdir.x, org_rdir.x);
          const avxf tFarY  = msub(load8f((const char*)node+farY ), rdir.y, org_rdir.y);
          const avxf tFarZ  = msub(load8f((const char*)node+farZ ), rdir.z, org_rdir.z);
#else
          const avxf tNearX = (norg.x + load8f((const char*)node+nearX)) * rdir.x;
          const avxf tNearY = (norg.y + load8f((const char*)node+nearY)) * rdir.y;
          const avxf tNearZ = (norg.z + load8f((const char*)node+nearZ)) * rdir.z;
          const avxf tFarX  = (norg.x + load8f((const char*)node+farX )) * rdir.x;
          const avxf tFarY  = (norg.y + load8f((const char*)node+farY )) * rdir.y;
          const avxf tFarZ  = (norg.z + load8f((const char*)node+farZ )) * rdir.z;
#endif
          
#if defined(__AVX2__)
          const avxf tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,rayNear));
          const avxf tFar  = mini(mini(tFarX ,tFarY ),mini(tFarZ ,rayFar ));
          const avxb vmask = cast(tNear) > cast(tFar);
          unsigned int mask = movemask(vmask)^0xff;
#else
          const avxf tNear = max(tNearX,tNearY,tNearZ,rayNear);
          const avxf tFar  = min(tFarX ,tFarY ,tFarZ ,rayFar);
          const avxb vmask = tNear <= tFar;
          unsigned int mask = movemask(vmask);
#endif
          
          /*! if no child is hit, pop next node */
          if (unlikely(mask == 0))
            goto pop;
          
          /*! one child is hit, continue with that child */
          size_t r = __bscf(mask);
          if (likely(mask == 0)) {
            cur = node->child(r);
            assert(cur != BVH4i::emptyNode);
            continue;
          }
          
          /*! two children are hit, push far child, and continue with closer child */
          NodeRef c0 = node->child(r); const unsigned int d0 = ((unsigned int*)&tNear)[r];
          r = __bscf(mask);
          NodeRef c1 = node->child(r); const unsigned int d1 = ((unsigned int*)&tNear)[r];
          assert(c0 != BVH4i::emptyNode);
          assert(c1 != BVH4i::emptyNode);
          if (likely(mask == 0)) {
            assert(stackPtr < stackEnd);
            if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; }
            else         { *stackPtr = c0; stackPtr++; cur = c1; continue; }
          }
          assert(stackPtr < stackEnd);
          *stackPtr = c0; stackPtr++;
          assert(stackPtr < stackEnd);
          *stackPtr = c1; stackPtr++;
          
          /*! three children are hit */
          r = __bscf(mask);
          cur = node->child(r); 
          assert(cur != BVH4i::emptyNode);
          if (likely(mask == 0)) continue;

	  while(1)
	    {
	      r = __bscf(mask);
	      NodeRef c = node->child(r); *stackPtr = c; stackPtr++;
	      if (unlikely(mask == 0)) break;
	    }
	  cur = (NodeRef) stackPtr[-1]; stackPtr--;

          // assert(stackPtr < stackEnd);
          // *stackPtr = cur; stackPtr++;
          
          // /*! four children are hit */
          // cur = node->child(3);
          // assert(cur != BVH4i::emptyNode);
        }
        
        /*! this is a leaf node */
        STAT3(shadow.trav_leaves,1,1,1);
        size_t num; Triangle* prim = (Triangle*) cur.leaf(accel,num);
        if (TriangleIntersector8::occluded(ray,k,prim,num,bvh->geometry)) {
          ray.geomID[k] = 0;
          return true;
        }
      }
      return false;
    }
    void BVH4Intersector4Chunk<PrimitiveIntersector4>::intersect(sseb* valid_i, BVH4* bvh, Ray4& ray)
    {
      /* load ray */
      const sseb valid0 = *valid_i;
      const sse3f rdir = rcp_safe(ray.dir);
      const sse3f org(ray.org), org_rdir = org * rdir;
      ssef ray_tnear = select(valid0,ray.tnear,ssef(pos_inf));
      ssef ray_tfar  = select(valid0,ray.tfar ,ssef(neg_inf));
      const ssef inf = ssef(pos_inf);
      Precalculations pre(valid0,ray);
      
      /* allocate stack and push root node */
      ssef    stack_near[stackSize];
      NodeRef stack_node[stackSize];
      stack_node[0] = BVH4::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSize;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      ssef*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef curNode = *sptr_node;
        if (unlikely(curNode == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* cull node if behind closest hit point */
        ssef curDist = *sptr_near;
        if (unlikely(none(ray_tfar > curDist))) 
          continue;
        
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf()))
            break;
          
          const sseb valid_node = ray_tfar > curDist;
          STAT3(normal.trav_nodes,1,popcnt(valid_node),4);
          const Node* __restrict__ const node = curNode.node();
          
          /* pop of next node */
          assert(sptr_node > stack_node);
          sptr_node--;
          sptr_near--;
          curNode = *sptr_node;
          curDist = *sptr_near;
          
#pragma unroll(4)
          for (unsigned i=0; i<BVH4::N; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH4::emptyNode)) break;
            
#if defined(__AVX2__)
            const ssef lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const ssef lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const ssef lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const ssef lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const ssef lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const ssef lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
#else
            const ssef lclipMinX = (node->lower_x[i] - org.x) * rdir.x;
            const ssef lclipMinY = (node->lower_y[i] - org.y) * rdir.y;
            const ssef lclipMinZ = (node->lower_z[i] - org.z) * rdir.z;
            const ssef lclipMaxX = (node->upper_x[i] - org.x) * rdir.x;
            const ssef lclipMaxY = (node->upper_y[i] - org.y) * rdir.y;
            const ssef lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z;
#endif

#if defined(__SSE4_1__)
            const ssef lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const sseb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const ssef lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const sseb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              assert(sptr_node < stackEnd);
              const ssef childDist = select(lhit,lnearP,inf);
              const NodeRef child = node->children[i];
              assert(child != BVH4::emptyNode);
              sptr_node++;
              sptr_near++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }
              
              /* push hit child onto stack */
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* intersect leaf */
        const sseb valid_leaf = ray_tfar > curDist;
        STAT3(normal.trav_leaves,1,popcnt(valid_leaf),4);
        size_t items; const Primitive* prim = (Primitive*) curNode.leaf(items);
        PrimitiveIntersector4::intersect(valid_leaf,pre,ray,prim,items,bvh->geometry);
        ray_tfar = select(valid_leaf,ray.tfar,ray_tfar);
      }
      AVX_ZERO_UPPER();
    }
    void BVH4Intersector4Hybrid<types,robust,PrimitiveIntersector4>::intersect(bool4* valid_i, BVH4* bvh, Ray4& ray)
    {
      /* verify correct input */
      bool4 valid0 = *valid_i;
#if defined(RTCORE_IGNORE_INVALID_RAYS)
      valid0 &= ray.valid();
#endif
      assert(all(valid0,ray.tnear > -FLT_MIN));
      assert(!(types & BVH4::FLAG_NODE_MB) || all(valid0,ray.time >= 0.0f & ray.time <= 1.0f));

      /* load ray */
      Vec3f4 ray_org = ray.org;
      Vec3f4 ray_dir = ray.dir;
      float4 ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
      const Vec3f4 rdir = rcp_safe(ray_dir);
      const Vec3f4 org(ray_org), org_rdir = org * rdir;
      ray_tnear = select(valid0,ray_tnear,float4(pos_inf));
      ray_tfar  = select(valid0,ray_tfar ,float4(neg_inf));
      const float4 inf = float4(pos_inf);
      Precalculations pre(valid0,ray);

      /* compute near/far per ray */
      Vec3i4 nearXYZ;
      nearXYZ.x = select(rdir.x >= 0.0f,int4(0*(int)sizeof(float4)),int4(1*(int)sizeof(float4)));
      nearXYZ.y = select(rdir.y >= 0.0f,int4(2*(int)sizeof(float4)),int4(3*(int)sizeof(float4)));
      nearXYZ.z = select(rdir.z >= 0.0f,int4(4*(int)sizeof(float4)),int4(5*(int)sizeof(float4)));

      /* allocate stack and push root node */
      float4    stack_near[stackSizeChunk];
      NodeRef stack_node[stackSizeChunk];
      stack_node[0] = BVH4::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSizeChunk;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      float4*    __restrict__ sptr_near = stack_near + 2;
      
      while (1) pop:
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef cur = *sptr_node;
        if (unlikely(cur == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* cull node if behind closest hit point */
        float4 curDist = *sptr_near;
        const bool4 active = curDist < ray_tfar;
        if (unlikely(none(active)))
          continue;
        
        /* switch to single ray traversal */
#if !defined(__WIN32__) || defined(__X86_64__)
        size_t bits = movemask(active);
        if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) {
          for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
            BVH4Intersector4Single<types,robust,PrimitiveIntersector4>::intersect1(bvh, cur, i, pre, ray, ray_org, ray_dir, rdir, ray_tnear, ray_tfar, nearXYZ);
          }
          ray_tfar = min(ray_tfar,ray.tfar);
          continue;
        }
#endif

        while (1)
        {
	  /* process normal nodes */
          if (likely((types & 0x1) && cur.isNode()))
          {
	    const bool4 valid_node = ray_tfar > curDist;
	    STAT3(normal.trav_nodes,1,popcnt(valid_node),4);
	    const Node* __restrict__ const node = cur.node();
	    
	    /* pop of next node */
	    assert(sptr_node > stack_node);
	    sptr_node--;
	    sptr_near--;
	    cur = *sptr_node; 
	    curDist = *sptr_near;
	    
#pragma unroll(4)
	    for (unsigned i=0; i<BVH4::N; i++)
	    {
	      const NodeRef child = node->children[i];
	      if (unlikely(child == BVH4::emptyNode)) break;
	      float4 lnearP; const bool4 lhit = intersect_node<robust>(node,i,org,rdir,org_rdir,ray_tnear,ray_tfar,lnearP);
	      
	      /* if we hit the child we choose to continue with that child if it 
		 is closer than the current next child, or we push it onto the stack */
	      if (likely(any(lhit)))
	      {
		assert(sptr_node < stackEnd);
		assert(child != BVH4::emptyNode);
		const float4 childDist = select(lhit,lnearP,inf);
		sptr_node++;
		sptr_near++;
		
		/* push cur node onto stack and continue with hit child */
		if (any(childDist < curDist))
		{
		  *(sptr_node-1) = cur;
		  *(sptr_near-1) = curDist; 
		  curDist = childDist;
		  cur = child;
		}
		
		/* push hit child onto stack */
		else {
		  *(sptr_node-1) = child;
		  *(sptr_near-1) = childDist; 
		}
	      }     
	    }
#if SWITCH_DURING_DOWN_TRAVERSAL == 1
          // seems to be the best place for testing utilization
          if (unlikely(popcnt(ray_tfar > curDist) <= SWITCH_THRESHOLD))
            {
              *sptr_node++ = cur;
              *sptr_near++ = curDist;
              goto pop;
            }
#endif
	  }
	  
	  /* process motion blur nodes */
          else if (likely((types & 0x10) && cur.isNodeMB()))
	  {
	    const bool4 valid_node = ray_tfar > curDist;
	    STAT3(normal.trav_nodes,1,popcnt(valid_node),4);
	    const BVH4::NodeMB* __restrict__ const node = cur.nodeMB();
          
	    /* pop of next node */
	    assert(sptr_node > stack_node);
	    sptr_node--;
	    sptr_near--;
	    cur = *sptr_node; 
	    curDist = *sptr_near;
	    
#pragma unroll(4)
	    for (unsigned i=0; i<BVH4::N; i++)
	    {
	      const NodeRef child = node->child(i);
	      if (unlikely(child == BVH4::emptyNode)) break;
	      float4 lnearP; const bool4 lhit = intersect_node(node,i,org,rdir,org_rdir,ray_tnear,ray_tfar,ray.time,lnearP);
	      
	      /* if we hit the child we choose to continue with that child if it 
		 is closer than the current next child, or we push it onto the stack */
	      if (likely(any(lhit)))
	      {
		assert(sptr_node < stackEnd);
		assert(child != BVH4::emptyNode);
		const float4 childDist = select(lhit,lnearP,inf);
		sptr_node++;
		sptr_near++;
		
		/* push cur node onto stack and continue with hit child */
		if (any(childDist < curDist))
		{
		  *(sptr_node-1) = cur;
		  *(sptr_near-1) = curDist; 
		  curDist = childDist;
		  cur = child;
		}
		
		/* push hit child onto stack */
		else {
		  *(sptr_node-1) = child;
		  *(sptr_near-1) = childDist; 
		}
	      }	      
	    }
#if SWITCH_DURING_DOWN_TRAVERSAL == 1
          // seems to be the best place for testing utilization
          if (unlikely(popcnt(ray_tfar > curDist) <= SWITCH_THRESHOLD))
            {
              *sptr_node++ = cur;
              *sptr_near++ = curDist;
              goto pop;
            }
#endif
	  }
	  else 
	    break;
	}
    void BVH8Intersector8Chunk<PrimitiveIntersector8>::intersect(avxb* valid_i, BVH8* bvh, Ray8& ray)
    {
#if defined(__AVX__)
      
      /* load ray */
      const avxb valid0 = *valid_i;
      const avx3f rdir = rcp_safe(ray.dir);
      const avx3f org_rdir = ray.org * rdir;
      avxf ray_tnear = select(valid0,ray.tnear,pos_inf);
      avxf ray_tfar  = select(valid0,ray.tfar ,neg_inf);
      const avxf inf = avxf(pos_inf);
      Precalculations pre(valid0,ray);
      
      /* allocate stack and push root node */
      avxf    stack_near[3*BVH8::maxDepth+1];
      NodeRef stack_node[3*BVH8::maxDepth+1];
      stack_node[0] = BVH8::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      avxf*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        sptr_node--;
        sptr_near--;
        NodeRef cur = *sptr_node;
        if (unlikely(cur == BVH8::invalidNode)) 
          break;
        
        /* cull node if behind closest hit point */
        avxf curDist = *sptr_near;
        if (unlikely(none(ray_tfar > curDist))) 
          continue;
        
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(cur.isLeaf()))
            break;
          
          const avxb valid_node = ray_tfar > curDist;
          STAT3(normal.trav_nodes,1,popcnt(valid_node),8);
          const Node* __restrict__ const node = (BVH8::Node*)cur.node();
          
          /* pop of next node */
          sptr_node--;
          sptr_near--;
          cur = *sptr_node; // FIXME: this trick creates issues with stack depth
          curDist = *sptr_near;
          
          for (unsigned i=0; i<BVH8::N; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH8::emptyNode)) break;
            
#if defined(__AVX2__)
            const avxf lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const avxf lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const avxf lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const avxf lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const avxf lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const avxf lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const avxf lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const avxb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const avxf lclipMinX = node->lower_x[i] * rdir.x - org_rdir.x;
            const avxf lclipMinY = node->lower_y[i] * rdir.y - org_rdir.y;
            const avxf lclipMinZ = node->lower_z[i] * rdir.z - org_rdir.z;
            const avxf lclipMaxX = node->upper_x[i] * rdir.x - org_rdir.x;
            const avxf lclipMaxY = node->upper_y[i] * rdir.y - org_rdir.y;
            const avxf lclipMaxZ = node->upper_z[i] * rdir.z - org_rdir.z;
            const avxf lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const avxb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              const avxf childDist = select(lhit,lnearP,inf);
              const NodeRef child = node->children[i];
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *sptr_node = cur;
                *sptr_near = curDist; 
		sptr_node++;
		sptr_near++;

                curDist = childDist;
                cur = child;
              }
              
              /* push hit child onto stack*/
              else {
                *sptr_node = child;
                *sptr_near = childDist; 
		sptr_node++;
		sptr_near++;

              }
              assert(sptr_node - stack_node < BVH8::maxDepth);
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(cur == BVH8::invalidNode)) 
          break;
        
        /* intersect leaf */
	assert(cur != BVH8::emptyNode);
        const avxb valid_leaf = ray_tfar > curDist;
        STAT3(normal.trav_leaves,1,popcnt(valid_leaf),8);
        size_t items; const Triangle* tri  = (Triangle*) cur.leaf(items);
        PrimitiveIntersector8::intersect(valid_leaf,pre,ray,tri,items,bvh->geometry);
        ray_tfar = select(valid_leaf,ray.tfar,ray_tfar);
      }
      AVX_ZERO_UPPER();
#endif       
    }
    void BVH4Intersector4Hybrid<PrimitiveIntersector4>::intersect(sseb* valid_i, BVH4* bvh, Ray4& ray)
    {
      /* load ray */
      const sseb valid0 = *valid_i;
      sse3f ray_org = ray.org, ray_dir = ray.dir;
      ssef ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
#if defined(__FIX_RAYS__)
      const ssef float_range = 0.1f*FLT_MAX;
      ray_org = clamp(ray_org,sse3f(-float_range),sse3f(+float_range));
      ray_dir = clamp(ray_dir,sse3f(-float_range),sse3f(+float_range));
      ray_tnear = max(ray_tnear,FLT_MIN); 
      ray_tfar  = min(ray_tfar,float(inf)); 
#endif
      const sse3f rdir = rcp_safe(ray_dir);
      const sse3f org(ray_org), org_rdir = org * rdir;
      ray_tnear = select(valid0,ray_tnear,ssef(pos_inf));
      ray_tfar  = select(valid0,ray_tfar ,ssef(neg_inf));
      const ssef inf = ssef(pos_inf);
      
      /* allocate stack and push root node */
      ssef    stack_near[stackSizeChunk]; 
      NodeRef stack_node[stackSizeChunk];
      stack_node[0] = BVH4::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSizeChunk;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      ssef*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef curNode = *sptr_node;
        if (unlikely(curNode == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* cull node if behind closest hit point */
        ssef curDist = *sptr_near;
        const sseb active = curDist < ray_tfar;
        if (unlikely(none(active))) 
          continue;
        
        /* switch to single ray traversal */
#if !defined(__WIN32__) || defined(__X86_64__)
        size_t bits = movemask(active);
        if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) {
          for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
            intersect1(bvh,curNode,i,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar);
          }
          ray_tfar = ray.tfar;
          continue;
        }
#endif
        
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf()))
            break;
          
          const sseb valid_node = ray_tfar > curDist;
          STAT3(normal.trav_nodes,1,popcnt(valid_node),4);
          const Node* __restrict__ const node = curNode.node();
          
          /* pop of next node */
          assert(sptr_node > stack_node);
          sptr_node--;
          sptr_near--;
          curNode = *sptr_node; 
          curDist = *sptr_near;
          
#pragma unroll(4)
          for (unsigned i=0; i<4; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH4::emptyNode)) break;
            
#if defined(__AVX2__)
            const ssef lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const ssef lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const ssef lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const ssef lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const ssef lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const ssef lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
#else
            const ssef lclipMinX = (node->lower_x[i] - org.x) * rdir.x;
            const ssef lclipMinY = (node->lower_y[i] - org.y) * rdir.y;
            const ssef lclipMinZ = (node->lower_z[i] - org.z) * rdir.z;
            const ssef lclipMaxX = (node->upper_x[i] - org.x) * rdir.x;
            const ssef lclipMaxY = (node->upper_y[i] - org.y) * rdir.y;
            const ssef lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z;
#endif
    
#if defined(__SSE4_1__)
            const ssef lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const sseb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const ssef lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const sseb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
        
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              assert(sptr_node < stackEnd);
              const ssef childDist = select(lhit,lnearP,inf);
              const NodeRef child = node->children[i];
              assert(child != BVH4::emptyNode);
              sptr_node++;
              sptr_near++;

              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }
              
              /* push hit child onto stack */
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* intersect leaf */
        const sseb valid_leaf = ray_tfar > curDist;
        STAT3(normal.trav_leaves,1,popcnt(valid_leaf),4);
        size_t items; const Primitive* prim = (Primitive*) curNode.leaf(items);
        PrimitiveIntersector4::intersect(valid_leaf,ray,prim,items,bvh->geometry);
        ray_tfar = select(valid_leaf,ray.tfar,ray_tfar);
      }
      AVX_ZERO_UPPER();
    }
    void BVH4Intersector8Chunk<types, robust, PrimitiveIntersector8>::intersect(bool8* valid_i, BVH4* bvh, Ray8& ray)
    {
      /* verify correct input */
      bool8 valid0 = *valid_i;
#if defined(RTCORE_IGNORE_INVALID_RAYS)
      valid0 &= ray.valid();
#endif
      assert(all(valid0,ray.tnear > -FLT_MIN));
      assert(!(types & BVH4::FLAG_NODE_MB) || all(valid0,ray.time >= 0.0f & ray.time <= 1.0f));
      /* load ray */
      const Vec3f8 rdir = rcp_safe(ray.dir);
      const Vec3f8 org(ray.org), org_rdir = org * rdir;
      float8 ray_tnear = select(valid0,ray.tnear,pos_inf);
      float8 ray_tfar  = select(valid0,ray.tfar ,neg_inf);
      const float8 inf = float8(pos_inf);
      Precalculations pre(valid0,ray);

      /* allocate stack and push root node */
      float8    stack_near[stackSize];
      NodeRef stack_node[stackSize];
      stack_node[0] = BVH4::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSize;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      float8*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef cur = *sptr_node;
        if (unlikely(cur == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* cull node if behind closest hit point */
        float8 curDist = *sptr_near;
        if (unlikely(none(ray_tfar > curDist))) 
          continue;
        
        while (1)
        {
          /* process normal nodes */
          if (likely((types & 0x1) && cur.isNode()))
          {
	    const bool8 valid_node = ray_tfar > curDist;
	    STAT3(normal.trav_nodes,1,popcnt(valid_node),8);
	    const Node* __restrict__ const node = cur.node();
	    
	    /* pop of next node */
	    assert(sptr_node > stack_node);
	    sptr_node--;
	    sptr_near--;
	    cur = *sptr_node; 
	    curDist = *sptr_near;
	    
#pragma unroll(4)
	    for (unsigned i=0; i<BVH4::N; i++)
	    {
	      const NodeRef child = node->children[i];
	      if (unlikely(child == BVH4::emptyNode)) break;
	      float8 lnearP; const bool8 lhit = intersect8_node<robust>(node,i,org,rdir,org_rdir,ray_tnear,ray_tfar,lnearP);
	      
	      /* if we hit the child we choose to continue with that child if it 
		 is closer than the current next child, or we push it onto the stack */
	      if (likely(any(lhit)))
	      {
		assert(sptr_node < stackEnd);
		assert(child != BVH4::emptyNode);
		const float8 childDist = select(lhit,lnearP,inf);
		sptr_node++;
		sptr_near++;
		
		/* push cur node onto stack and continue with hit child */
		if (any(childDist < curDist))
		{
		  *(sptr_node-1) = cur;
		  *(sptr_near-1) = curDist; 
		  curDist = childDist;
		  cur = child;
		}
		
		/* push hit child onto stack */
		else {
		  *(sptr_node-1) = child;
		  *(sptr_near-1) = childDist; 
		}
	      }     
	    }
	  }
	  
	  /* process motion blur nodes */
          else if (likely((types & 0x10) && cur.isNodeMB()))
	  {
	    const bool8 valid_node = ray_tfar > curDist;
	    STAT3(normal.trav_nodes,1,popcnt(valid_node),8);
	    const BVH4::NodeMB* __restrict__ const node = cur.nodeMB();
          
	    /* pop of next node */
	    assert(sptr_node > stack_node);
	    sptr_node--;
	    sptr_near--;
	    cur = *sptr_node; 
	    curDist = *sptr_near;
	    
#pragma unroll(4)
	    for (unsigned i=0; i<BVH4::N; i++)
	    {
	      const NodeRef child = node->child(i);
	      if (unlikely(child == BVH4::emptyNode)) break;
	      float8 lnearP; const bool8 lhit = intersect_node(node,i,org,rdir,org_rdir,ray_tnear,ray_tfar,ray.time,lnearP);
	      	      
	      /* if we hit the child we choose to continue with that child if it 
		 is closer than the current next child, or we push it onto the stack */
	      if (likely(any(lhit)))
	      {
		assert(sptr_node < stackEnd);
		assert(child != BVH4::emptyNode);
		const float8 childDist = select(lhit,lnearP,inf);
		sptr_node++;
		sptr_near++;
		
		/* push cur node onto stack and continue with hit child */
		if (any(childDist < curDist))
		{
		  *(sptr_node-1) = cur;
		  *(sptr_near-1) = curDist; 
		  curDist = childDist;
		  cur = child;
		}
		
		/* push hit child onto stack */
		else {
		  *(sptr_node-1) = child;
		  *(sptr_near-1) = childDist; 
		}
	      }	      
	    }
	  }
	  else 
	    break;
	}
Example #15
0
  void BVH2Intersector8Chunk<TriangleIntersector>::intersect(const BVH2Intersector8Chunk* This, Ray8& ray, const __m256 valid_i)
  {
    avxb valid = valid_i;
    const BVH2* bvh = This->bvh;
    STAT3(normal.travs,1,popcnt(valid),8);

    struct StackItem {
      NodeRef ptr;
      avxf dist;
    };
    
    StackItem stack[1+BVH2::maxDepth];   //!< stack of nodes that still need to get traversed
    StackItem* stackPtr = stack;                       //!< current stack pointer
    NodeRef cur = bvh->root;                        //!< in cur we track the ID of the current node

    /* let inactive rays miss all boxes */
    const avx3f rdir = rcp_safe(ray.dir);
    ray.tfar = select(valid,ray.tfar,avxf(neg_inf));

    while (true)
    {
      /*! downtraversal loop */
      while (likely(cur.isNode()))
      {
        STAT3(normal.trav_nodes,1,popcnt(valid),8);

        /* intersect packet with box of both children */
        const Node* node = cur.node();
        avxf dist0; size_t hit0 = intersectBox(ray.org,rdir,ray.tnear,ray.tfar,node,0,dist0);
        avxf dist1; size_t hit1 = intersectBox(ray.org,rdir,ray.tnear,ray.tfar,node,1,dist1);

        /*! if two children hit, push far node onto stack and continue with closer node */
        if (likely(hit0 != 0 && hit1 != 0)) {
          if (any(valid & (dist0 < dist1))) { 
            stackPtr->ptr = node->child(1); stackPtr->dist = dist1; stackPtr++; cur = node->child(0); 
          } else { 
            stackPtr->ptr = node->child(0); stackPtr->dist = dist0; stackPtr++; cur = node->child(1); 
          }
        }

        /*! if one child hit, continue with that child */
        else {
          if      (likely(hit0 != 0)) cur = node->child(0);
          else if (likely(hit1 != 0)) cur = node->child(1);
          else goto pop_node;
        }
      }

      /*! leaf node, intersect all triangles */
      {
        STAT3(normal.trav_leaves,1,popcnt(valid),8);
        size_t num; Triangle* tri = (Triangle*) cur.leaf(NULL,num);
        for (size_t i=0; i<num; i++) {
          TriangleIntersector::intersect(valid,ray,tri[i],bvh->vertices);
        }
      }

      /*! pop next node from stack */
pop_node:
      if (unlikely(stackPtr == stack)) break;
      --stackPtr;
      cur = stackPtr->ptr;
      if (unlikely(all(stackPtr->dist > ray.tfar))) goto pop_node;
    }
  }
  __forceinline bool occludedT(const BVH4* bvh, Ray& ray)
  {
    typedef typename TriangleIntersector::Triangle Triangle;
    typedef StackItemT<size_t> StackItem;
    typedef typename BVH4::NodeRef NodeRef;
    typedef typename BVH4::Node Node;

    /*! stack state */
    NodeRef stack[1+3*BVH4::maxDepth];  //!< stack of nodes that still need to get traversed
    NodeRef* stackPtr = stack+1;        //!< current stack pointer
    stack[0]  = bvh->root;
  
    /*! load the ray into SIMD registers */
    const avxf pos_neg = avxf(ssef(+0.0f),ssef(-0.0f));
    const avxf neg_pos = avxf(ssef(-0.0f),ssef(+0.0f));
    const avxf flipSignX = swapX ? neg_pos : pos_neg;
    const avxf flipSignY = swapY ? neg_pos : pos_neg;
    const avxf flipSignZ = swapZ ? neg_pos : pos_neg;
    const avx3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
    const Vector3f ray_rdir = rcp_safe(ray.dir);
    const avx3f rdir(ray_rdir.x^flipSignX,ray_rdir.y^flipSignY,ray_rdir.z^flipSignZ);
    const avx3f org_rdir(avx3f(ray.org.x,ray.org.y,ray.org.z)*rdir);
    const avxf rayNearFar(ssef(ray.tnear),-ssef(ray.tfar));

    const void* nodePtr = bvh->nodePtr();
    const void* triPtr  = bvh->triPtr();
    
    /* pop loop */
    while (true) pop:
    {
      /*! pop next node */
      if (unlikely(stackPtr == stack)) break;
      stackPtr--;
      NodeRef cur = (NodeRef) *stackPtr;
      
      /* downtraversal loop */
      while (true)
      {
        /*! stop if we found a leaf */
        if (unlikely(cur.isLeaf())) break;
        STAT3(shadow.trav_nodes,1,1,1);
	
        /*! single ray intersection with 4 boxes */
        const Node* node = cur.node(nodePtr);
       
#if defined (__AVX2__) || defined(__MIC__)
        const avxf tLowerUpperX = msub(avxf::load(&node->lower_x), rdir.x, org_rdir.x);
        const avxf tLowerUpperY = msub(avxf::load(&node->lower_y), rdir.y, org_rdir.y);
        const avxf tLowerUpperZ = msub(avxf::load(&node->lower_z), rdir.z, org_rdir.z);
#else
        const avxf tLowerUpperX = (norg.x + avxf::load(&node->lower_x)) * rdir.x;
        const avxf tLowerUpperY = (norg.y + avxf::load(&node->lower_y)) * rdir.y;
        const avxf tLowerUpperZ = (norg.z + avxf::load(&node->lower_z)) * rdir.z;
#endif
        const avxf tNearFarX = swapX ? shuffle<1,0>(tLowerUpperX) : tLowerUpperX;
        const avxf tNearFarY = swapY ? shuffle<1,0>(tLowerUpperY) : tLowerUpperY;
        const avxf tNearFarZ = swapZ ? shuffle<1,0>(tLowerUpperZ) : tLowerUpperZ;
        const avxf tNearFar = max(tNearFarX,tNearFarY,tNearFarZ,rayNearFar);
        const ssef tNear = extract<0>(tNearFar);
        const ssef tFar  = extract<1>(tNearFar);
        size_t mask = movemask(-tNear >= tFar);
        
        /*! if no child is hit, pop next node */
        if (unlikely(mask == 0))
          goto pop;

        /*! one child is hit, continue with that child */
        size_t r = __bsf(mask); mask = __btc(mask,r);
        if (likely(mask == 0)) {
          cur = node->child(r);
          continue;
        }

        /*! two children are hit, push far child, and continue with closer child */
        NodeRef c0 = node->child(r); const float d0 = tNear[r];
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c1 = node->child(r); const float d1 = tNear[r];
        if (likely(mask == 0)) {
          if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; }
          else         { *stackPtr = c0; stackPtr++; cur = c1; continue; }
        }
        *stackPtr = c0; stackPtr++;
        *stackPtr = c1; stackPtr++;

        /*! three children are hit */
        r = __bsf(mask); mask = __btc(mask,r);
        cur = node->child(r); *stackPtr = cur; stackPtr++;
        if (likely(mask == 0)) {
          stackPtr--;
          continue;
        }

        /*! four children are hit */
        cur = node->child(3);
      }

      /*! this is a leaf node */
      STAT3(shadow.trav_leaves,1,1,1);
      size_t num; Triangle* tri = (Triangle*) cur.leaf(triPtr,num);
      for (size_t i=0; i<num; i++) {
        if (TriangleIntersector::occluded(ray,tri[i],bvh->vertices)) {
          AVX_ZERO_UPPER();
          return true;
        }
      }
    }
   
    AVX_ZERO_UPPER();
    return false;
  }
    void BVH4Intersector4Chunk<types,robust,PrimitiveIntersector4>::intersect(sseb* valid_i, BVH4* bvh, Ray4& ray)
    {
      /* load ray */
      const sseb valid0 = *valid_i;
      const sse3f rdir = rcp_safe(ray.dir);
      const sse3f org(ray.org), org_rdir = org * rdir;
      ssef ray_tnear = select(valid0,ray.tnear,ssef(pos_inf));
      ssef ray_tfar  = select(valid0,ray.tfar ,ssef(neg_inf));
      const ssef inf = ssef(pos_inf);
      Precalculations pre(valid0,ray);
      
      /* allocate stack and push root node */
      ssef    stack_near[stackSize];
      NodeRef stack_node[stackSize];
      stack_node[0] = BVH4::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSize;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      ssef*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef cur = *sptr_node;
        if (unlikely(cur == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* cull node if behind closest hit point */
        ssef curDist = *sptr_near;
        if (unlikely(none(ray_tfar > curDist))) 
          continue;
        
        while (1)
        {
	  /* process normal nodes */
          if (likely((types & 0x1) && cur.isNode()))
          {
	    const sseb valid_node = ray_tfar > curDist;
	    STAT3(normal.trav_nodes,1,popcnt(valid_node),8);
	    const Node* __restrict__ const node = cur.node();
	    
	    /* pop of next node */
	    assert(sptr_node > stack_node);
	    sptr_node--;
	    sptr_near--;
	    cur = *sptr_node; 
	    curDist = *sptr_near;
          
#pragma unroll(4)
	    for (unsigned i=0; i<BVH4::N; i++)
	    {
	      const NodeRef child = node->children[i];
	      if (unlikely(child == BVH4::emptyNode)) break;
	      ssef lnearP; const sseb lhit = node->intersect<robust>(i,org,rdir,org_rdir,ray_tnear,ray_tfar,lnearP);
	      	      
	      /* if we hit the child we choose to continue with that child if it 
		 is closer than the current next child, or we push it onto the stack */
	      if (likely(any(lhit)))
	      {
		assert(sptr_node < stackEnd);
		const ssef childDist = select(lhit,lnearP,inf);
		const NodeRef child = node->children[i];
		assert(child != BVH4::emptyNode);
		sptr_node++;
		sptr_near++;
		
		/* push cur node onto stack and continue with hit child */
		if (any(childDist < curDist))
		{
		  *(sptr_node-1) = cur;
		  *(sptr_near-1) = curDist; 
		  curDist = childDist;
		  cur = child;
		}
		
		/* push hit child onto stack */
		else {
		  *(sptr_node-1) = child;
		  *(sptr_near-1) = childDist; 
		}
	      }	      
	    }
	  }
	  /* process motion blur nodes */
          else if (likely((types & 0x10) && cur.isNodeMB()))
	  {
	    const sseb valid_node = ray_tfar > curDist;
	    STAT3(normal.trav_nodes,1,popcnt(valid_node),8);
	    const BVH4::NodeMB* __restrict__ const node = cur.nodeMB();
          
	    /* pop of next node */
	    assert(sptr_node > stack_node);
	    sptr_node--;
	    sptr_near--;
	    cur = *sptr_node; 
	    curDist = *sptr_near;
	    
#pragma unroll(4)
	    for (unsigned i=0; i<BVH4::N; i++)
	    {
	      const NodeRef child = node->child(i);
	      if (unlikely(child == BVH4::emptyNode)) break;
	      ssef lnearP; const sseb lhit = node->intersect(i,org,rdir,org_rdir,ray_tnear,ray_tfar,ray.time,lnearP);
	      
	      /* if we hit the child we choose to continue with that child if it 
		 is closer than the current next child, or we push it onto the stack */
	      if (likely(any(lhit)))
	      {
		assert(sptr_node < stackEnd);
		assert(child != BVH4::emptyNode);
		const ssef childDist = select(lhit,lnearP,inf);
		sptr_node++;
		sptr_near++;
		
		/* push cur node onto stack and continue with hit child */
		if (any(childDist < curDist))
		{
		  *(sptr_node-1) = cur;
		  *(sptr_near-1) = curDist; 
		  curDist = childDist;
		  cur = child;
		}
		
		/* push hit child onto stack */
		else {
		  *(sptr_node-1) = child;
		  *(sptr_near-1) = childDist; 
		}
	      }	      
	    }
	  }
	  else 
	    break;
        }
  void BVH4Intersector4Chunk<TriangleIntersector4>::intersect(const BVH4Intersector4Chunk* This, Ray4& ray, const __m128 valid_i)
  {
    sseb valid = valid_i;
    NodeRef invalid = (NodeRef)1;
    const BVH4* bvh = This->bvh;
    STAT3(normal.travs,1,popcnt(valid),4);

    /* load ray into registers */
    ssef ray_near = select(valid,ray.tnear,pos_inf);
    ssef ray_far  = select(valid,ray.tfar ,neg_inf);
    sse3f rdir = rcp_safe(ray.dir);
    ray.tfar = ray_far;

    /* allocate stack and push root node */
    NodeRef stack_node[3*BVH4::maxDepth+1];
    ssef  stack_near[3*BVH4::maxDepth+1];
    stack_node[0] = invalid;
    stack_near[0] = ssef(inf);
    stack_node[1] = bvh->root;
    stack_near[1] = ray_near;
    NodeRef* sptr_node = stack_node+2;
    ssef * sptr_near = stack_near+2;
 
    while (1)
    {
      /* pop next node from stack */
      sptr_node--;
      sptr_near--;
      ssef  curDist = *sptr_near;
      NodeRef curNode = *sptr_node;
      if (unlikely(curNode == invalid))
        break;

      /* cull node if behind closest hit point */
      const sseb m_dist = curDist < ray_far;
      if (unlikely(none(m_dist))) 
        continue;

      while (1)
      {
        /* test if this is a leaf node */
        if (unlikely(curNode.isLeaf())) 
          break;

        STAT3(normal.trav_nodes,1,popcnt(valid),4);
        
        const Node* const node = curNode.node(bvh->nodePtr()); //NodeRef(curNode).node(nodes);
        //prefetch<PFHINT_L1>((ssef*)node + 1); // depth first order prefetch	
        
        /* pop of next node */
        sptr_node--;
        sptr_near--;
        curNode = *sptr_node;
        curDist = *sptr_near;
                
        for (unsigned i=0;i<4;i++)
	{
          const ssef dminx = (ssef(node->lower_x[i]) - ray.org.x) * rdir.x;
          const ssef dmaxx = (ssef(node->upper_x[i]) - ray.org.x) * rdir.x;
          const ssef dminy = (ssef(node->lower_y[i]) - ray.org.y) * rdir.y;
          const ssef dmaxy = (ssef(node->upper_y[i]) - ray.org.y) * rdir.y;
          const ssef dminz = (ssef(node->lower_z[i]) - ray.org.z) * rdir.z;
          const ssef dmaxz = (ssef(node->upper_z[i]) - ray.org.z) * rdir.z;
          
          const ssef dlowerx = min(dminx,dmaxx);
          const ssef dupperx = max(dminx,dmaxx);
          const ssef dlowery = min(dminy,dmaxy);
          const ssef duppery = max(dminy,dmaxy);
          const ssef dlowerz = min(dminz,dmaxz);
          const ssef dupperz = max(dminz,dmaxz);
          
          const ssef near = max(dlowerx,dlowery,dlowerz,ray_near);
          const ssef far  = min(dupperx,duppery,dupperz,ray_far );
          const sseb mhit = near <= far;
          
          const ssef childDist = select(mhit,near,inf);
          const sseb closer = childDist < curDist;

          /* if we hit the child we choose to continue with that child if it 
             is closer than the current next child, or we push it onto the stack */
          if (likely(any(mhit)))
          {
            const NodeRef child = node->child(i);
            //if (child != invalid)
            {
              sptr_node++;
              sptr_near++;
            
              /* push cur node onto stack and continue with hit child */
              if (any(closer)) {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              } 
              
              /* push hit child onto stack*/
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }          
            }	      
          }
        }
      }
      
      /* return if stack is empty */
      if (unlikely(curNode == invalid)) 
        break;
      
      /* decode leaf node */
      size_t num;
      STAT3(normal.trav_leaves,1,popcnt(valid),4);
      Triangle* tri = (Triangle*) curNode.leaf(bvh->triPtr(),num);
      
      /* intersect triangles */
      for (size_t i=0; i<num; i++)
        TriangleIntersector4::intersect(valid,ray,tri[i],bvh->vertices);
      
      ray_far = ray.tfar;
    }
  }
    __forceinline bool BVH4Intersector4Hybrid<PrimitiveIntersector4>::occluded1(const BVH4* bvh, NodeRef root, size_t k, Ray4& ray, 
                                                                                const sse3f& ray_org, const sse3f& ray_dir, const sse3f& ray_rdir, 
                                                                                const ssef& ray_tnear, const ssef& ray_tfar)
    {
      /*! stack state */
      NodeRef stack[stackSizeSingle];  //!< stack of nodes that still need to get traversed
      NodeRef* stackPtr = stack+1;        //!< current stack pointer
      NodeRef* stackEnd = stack+stackSizeSingle;
      stack[0]  = root;
      
      /*! offsets to select the side that becomes the lower or upper bound */
      const size_t nearX = ray_dir.x[k] >= 0.0f ? 0*sizeof(ssef) : 1*sizeof(ssef);
      const size_t nearY = ray_dir.y[k] >= 0.0f ? 2*sizeof(ssef) : 3*sizeof(ssef);
      const size_t nearZ = ray_dir.z[k] >= 0.0f ? 4*sizeof(ssef) : 5*sizeof(ssef);
      
      /*! load the ray into SIMD registers */
      const sse3f org (ray_org .x[k],ray_org .y[k],ray_org .z[k]);
      const sse3f rdir(ray_rdir.x[k],ray_rdir.y[k],ray_rdir.z[k]);
      const sse3f norg = -org, org_rdir(org*rdir);
      const ssef rayNear(ray_tnear[k]), rayFar(ray_tfar[k]); 
      
      /* pop loop */
      while (true) pop:
      {
        /*! pop next node */
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = (NodeRef) *stackPtr;
        
        /* downtraversal loop */
        while (true)
        {
          /*! stop if we found a leaf */
          if (unlikely(cur.isLeaf())) break;
          STAT3(shadow.trav_nodes,1,1,1);
          
          /*! single ray intersection with 4 boxes */
          const Node* node = cur.node();
          const size_t farX  = nearX ^ 16, farY  = nearY ^ 16, farZ  = nearZ ^ 16;
#if defined (__AVX2__)
          const ssef tNearX = msub(load4f((const char*)node+nearX), rdir.x, org_rdir.x);
          const ssef tNearY = msub(load4f((const char*)node+nearY), rdir.y, org_rdir.y);
          const ssef tNearZ = msub(load4f((const char*)node+nearZ), rdir.z, org_rdir.z);
          const ssef tFarX  = msub(load4f((const char*)node+farX ), rdir.x, org_rdir.x);
          const ssef tFarY  = msub(load4f((const char*)node+farY ), rdir.y, org_rdir.y);
          const ssef tFarZ  = msub(load4f((const char*)node+farZ ), rdir.z, org_rdir.z);
#else
          const ssef tNearX = (norg.x + load4f((const char*)node+nearX)) * rdir.x;
          const ssef tNearY = (norg.y + load4f((const char*)node+nearY)) * rdir.y;
          const ssef tNearZ = (norg.z + load4f((const char*)node+nearZ)) * rdir.z;
          const ssef tFarX  = (norg.x + load4f((const char*)node+farX )) * rdir.x;
          const ssef tFarY  = (norg.y + load4f((const char*)node+farY )) * rdir.y;
          const ssef tFarZ  = (norg.z + load4f((const char*)node+farZ )) * rdir.z;
#endif
          
#if defined(__SSE4_1__)
          const ssef tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,rayNear));
          const ssef tFar  = mini(mini(tFarX ,tFarY ),mini(tFarZ ,rayFar ));
          const sseb vmask = cast(tNear) > cast(tFar);
          size_t mask = movemask(vmask)^0xf;
#else
          const ssef tNear = max(tNearX,tNearY,tNearZ,rayNear);
          const ssef tFar  = min(tFarX ,tFarY ,tFarZ ,rayFar);
          const sseb vmask = tNear <= tFar;
          size_t mask = movemask(vmask);
#endif
          
          /*! if no child is hit, pop next node */
          if (unlikely(mask == 0))
            goto pop;
          
          /*! one child is hit, continue with that child */
          size_t r = __bscf(mask);
          if (likely(mask == 0)) {
            cur = node->child(r);
            assert(cur != BVH4::emptyNode);
            continue;
          }
          
          /*! two children are hit, push far child, and continue with closer child */
          NodeRef c0 = node->child(r); const float d0 = tNear[r];
          r = __bscf(mask);
          NodeRef c1 = node->child(r); const float d1 = tNear[r];
          assert(c0 != BVH4::emptyNode);
          assert(c1 != BVH4::emptyNode);
          if (likely(mask == 0)) {
            assert(stackPtr < stackEnd);
            if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; }
            else         { *stackPtr = c0; stackPtr++; cur = c1; continue; }
          }
          assert(stackPtr < stackEnd);
          *stackPtr = c0; stackPtr++;
          assert(stackPtr < stackEnd);
          *stackPtr = c1; stackPtr++;
          
          /*! three children are hit */
          r = __bscf(mask);
          cur = node->child(r); 
          assert(cur != BVH4::emptyNode);
          if (likely(mask == 0)) continue;
          assert(stackPtr < stackEnd);
          *stackPtr = cur; stackPtr++;
          
          /*! four children are hit */
          cur = node->child(3);
          assert(cur != BVH4::emptyNode);
        }
        
        /*! this is a leaf node */
        STAT3(shadow.trav_leaves,1,1,1);
        size_t num; Primitive* prim = (Primitive*) cur.leaf(num);
        if (PrimitiveIntersector4::occluded(ray,k,prim,num,bvh->geometry)) {
          ray.geomID[k] = 0;
          return true;
        }
      }
      return false;
    }
    __forceinline void BVH4Intersector4Hybrid<PrimitiveIntersector4>::intersect1(const BVH4* bvh, NodeRef root, size_t k, Ray4& ray, 
                                                                                 const sse3f& ray_org, const sse3f& ray_dir, const sse3f& ray_rdir, 
                                                                                 const ssef& ray_tnear, const ssef& ray_tfar)
    {
      /*! stack state */
      StackItem stack[stackSizeSingle];  //!< stack of nodes 
      StackItem* stackPtr = stack+1;        //!< current stack pointer
      StackItem* stackEnd = stack+stackSizeSingle;
      stack[0].ptr = root;
      stack[0].dist = neg_inf;
      
      /*! offsets to select the side that becomes the lower or upper bound */
      const size_t nearX = ray_dir.x[k] >= 0.0f ? 0*sizeof(ssef) : 1*sizeof(ssef);
      const size_t nearY = ray_dir.y[k] >= 0.0f ? 2*sizeof(ssef) : 3*sizeof(ssef);
      const size_t nearZ = ray_dir.z[k] >= 0.0f ? 4*sizeof(ssef) : 5*sizeof(ssef);
      
      /*! load the ray into SIMD registers */
      const sse3f org (ray_org .x[k],ray_org .y[k],ray_org .z[k]);
      const sse3f rdir(ray_rdir.x[k],ray_rdir.y[k],ray_rdir.z[k]);
      const sse3f norg = -org, org_rdir(org*rdir);
      ssef rayNear(ray_tnear[k]), rayFar(ray_tfar[k]); 
      
      /* pop loop */
      while (true) pop:
      {
        /*! pop next node */
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = NodeRef(stackPtr->ptr);
        
        /*! if popped node is too far, pop next one */
        if (unlikely(stackPtr->dist > ray.tfar[k]))
          continue;
        
        /* downtraversal loop */
        while (true)
        {
          /*! stop if we found a leaf */
          if (unlikely(cur.isLeaf())) break;
          STAT3(normal.trav_nodes,1,1,1);
          
          /*! single ray intersection with 4 boxes */
          const Node* node = cur.node();
          const size_t farX  = nearX ^ 16, farY  = nearY ^ 16, farZ  = nearZ ^ 16;
#if defined (__AVX2__)
          const ssef tNearX = msub(load4f((const char*)node+nearX), rdir.x, org_rdir.x);
          const ssef tNearY = msub(load4f((const char*)node+nearY), rdir.y, org_rdir.y);
          const ssef tNearZ = msub(load4f((const char*)node+nearZ), rdir.z, org_rdir.z);
          const ssef tFarX  = msub(load4f((const char*)node+farX ), rdir.x, org_rdir.x);
          const ssef tFarY  = msub(load4f((const char*)node+farY ), rdir.y, org_rdir.y);
          const ssef tFarZ  = msub(load4f((const char*)node+farZ ), rdir.z, org_rdir.z);
#else
          const ssef tNearX = (norg.x + load4f((const char*)node+nearX)) * rdir.x;
          const ssef tNearY = (norg.y + load4f((const char*)node+nearY)) * rdir.y;
          const ssef tNearZ = (norg.z + load4f((const char*)node+nearZ)) * rdir.z;
          const ssef tFarX  = (norg.x + load4f((const char*)node+farX )) * rdir.x;
          const ssef tFarY  = (norg.y + load4f((const char*)node+farY )) * rdir.y;
          const ssef tFarZ  = (norg.z + load4f((const char*)node+farZ )) * rdir.z;
#endif

#if defined(__SSE4_1__)
          const ssef tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,rayNear));
          const ssef tFar  = mini(mini(tFarX ,tFarY ),mini(tFarZ ,rayFar ));
          const sseb vmask = cast(tNear) > cast(tFar);
          size_t mask = movemask(vmask)^0xf;
#else
          const ssef tNear = max(tNearX,tNearY,tNearZ,rayNear);
          const ssef tFar  = min(tFarX ,tFarY ,tFarZ ,rayFar);
          const sseb vmask = tNear <= tFar;
          size_t mask = movemask(vmask);
#endif
          
          /*! if no child is hit, pop next node */
          if (unlikely(mask == 0))
            goto pop;
          
          /*! one child is hit, continue with that child */
          size_t r = __bscf(mask);
          if (likely(mask == 0)) {
            cur = node->child(r);
            assert(cur != BVH4::emptyNode);
            continue;
          }
          
          /*! two children are hit, push far child, and continue with closer child */
          NodeRef c0 = node->child(r); const float d0 = tNear[r];
          r = __bscf(mask);
          NodeRef c1 = node->child(r); const float d1 = tNear[r];
          assert(c0 != BVH4::emptyNode);
          assert(c1 != BVH4::emptyNode);
          if (likely(mask == 0)) {
            assert(stackPtr < stackEnd); 
            if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; }
            else         { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; }
          }
          
          /*! Here starts the slow path for 3 or 4 hit children. We push
           *  all nodes onto the stack to sort them there. */
          assert(stackPtr < stackEnd); 
          stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++;
          assert(stackPtr < stackEnd); 
          stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++;
          
          /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */
          assert(stackPtr < stackEnd); 
          r = __bscf(mask);
          NodeRef c = node->child(r); float d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
          assert(c != BVH4::emptyNode);
          if (likely(mask == 0)) {
            sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
            cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
            continue;
          }
          
          /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */
          assert(stackPtr < stackEnd); 
          r = __bscf(mask);
          c = node->child(r); d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
          assert(c != BVH4::emptyNode);
          sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
          cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
        }
        
        /*! this is a leaf node */
        STAT3(normal.trav_leaves,1,1,1);
        size_t num; Primitive* prim = (Primitive*) cur.leaf(num);
        PrimitiveIntersector4::intersect(ray,k,prim,num,bvh->geometry);
        rayFar = ray.tfar[k];
      }
    }
    void BVH8iIntersector8Hybrid<TriangleIntersector8>::occluded(avxb* valid_i, BVH8i* bvh, Ray8& ray)
    {
      /* load ray */
      const avxb valid = *valid_i;
      avxb terminated = !valid;
      avx3f ray_org = ray.org, ray_dir = ray.dir;
      avxf ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
#if defined(__FIX_RAYS__)
      const avxf float_range = 0.1f*FLT_MAX;
      ray_org = clamp(ray_org,avx3f(-float_range),avx3f(+float_range));
      ray_dir = clamp(ray_dir,avx3f(-float_range),avx3f(+float_range));
      ray_tnear = max(ray_tnear,FLT_MIN); 
      ray_tfar  = min(ray_tfar,float(inf)); 
#endif
      const avx3f rdir = rcp_safe(ray_dir);
      const avx3f org(ray_org), org_rdir = org * rdir;
      ray_tnear = select(valid,ray_tnear,avxf(pos_inf));
      ray_tfar  = select(valid,ray_tfar ,avxf(neg_inf));
      const avxf inf = avxf(pos_inf);
      
      /* compute near/far per ray */
      avx3i nearXYZ;
      nearXYZ.x = select(rdir.x >= 0.0f,avxi(0*(int)sizeof(avxf)),avxi(1*(int)sizeof(avxf)));
      nearXYZ.y = select(rdir.y >= 0.0f,avxi(2*(int)sizeof(avxf)),avxi(3*(int)sizeof(avxf)));
      nearXYZ.z = select(rdir.z >= 0.0f,avxi(4*(int)sizeof(avxf)),avxi(5*(int)sizeof(avxf)));

      /* allocate stack and push root node */
      avxf    stack_near[stackSizeChunk];
      NodeRef stack_node[stackSizeChunk];
      stack_node[0] = BVH4i::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSizeChunk;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      avxf*    __restrict__ sptr_near = stack_near + 2;

      const Node     * __restrict__ nodes = (Node    *)bvh->nodePtr();
      const Triangle * __restrict__ accel = (Triangle*)bvh->triPtr();
      
      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef curNode = *sptr_node;
        if (unlikely(curNode == BVH4i::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }

        /* cull node if behind closest hit point */
        avxf curDist = *sptr_near;
        const avxb active = curDist < ray_tfar;
        if (unlikely(none(active))) 
          continue;
        
        /* switch to single ray traversal */
#if !defined(__WIN32__) || defined(__X86_64__)
        size_t bits = movemask(active);
        if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) {
          for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
            if (occluded1(bvh,curNode,i,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar,nearXYZ))
              terminated[i] = -1;
          }
          if (all(terminated)) break;
          ray_tfar = select(terminated,avxf(neg_inf),ray_tfar);
          continue;
        }
#endif
                
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf()))
            break;
          
          const avxb valid_node = ray_tfar > curDist;
          STAT3(shadow.trav_nodes,1,popcnt(valid_node),8);
          const Node* __restrict__ const node = (Node*)curNode.node(nodes);
          
          /* pop of next node */
          assert(sptr_node > stack_node);
          sptr_node--;
          sptr_near--;
          curNode = *sptr_node;
          curDist = *sptr_near;
          
          for (unsigned i=0; i<8; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH4i::emptyNode)) break;
            
#if defined(__AVX2__)
            const avxf lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const avxf lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const avxf lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const avxf lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const avxf lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const avxf lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const avxf lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const avxb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const avxf lclipMinX = (node->lower_x[i] - org.x) * rdir.x;
            const avxf lclipMinY = (node->lower_y[i] - org.y) * rdir.y;
            const avxf lclipMinZ = (node->lower_z[i] - org.z) * rdir.z;
            const avxf lclipMaxX = (node->upper_x[i] - org.x) * rdir.x;
            const avxf lclipMaxY = (node->upper_y[i] - org.y) * rdir.y;
            const avxf lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z;
            const avxf lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const avxb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              assert(sptr_node < stackEnd);
              assert(child != BVH4i::emptyNode);
              const avxf childDist = select(lhit,lnearP,inf);
              sptr_node++;
              sptr_near++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }
              
              /* push hit child onto stack */
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4i::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* intersect leaf */
        const avxb valid_leaf = ray_tfar > curDist;
        STAT3(shadow.trav_leaves,1,popcnt(valid_leaf),8);
        size_t items; const Triangle* prim = (Triangle*) curNode.leaf(accel,items);
        terminated |= TriangleIntersector8::occluded(!terminated,ray,prim,items,bvh->geometry);
        if (all(terminated)) break;
        ray_tfar = select(terminated,avxf(neg_inf),ray_tfar);
      }
      store8i(valid & terminated,&ray.geomID,0);
      AVX_ZERO_UPPER();
    }
    void BVH4iIntersector1Scalar<TriangleIntersector>::occluded(const BVH4i* bvh, Ray& ray)
    {
      /*! stack state */
      StackItem stack[1+3*BVH4i::maxDepth];  //!< stack of nodes 
      StackItem *stackPtr = stack+1;        //!< current stack pointer
      stack[0].ptr  = bvh->root;
      stack[0].dist = neg_inf;
      
      
      /*! load the ray into SIMD registers */
      const Vec3f rdir = rcp_safe(ray.dir);
      const Vec3f org_rdir = ray.org*rdir;
      
      const void* nodePtr = bvh->nodePtr();
      const void* triPtr  = bvh->triPtr();
      
      /* pop loop */
      while (true) pop:
      {
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = NodeRef(stackPtr->ptr);
        
        /* downtraversal loop */
        while (true)
        {
          /*! stop if we found a leaf */
          if (unlikely(cur.isLeaf())) break;
          STAT3(shadow.trav_nodes,1,1,1);
          
          /*! single ray intersection with 4 boxes */
          const Node* node = cur.node(nodePtr);

	  size_t pushed = 0;
	  for (size_t i=0;i<4;i++)
	    {
	      const float nearX = node->lower_x[i] * rdir.x - org_rdir.x;
	      const float farX  = node->upper_x[i] * rdir.x - org_rdir.x;
	      const float nearY = node->lower_y[i] * rdir.y - org_rdir.y;
	      const float farY  = node->upper_y[i] * rdir.y - org_rdir.y;
	      const float nearZ = node->lower_z[i] * rdir.z - org_rdir.z;
	      const float farZ  = node->upper_z[i] * rdir.z - org_rdir.z;
	      const float tNearX = min(nearX,farX);
	      const float tFarX  = max(nearX,farX);
	      const float tNearY = min(nearY,farY);
	      const float tFarY  = max(nearY,farY);
	      const float tNearZ = min(nearZ,farZ);
	      const float tFarZ  = max(nearZ,farZ);
          
	      const float tNear = max(tNearX,tNearY,tNearZ,ray.tnear);
	      const float tFar  = min(tFarX ,tFarY ,tFarZ ,ray.tfar);

	      if (tNear <= tFar)
		{
		  stackPtr->ptr  = node->child(i);
		  stackPtr->dist = tNear;
		  stackPtr++;
		  pushed++;
		}
	      
	    }

	  if (pushed == 0) 
	    {
	      goto pop;
	    }
	  else if (pushed == 1)
	    {
	      cur = (NodeRef) stackPtr[-1].ptr;
	      stackPtr--;
	      continue;
	    }
	  else if (pushed == 2)
	    {
	      sort(stackPtr[-1],stackPtr[-2]);
	      cur = (NodeRef) stackPtr[-1].ptr; 
	      stackPtr--;
	      continue;	      
	    }
	  else if (pushed == 3)
	    {
	      sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
	      cur = (NodeRef) stackPtr[-1].ptr; 
	      stackPtr--;
	      continue;	      
	    }
	  else
	    {
	      sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
	      cur = (NodeRef) stackPtr[-1].ptr; 
	      stackPtr--;	      
	    }
          
        }
        
        /*! this is a leaf node */
        STAT3(shadow.trav_leaves,1,1,1);
        size_t num; Triangle1* tri = (Triangle1*) cur.leaf(triPtr,num);
	for (size_t i=0;i<num;i++)
	  if (occluded_vec3f(ray,tri[i],bvh->geometry)) 
	    {
	      ray.geomID = 0;
	      break;
	    }
	if (ray.geomID == 0) break;	
      }
      AVX_ZERO_UPPER();
    }
  void BVH4iIntersector1<TriangleIntersector>::intersect(const BVH4iIntersector1* This, Ray& ray)
  {
    AVX_ZERO_UPPER();
    STAT3(normal.travs,1,1,1);
    
    /*! stack state */
    const BVH4i* bvh = This->bvh;
    StackItem stack[1+3*BVH4i::maxDepth];  //!< stack of nodes 
    StackItem* stackPtr = stack+1;        //!< current stack pointer
    stack[0].ptr  = bvh->root;
    stack[0].dist = neg_inf;

    /*! offsets to select the side that becomes the lower or upper bound */
    const size_t nearX = ray.dir.x >= 0.0f ? 0*sizeof(ssef_m) : 1*sizeof(ssef_m);
    const size_t nearY = ray.dir.y >= 0.0f ? 2*sizeof(ssef_m) : 3*sizeof(ssef_m);
    const size_t nearZ = ray.dir.z >= 0.0f ? 4*sizeof(ssef_m) : 5*sizeof(ssef_m);
   
    /*! load the ray into SIMD registers */
    const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
    const Vector3f ray_rdir = rcp_safe(ray.dir);
    const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
    const Vector3f ray_org_rdir = ray.org*ray_rdir;
    const sse3f org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z);
    const ssef  rayNear(ray.tnear);
    ssef rayFar(ray.tfar);

    const void* nodePtr = bvh->nodePtr();
    const void* triPtr  = bvh->triPtr();
     
    /* pop loop */
    while (true) pop:
    {
      /*! pop next node */
      if (unlikely(stackPtr == stack)) break;
      stackPtr--;
      NodeRef cur = NodeRef(stackPtr->ptr);
      
      /*! if popped node is too far, pop next one */
      if (unlikely(stackPtr->dist > ray.tfar))
        continue;

      /* downtraversal loop */
      while (true)
      {
        /*! stop if we found a leaf */
        if (unlikely(cur.isLeaf())) break;
        STAT3(normal.trav_nodes,1,1,1);
    
        /*! single ray intersection with 4 boxes */
        const Node* node = cur.node(nodePtr);
        const size_t farX  = nearX ^ 16, farY  = nearY ^ 16, farZ  = nearZ ^ 16;
#if defined (__AVX2__)
        const ssef tNearX = msub(ssef((const char*)nodePtr+(size_t)cur+nearX), rdir.x, org_rdir.x);
        const ssef tNearY = msub(ssef((const char*)nodePtr+(size_t)cur+nearY), rdir.y, org_rdir.y);
        const ssef tNearZ = msub(ssef((const char*)nodePtr+(size_t)cur+nearZ), rdir.z, org_rdir.z);
        const ssef tFarX  = msub(ssef((const char*)nodePtr+(size_t)cur+farX ), rdir.x, org_rdir.x);
        const ssef tFarY  = msub(ssef((const char*)nodePtr+(size_t)cur+farY ), rdir.y, org_rdir.y);
        const ssef tFarZ  = msub(ssef((const char*)nodePtr+(size_t)cur+farZ ), rdir.z, org_rdir.z);
#else
        const ssef tNearX = (norg.x + ssef((const char*)nodePtr+(size_t)cur+nearX)) * rdir.x;
        const ssef tNearY = (norg.y + ssef((const char*)nodePtr+(size_t)cur+nearY)) * rdir.y;
        const ssef tNearZ = (norg.z + ssef((const char*)nodePtr+(size_t)cur+nearZ)) * rdir.z;
        const ssef tFarX  = (norg.x + ssef((const char*)nodePtr+(size_t)cur+farX )) * rdir.x;
        const ssef tFarY  = (norg.y + ssef((const char*)nodePtr+(size_t)cur+farY )) * rdir.y;
        const ssef tFarZ  = (norg.z + ssef((const char*)nodePtr+(size_t)cur+farZ )) * rdir.z;
#endif
        const ssef tNear = max(tNearX,tNearY,tNearZ,rayNear);
        const ssef tFar  = min(tFarX ,tFarY ,tFarZ ,rayFar);
    size_t mask = movemask(tNear <= tFar);
        
        /*! if no child is hit, pop next node */
        if (unlikely(mask == 0))
          goto pop;

        /*! one child is hit, continue with that child */
        size_t r = __bsf(mask); mask = __btc(mask,r);
        if (likely(mask == 0)) {
          cur = node->child(r);
          continue;
        }

        /*! two children are hit, push far child, and continue with closer child */
        NodeRef c0 = node->child(r); const float d0 = tNear[r];
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c1 = node->child(r); const float d1 = tNear[r];
        if (likely(mask == 0)) {
          if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; }
          else         { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; }
        }

        /*! Here starts the slow path for 3 or 4 hit children. We push
         *  all nodes onto the stack to sort them there. */
        stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++;
        stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++;

        /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c = node->child(r); float d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
        if (likely(mask == 0)) {
          sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
          cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
          continue;
        }

        /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */
        r = __bsf(mask); mask = __btc(mask,r);
        c = node->child(r); d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
        sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
        cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
      }

      /*! this is a leaf node */
      STAT3(normal.trav_leaves,1,1,1);
      size_t num; Triangle* tri = (Triangle*) cur.leaf(triPtr,num);
      for (size_t i=0; i<num; i++)
        TriangleIntersector::intersect(ray,tri[i],bvh->vertices);
      
      rayFar = ray.tfar;
    }
    AVX_ZERO_UPPER();
  }
    void BVH8Intersector8Hybrid<PrimitiveIntersector8>::occluded(bool8* valid_i, BVH8* bvh, Ray8& ray)
    {
      /* load ray */
      const bool8 valid = *valid_i;
      bool8 terminated = !valid;
      Vec3f8 ray_org = ray.org, ray_dir = ray.dir;
      float8 ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
      const Vec3f8 rdir = rcp_safe(ray_dir);
      const Vec3f8 org(ray_org), org_rdir = org * rdir;
      ray_tnear = select(valid,ray_tnear,float8(pos_inf));
      ray_tfar  = select(valid,ray_tfar ,float8(neg_inf));
      const float8 inf = float8(pos_inf);
      Precalculations pre(valid,ray);

      /* compute near/far per ray */
      Vec3i8 nearXYZ;
      nearXYZ.x = select(rdir.x >= 0.0f,int8(0*(int)sizeof(float8)),int8(1*(int)sizeof(float8)));
      nearXYZ.y = select(rdir.y >= 0.0f,int8(2*(int)sizeof(float8)),int8(3*(int)sizeof(float8)));
      nearXYZ.z = select(rdir.z >= 0.0f,int8(4*(int)sizeof(float8)),int8(5*(int)sizeof(float8)));

      /* allocate stack and push root node */
      float8    stack_near[stackSizeChunk];
      NodeRef stack_node[stackSizeChunk];
      stack_node[0] = BVH8::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSizeChunk;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      float8*    __restrict__ sptr_near = stack_near + 2;

      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef cur = *sptr_node;
        if (unlikely(cur == BVH8::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }

        /* cull node if behind closest hit point */
        float8 curDist = *sptr_near;
        const bool8 active = curDist < ray_tfar;
        if (unlikely(none(active))) 
          continue;
        
        /* switch to single ray traversal */
#if !defined(__WIN32__) || defined(__X86_64__)
        size_t bits = movemask(active);
        if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) {
          for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
            if (occluded1(bvh,cur,i,pre,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar,nearXYZ))
              terminated[i] = -1;
          }
          if (all(terminated)) break;
          ray_tfar = select(terminated,float8(neg_inf),ray_tfar);
          continue;
        }
#endif
                
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(cur.isLeaf()))
            break;
          
          const bool8 valid_node = ray_tfar > curDist;
          STAT3(shadow.trav_nodes,1,popcnt(valid_node),8);
          const Node* __restrict__ const node = (Node*)cur.node();
          
          /* pop of next node */
          assert(sptr_node > stack_node);
          sptr_node--;
          sptr_near--;
          cur = *sptr_node;
          curDist = *sptr_near;
          
          for (unsigned i=0; i<BVH8::N; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH8::emptyNode)) break;
            
#if defined(__AVX2__)
            const float8 lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const float8 lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const float8 lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const float8 lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const float8 lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const float8 lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const float8 lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const float8 lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const bool8 lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const float8 lclipMinX = (node->lower_x[i] - org.x) * rdir.x;
            const float8 lclipMinY = (node->lower_y[i] - org.y) * rdir.y;
            const float8 lclipMinZ = (node->lower_z[i] - org.z) * rdir.z;
            const float8 lclipMaxX = (node->upper_x[i] - org.x) * rdir.x;
            const float8 lclipMaxY = (node->upper_y[i] - org.y) * rdir.y;
            const float8 lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z;
            const float8 lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const float8 lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const bool8 lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              assert(sptr_node < stackEnd);
              assert(child != BVH8::emptyNode);
              const float8 childDist = select(lhit,lnearP,inf);
              sptr_node++;
              sptr_near++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = cur;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                cur = child;
              }
              
              /* push hit child onto stack */
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(cur == BVH8::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* intersect leaf */
	assert(cur != BVH8::emptyNode);
        const bool8 valid_leaf = ray_tfar > curDist;
        STAT3(shadow.trav_leaves,1,popcnt(valid_leaf),8);
        size_t items; const Triangle* prim = (Triangle*) cur.leaf(items);
        terminated |= PrimitiveIntersector8::occluded(!terminated,pre,ray,prim,items,bvh->scene);
        if (all(terminated)) break;
        ray_tfar = select(terminated,float8(neg_inf),ray_tfar);
      }
      store8i(valid & terminated,&ray.geomID,0);
      AVX_ZERO_UPPER();
    }
    void BVH4iIntersector4Chunk<TriangleIntersector4>::occluded(sseb* valid_i, BVH4i* bvh, Ray4& ray)
    {
      /* load node and primitive array */
      const Node      * __restrict__ nodes  = (Node    *)bvh->nodePtr();
      const Triangle * __restrict__ accel = (Triangle*)bvh->triPtr();
      
      /* load ray */
      const sseb valid = *valid_i;
      sseb terminated = !valid;
      const sse3f rdir = rcp_safe(ray.dir);
      const sse3f org_rdir = ray.org * rdir;
      ssef ray_tnear = select(valid,ray.tnear,pos_inf);
      ssef ray_tfar  = select(valid,ray.tfar ,neg_inf);
      const ssef inf = ssef(pos_inf);
      
      /* allocate stack and push root node */
      ssef    stack_near[3*BVH4i::maxDepth+1];
      NodeRef stack_node[3*BVH4i::maxDepth+1];
      stack_node[0] = BVH4i::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      ssef*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        sptr_node--;
        sptr_near--;
        NodeRef curNode = *sptr_node;
        if (unlikely(curNode == BVH4i::invalidNode)) 
          break;
        
        /* cull node if behind closest hit point */
        ssef curDist = *sptr_near;
        if (unlikely(none(ray_tfar > curDist))) 
          continue;
        
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf()))
            break;
          
          const sseb valid_node = ray_tfar > curDist;
          STAT3(shadow.trav_nodes,1,popcnt(valid_node),4);
          const Node* __restrict__ const node = curNode.node(nodes);
          
          /* pop of next node */
          sptr_node--;
          sptr_near--;
          curNode = *sptr_node; // FIXME: this trick creates issues with stack depth
          curDist = *sptr_near;
          
#pragma unroll(4)
          for (unsigned i=0; i<4; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH4i::emptyNode)) break;
            
#if defined(__AVX2__)
            const ssef lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const ssef lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const ssef lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const ssef lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const ssef lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const ssef lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const ssef lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const sseb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const ssef lclipMinX = node->lower_x[i] * rdir.x - org_rdir.x;
            const ssef lclipMinY = node->lower_y[i] * rdir.y - org_rdir.y;
            const ssef lclipMinZ = node->lower_z[i] * rdir.z - org_rdir.z;
            const ssef lclipMaxX = node->upper_x[i] * rdir.x - org_rdir.x;
            const ssef lclipMaxY = node->upper_y[i] * rdir.y - org_rdir.y;
            const ssef lclipMaxZ = node->upper_z[i] * rdir.z - org_rdir.z;
            const ssef lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const sseb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              const ssef childDist = select(lhit,lnearP,inf);
              sptr_node++;
              sptr_near++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }
              
              /* push hit child onto stack*/
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
              assert(sptr_node - stack_node < BVH4i::maxDepth);
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4i::invalidNode)) 
          break;
        
        /* intersect leaf */
        const sseb valid_leaf = ray_tfar > curDist;
        STAT3(shadow.trav_leaves,1,popcnt(valid_leaf),4);
        size_t items; const Triangle* tri  = (Triangle*) curNode.leaf(accel, items);
        terminated |= TriangleIntersector4::occluded(!terminated,ray,tri,items,bvh->geometry);
        if (all(terminated)) break;
        ray_tfar = select(terminated,neg_inf,ray_tfar);
      }
      store4i(valid & terminated,&ray.geomID,0);
      AVX_ZERO_UPPER();
    }
Example #26
0
  void BVHNStatistics<N>::statistics(NodeRef node, const float A, size_t& depth)
  {
    if (node.isNode())
    {
      numAlignedNodes++;
      AlignedNode* n = node.node();
      bvhSAH += A*travCostAligned;
      depth = 0;
      for (size_t i=0; i<N; i++) {
        if (n->child(i) == BVH::emptyNode) continue;
        childrenAlignedNodes++;
        const float Ai = max(0.0f,halfArea(n->extend(i)));
        size_t cdepth; statistics(n->child(i),Ai,cdepth); 
        depth=max(depth,cdepth);
      }
      depth++;
    }
    else if (node.isUnalignedNode())
    {
      numUnalignedNodes++;
      UnalignedNode* n = node.unalignedNode();
      bvhSAH += A*travCostUnaligned;
      
      depth = 0;
      for (size_t i=0; i<N; i++) {
        if (n->child(i) == BVH::emptyNode) continue;
        childrenUnalignedNodes++;
        const float Ai = max(0.0f,halfArea(n->extend(i)));
        size_t cdepth; statistics(n->child(i),Ai,cdepth); 
        depth=max(depth,cdepth);
      }
      depth++;
    }
    else if (node.isNodeMB())
    {
      numAlignedNodesMB++;
      AlignedNodeMB* n = node.nodeMB();
      bvhSAH += A*travCostAligned;
      
      depth = 0;
      for (size_t i=0; i<N; i++) {
        if (n->child(i) == BVH::emptyNode) continue;
        childrenAlignedNodesMB++;
        const float Ai = max(0.0f,halfArea(n->extend0(i)));
        size_t cdepth; statistics(n->child(i),Ai,cdepth); 
        depth=max(depth,cdepth);
      }
      depth++;
    }
    else if (node.isUnalignedNodeMB())
    {
      numUnalignedNodesMB++;
      UnalignedNodeMB* n = node.unalignedNodeMB();
      bvhSAH += A*travCostUnaligned;
      
      depth = 0;
      for (size_t i=0; i<N; i++) {
        if (n->child(i) == BVH::emptyNode) continue;
        childrenUnalignedNodesMB++;
        const float Ai = max(0.0f,halfArea(n->extend0(i)));
        size_t cdepth; statistics(n->child(i),Ai,cdepth); 
        depth=max(depth,cdepth);
      }
      depth++;
    }
    else if (node.isTransformNode())
    {
      numTransformNodes++;
      TransformNode* n = node.transformNode();
      bvhSAH += A*travCostTransform;

      depth = 0;
      const BBox3fa worldBounds = xfmBounds(n->local2world,n->localBounds);
      const float Ai = max(0.0f,halfArea(worldBounds));
      //size_t cdepth; statistics(n->child,Ai,cdepth); 
      //depth=max(depth,cdepth)+1;
    }
    else
    {
      depth = 0;
      size_t num; const char* tri = node.leaf(num);
      if (!num) return;
      
      numLeaves++;
      numPrimBlocks += num;
      for (size_t i=0; i<num; i++)
        numPrims += bvh->primTy.size(tri+i*bvh->primTy.bytes);
      
      float sah = A * intCost * num;
      leafSAH += sah;
    }
  } 
Example #27
0
    void BVH4Intersector1<PrimitiveIntersector>::occluded(const BVH4* bvh, Ray& ray)
    {
      /*! stack state */
      NodeRef stack[stackSize];  //!< stack of nodes that still need to get traversed
      NodeRef* stackPtr = stack+1;        //!< current stack pointer
      NodeRef* stackEnd = stack+stackSize;
      stack[0] = bvh->root;
      
      /*! offsets to select the side that becomes the lower or upper bound */
      const size_t nearX = ray.dir.x >= 0 ? 0*sizeof(ssef) : 1*sizeof(ssef);
      const size_t nearY = ray.dir.y >= 0 ? 2*sizeof(ssef) : 3*sizeof(ssef);
      const size_t nearZ = ray.dir.z >= 0 ? 4*sizeof(ssef) : 5*sizeof(ssef);
      
#if 0 // FIXME: why is this slower
      /*! load the ray */
      Vec3fa ray_org = ray.org;
      Vec3fa ray_dir = ray.dir;
      ssef ray_near  = max(ray.tnear,FLT_MIN); // we do not support negative tnear values in this kernel due to integer optimizations
      ssef ray_far   = ray.tfar; 
#if defined(__FIX_RAYS__)
      const float float_range = 0.1f*FLT_MAX;
      ray_org = clamp(ray_org,Vec3fa(-float_range),Vec3fa(+float_range));
      ray_dir = clamp(ray_dir,Vec3fa(-float_range),Vec3fa(+float_range));
      ray_far = min(ray_far,float(inf)); 
#endif
      const Vec3fa ray_rdir = rcp_safe(ray_dir);
      const sse3f org(ray_org), dir(ray_dir);
      const sse3f norg(-ray_org), rdir(ray_rdir), org_rdir(ray_org*ray_rdir);
#else
      /*! load the ray into SIMD registers */
      const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
      const Vec3fa ray_rdir = rcp_safe(ray.dir);
      const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
      const Vec3fa ray_org_rdir = ray.org*ray_rdir;
      const sse3f org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z);
      const ssef  ray_near(ray.tnear);
      ssef ray_far(ray.tfar);
#endif
      
      /* pop loop */
      while (true) pop:
      {
        /*! pop next node */
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = (NodeRef) *stackPtr;
        
        /* downtraversal loop */
        while (true)
        {
          /*! stop if we found a leaf */
          if (unlikely(cur.isLeaf())) break;
          STAT3(shadow.trav_nodes,1,1,1);
          
          /*! single ray intersection with 4 boxes */
          const Node* node = cur.node();
          const size_t farX  = nearX ^ 16, farY  = nearY ^ 16, farZ  = nearZ ^ 16;
#if defined (__AVX2__)
          const ssef tNearX = msub(load4f((const char*)node+nearX), rdir.x, org_rdir.x);
          const ssef tNearY = msub(load4f((const char*)node+nearY), rdir.y, org_rdir.y);
          const ssef tNearZ = msub(load4f((const char*)node+nearZ), rdir.z, org_rdir.z);
          const ssef tFarX  = msub(load4f((const char*)node+farX ), rdir.x, org_rdir.x);
          const ssef tFarY  = msub(load4f((const char*)node+farY ), rdir.y, org_rdir.y);
          const ssef tFarZ  = msub(load4f((const char*)node+farZ ), rdir.z, org_rdir.z);
#else
          const ssef tNearX = (norg.x + load4f((const char*)node+nearX)) * rdir.x;
          const ssef tNearY = (norg.y + load4f((const char*)node+nearY)) * rdir.y;
          const ssef tNearZ = (norg.z + load4f((const char*)node+nearZ)) * rdir.z;
          const ssef tFarX  = (norg.x + load4f((const char*)node+farX )) * rdir.x;
          const ssef tFarY  = (norg.y + load4f((const char*)node+farY )) * rdir.y;
          const ssef tFarZ  = (norg.z + load4f((const char*)node+farZ )) * rdir.z;
#endif
          
#if defined(__SSE4_1__)
          const ssef tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,ray_near));
          const ssef tFar  = mini(mini(tFarX ,tFarY ),mini(tFarZ ,ray_far ));
          const sseb vmask = cast(tNear) > cast(tFar);
          size_t mask = movemask(vmask)^0xf;
#else
          const ssef tNear = max(tNearX,tNearY,tNearZ,ray_near);
          const ssef tFar  = min(tFarX ,tFarY ,tFarZ ,ray_far);
          const sseb vmask = tNear <= tFar;
          size_t mask = movemask(vmask);
#endif
          
          /*! if no child is hit, pop next node */
          if (unlikely(mask == 0))
            goto pop;
          
          /*! one child is hit, continue with that child */
          size_t r = __bscf(mask);
          if (likely(mask == 0)) {
            cur = node->child(r);
            assert(cur != BVH4::emptyNode);
            continue;
          }
          
          /*! two children are hit, push far child, and continue with closer child */
          NodeRef c0 = node->child(r); const unsigned int d0 = ((unsigned int*)&tNear)[r];
          r = __bscf(mask);
          NodeRef c1 = node->child(r); const unsigned int d1 = ((unsigned int*)&tNear)[r];
          assert(c0 != BVH4::emptyNode);
          assert(c1 != BVH4::emptyNode);
          if (likely(mask == 0)) {
            assert(stackPtr < stackEnd);
            if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; }
            else         { *stackPtr = c0; stackPtr++; cur = c1; continue; }
          }
          assert(stackPtr < stackEnd);
          *stackPtr = c0; stackPtr++;
          assert(stackPtr < stackEnd);
          *stackPtr = c1; stackPtr++;
          
          /*! three children are hit */
          r = __bscf(mask);
          cur = node->child(r); 
          assert(cur != BVH4::emptyNode);
          if (likely(mask == 0)) continue;
          assert(stackPtr < stackEnd);
          *stackPtr = cur; stackPtr++;
          
          /*! four children are hit */
          cur = node->child(3);
          assert(cur != BVH4::emptyNode);
        }
        
        /*! this is a leaf node */
        STAT3(shadow.trav_leaves,1,1,1);
        size_t num; Primitive* prim = (Primitive*) cur.leaf(num);
        if (PrimitiveIntersector::occluded(ray,prim,num,bvh->geometry)) {
          ray.geomID = 0;
          break;
        }
      }
      AVX_ZERO_UPPER();
    }
  __forceinline void intersectT(const BVH4* bvh, Ray& ray)
  {
    typedef typename TriangleIntersector::Triangle Triangle;
    typedef StackItemT<size_t> StackItem;
    typedef typename BVH4::NodeRef NodeRef;
    typedef typename BVH4::Node Node;

    /*! stack state */
    StackItem stack[1+3*BVH4::maxDepth];  //!< stack of nodes 
    StackItem* stackPtr = stack+1;        //!< current stack pointer
    stack[0].ptr  = bvh->root;
    stack[0].dist = neg_inf;

    /*! load the ray into SIMD registers */
    const avxf pos_neg = avxf(ssef(+0.0f),ssef(-0.0f));
    const avxf neg_pos = avxf(ssef(-0.0f),ssef(+0.0f));
    const avxf flipSignX = swapX ? neg_pos : pos_neg;
    const avxf flipSignY = swapY ? neg_pos : pos_neg;
    const avxf flipSignZ = swapZ ? neg_pos : pos_neg;
    const Vector3f ray_rdir = rcp_safe(ray.dir);
    const avx3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
    const avx3f rdir(ray_rdir.x^flipSignX,ray_rdir.y^flipSignY,ray_rdir.z^flipSignZ);
    const avx3f org_rdir(avx3f(ray.org.x,ray.org.y,ray.org.z)*rdir);
    avxf rayNearFar(ssef(ray.tnear),-ssef(ray.tfar));

    const void* nodePtr = bvh->nodePtr();
    const void* triPtr  = bvh->triPtr();
     
    /* pop loop */
    while (true) pop:
    {
      /*! pop next node */
      if (unlikely(stackPtr == stack)) break;
      stackPtr--;
      NodeRef cur = NodeRef(stackPtr->ptr);
      
      /*! if popped node is too far, pop next one */
      if (unlikely(stackPtr->dist > ray.tfar))
        continue;

      /* downtraversal loop */
      while (true)
      {
        /*! stop if we found a leaf */
        if (unlikely(cur.isLeaf())) break;
        STAT3(normal.trav_nodes,1,1,1);

        /*! single ray intersection with 4 boxes */
        const Node* node = cur.node(nodePtr);

#if defined (__AVX2__) || defined(__MIC__)
        const avxf tLowerUpperX = msub(avxf::load(&node->lower_x), rdir.x, org_rdir.x);
        const avxf tLowerUpperY = msub(avxf::load(&node->lower_y), rdir.y, org_rdir.y);
        const avxf tLowerUpperZ = msub(avxf::load(&node->lower_z), rdir.z, org_rdir.z);
#else
        const avxf tLowerUpperX = (norg.x + avxf::load(&node->lower_x)) * rdir.x;
        const avxf tLowerUpperY = (norg.y + avxf::load(&node->lower_y)) * rdir.y;
        const avxf tLowerUpperZ = (norg.z + avxf::load(&node->lower_z)) * rdir.z;
#endif
        const avxf tNearFarX = swapX ? shuffle<1,0>(tLowerUpperX) : tLowerUpperX;
        const avxf tNearFarY = swapY ? shuffle<1,0>(tLowerUpperY) : tLowerUpperY;
        const avxf tNearFarZ = swapZ ? shuffle<1,0>(tLowerUpperZ) : tLowerUpperZ;
        const avxf tNearFar = max(tNearFarX,tNearFarY,tNearFarZ,rayNearFar);
        const ssef tNear = extract<0>(tNearFar);
        const ssef tFar  = extract<1>(tNearFar);
        size_t mask = movemask(-tNear >= tFar);
                
        /*! if no child is hit, pop next node */
        if (unlikely(mask == 0))
          goto pop;

        /*! one child is hit, continue with that child */
        size_t r = __bsf(mask); mask = __btc(mask,r);
        if (likely(mask == 0)) {
          cur = node->child(r);
          continue;
        }

        /*! two children are hit, push far child, and continue with closer child */
        NodeRef c0 = node->child(r); const float d0 = tNear[r];
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c1 = node->child(r); const float d1 = tNear[r];
        if (likely(mask == 0)) {
          if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; }
          else         { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; }
        }

        /*! Here starts the slow path for 3 or 4 hit children. We push
         *  all nodes onto the stack to sort them there. */
        stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++;
        stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++;

        /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c = node->child(r); float d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
        if (likely(mask == 0)) {
          sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
          cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
          continue;
        }

        /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */
        r = __bsf(mask); mask = __btc(mask,r);
        c = node->child(r); d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
        sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
        cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
      }

      /*! this is a leaf node */
      STAT3(normal.trav_leaves,1,1,1);
      size_t num; Triangle* tri = (Triangle*) cur.leaf(triPtr,num);
      for (size_t i=0; i<num; i++)
        TriangleIntersector::intersect(ray,tri[i],bvh->vertices);
      
      rayNearFar = insert<1>(rayNearFar,-ssef(ray.tfar));
    }
  }
Example #29
0
void BVH4iIntersector1::occluded(BVH4i* bvh, Ray& ray)
{
    /* near and node stack */
    __aligned(64) NodeRef stack_node[3*BVH4i::maxDepth+1];

    /* setup */
    const mic3f rdir16      = rcp_safe(mic3f(ray.dir.x,ray.dir.y,ray.dir.z));
    const mic_f inf         = mic_f(pos_inf);
    const mic_f zero        = mic_f::zero();

    const Node      * __restrict__ nodes = (Node     *)bvh->nodePtr();
    const Triangle1 * __restrict__ accel = (Triangle1*)bvh->triPtr();

    stack_node[0] = BVH4i::invalidNode;
    stack_node[1] = bvh->root;
    size_t sindex = 2;

    const mic_f org_xyz      = loadAOS4to16f(ray.org.x,ray.org.y,ray.org.z);
    const mic_f dir_xyz      = loadAOS4to16f(ray.dir.x,ray.dir.y,ray.dir.z);
    const mic_f rdir_xyz     = loadAOS4to16f(rdir16.x[0],rdir16.y[0],rdir16.z[0]);
    const mic_f org_rdir_xyz = org_xyz * rdir_xyz;
    const mic_f min_dist_xyz = broadcast1to16f(&ray.tnear);
    const mic_f max_dist_xyz = broadcast1to16f(&ray.tfar);

    const unsigned int leaf_mask = BVH4I_LEAF_MASK;

    while (1)
    {
        NodeRef curNode = stack_node[sindex-1];
        sindex--;

        while (1)
        {
            /* test if this is a leaf node */
            if (unlikely(curNode.isLeaf(leaf_mask))) break;

            const Node* __restrict__ const node = curNode.node(nodes);
            const float* __restrict const plower = (float*)node->lower;
            const float* __restrict const pupper = (float*)node->upper;

            prefetch<PFHINT_L1>((char*)node + 0);
            prefetch<PFHINT_L1>((char*)node + 64);

            /* intersect single ray with 4 bounding boxes */
            const mic_f tLowerXYZ = load16f(plower) * rdir_xyz - org_rdir_xyz;
            const mic_f tUpperXYZ = load16f(pupper) * rdir_xyz - org_rdir_xyz;
            const mic_f tLower = mask_min(0x7777,min_dist_xyz,tLowerXYZ,tUpperXYZ);
            const mic_f tUpper = mask_max(0x7777,max_dist_xyz,tLowerXYZ,tUpperXYZ);

            sindex--;
            curNode = stack_node[sindex];

            const Node* __restrict__ const next = curNode.node(nodes);
            prefetch<PFHINT_L2>((char*)next + 0);
            prefetch<PFHINT_L2>((char*)next + 64);

            const mic_f tNear = vreduce_max4(tLower);
            const mic_f tFar  = vreduce_min4(tUpper);
            const mic_m hitm = le(0x8888,tNear,tFar);
            const mic_f tNear_pos = select(hitm,tNear,inf);


            /* if no child is hit, continue with early popped child */
            if (unlikely(none(hitm))) continue;
            sindex++;

            const unsigned long hiti = toInt(hitm);
            const unsigned long pos_first = bitscan64(hiti);
            const unsigned long num_hitm = countbits(hiti);

            /* if a single child is hit, continue with that child */
            curNode = ((unsigned int *)plower)[pos_first];
            if (likely(num_hitm == 1)) continue;

            /* if two children are hit, push in correct order */
            const unsigned long pos_second = bitscan64(pos_first,hiti);
            if (likely(num_hitm == 2))
            {
                const unsigned int dist_first  = ((unsigned int*)&tNear)[pos_first];
                const unsigned int dist_second = ((unsigned int*)&tNear)[pos_second];
                const unsigned int node_first  = curNode;
                const unsigned int node_second = ((unsigned int*)plower)[pos_second];

                if (dist_first <= dist_second)
                {
                    stack_node[sindex] = node_second;
                    sindex++;
                    assert(sindex < 3*BVH4i::maxDepth+1);
                    continue;
                }
                else
                {
                    stack_node[sindex] = curNode;
                    curNode = node_second;
                    sindex++;
                    assert(sindex < 3*BVH4i::maxDepth+1);
                    continue;
                }
            }

            /* continue with closest child and push all others */
            const mic_f min_dist = set_min_lanes(tNear_pos);
            const unsigned old_sindex = sindex;
            sindex += countbits(hiti) - 1;
            assert(sindex < 3*BVH4i::maxDepth+1);

            const mic_m closest_child = eq(hitm,min_dist,tNear);
            const unsigned long closest_child_pos = bitscan64(closest_child);
            const mic_m m_pos = andn(hitm,andn(closest_child,(mic_m)((unsigned int)closest_child - 1)));
            const mic_i plower_node = load16i((int*)plower);
            curNode = ((unsigned int*)plower)[closest_child_pos];
            compactustore16i(m_pos,&stack_node[old_sindex],plower_node);
        }



        /* return if stack is empty */
        if (unlikely(curNode == BVH4i::invalidNode)) break;


        /* intersect one ray against four triangles */

        //////////////////////////////////////////////////////////////////////////////////////////////////

        const Triangle1* tptr  = (Triangle1*) curNode.leaf(accel);
        prefetch<PFHINT_L1>(tptr + 3);
        prefetch<PFHINT_L1>(tptr + 2);
        prefetch<PFHINT_L1>(tptr + 1);
        prefetch<PFHINT_L1>(tptr + 0);

        const mic_i and_mask = broadcast4to16i(zlc4);

        const mic_f v0 = gather_4f_zlc(and_mask,
                                       (float*)&tptr[0].v0,
                                       (float*)&tptr[1].v0,
                                       (float*)&tptr[2].v0,
                                       (float*)&tptr[3].v0);

        const mic_f v1 = gather_4f_zlc(and_mask,
                                       (float*)&tptr[0].v1,
                                       (float*)&tptr[1].v1,
                                       (float*)&tptr[2].v1,
                                       (float*)&tptr[3].v1);

        const mic_f v2 = gather_4f_zlc(and_mask,
                                       (float*)&tptr[0].v2,
                                       (float*)&tptr[1].v2,
                                       (float*)&tptr[2].v2,
                                       (float*)&tptr[3].v2);

        const mic_f e1 = v1 - v0;
        const mic_f e2 = v0 - v2;
        const mic_f normal = lcross_zxy(e1,e2);
        const mic_f org = v0 - org_xyz;
        const mic_f odzxy = msubr231(org * swizzle(dir_xyz,_MM_SWIZ_REG_DACB), dir_xyz, swizzle(org,_MM_SWIZ_REG_DACB));
        const mic_f den = ldot3_zxy(dir_xyz,normal);
        const mic_f rcp_den = rcp(den);
        const mic_f uu = ldot3_zxy(e2,odzxy);
        const mic_f vv = ldot3_zxy(e1,odzxy);
        const mic_f u = uu * rcp_den;
        const mic_f v = vv * rcp_den;

#if defined(__BACKFACE_CULLING__)
        const mic_m m_init = (mic_m)0x1111 & (den > zero);
#else
        const mic_m m_init = 0x1111;
#endif
        const mic_m valid_u = ge(m_init,u,zero);
        const mic_m valid_v = ge(valid_u,v,zero);
        const mic_m m_aperture = le(valid_v,u+v,mic_f::one());

        const mic_f nom = ldot3_zxy(org,normal);
        const mic_f t = rcp_den*nom;

        if (unlikely(none(m_aperture))) continue;

        mic_m m_final  = lt(lt(m_aperture,min_dist_xyz,t),t,max_dist_xyz);

#if defined(__USE_RAY_MASK__)
        const mic_i rayMask(ray.mask);
        const mic_i triMask = swDDDD(gather16i_4i_align(&tptr[0].v2,&tptr[1].v2,&tptr[2].v2,&tptr[3].v2));
        const mic_m m_ray_mask = (rayMask & triMask) != mic_i::zero();
        m_final &= m_ray_mask;
#endif

#if defined(__INTERSECTION_FILTER__)

        /* did the ray hit one of the four triangles? */
        while (any(m_final))
        {
            const mic_f temp_t  = select(m_final,t,max_dist_xyz);
            const mic_f min_dist = vreduce_min(temp_t);
            const mic_m m_dist = eq(min_dist,temp_t);
            const size_t vecIndex = bitscan(toInt(m_dist));
            const size_t triIndex = vecIndex >> 2;
            const Triangle1  *__restrict__ tri_ptr = tptr + triIndex;
            const mic_m m_tri = m_dist^(m_dist & (mic_m)((unsigned int)m_dist - 1));
            const mic_f gnormalx = mic_f(tri_ptr->Ng.x);
            const mic_f gnormaly = mic_f(tri_ptr->Ng.y);
            const mic_f gnormalz = mic_f(tri_ptr->Ng.z);
            const int geomID = tri_ptr->geomID();
            const int primID = tri_ptr->primID();
            Geometry* geom = ((Scene*)bvh->geometry)->get(geomID);

            if (likely(!geom->hasOcclusionFilter1())) break;

            if (runOcclusionFilter1(geom,ray,u,v,min_dist,gnormalx,gnormaly,gnormalz,m_tri,geomID,primID))
                break;

            m_final ^= m_tri; /* clear bit */
        }
#endif

        if (unlikely(any(m_final)))
        {
            ray.geomID = 0;
            return;
        }
        //////////////////////////////////////////////////////////////////////////////////////////////////

    }
}
Example #30
0
    void BVH4Intersector1<PrimitiveIntersector>::intersect(const BVH4* bvh, Ray& ray)
    {
      /*! stack state */
      StackItemInt32<NodeRef> stack[stackSize];  //!< stack of nodes 
      StackItemInt32<NodeRef>* stackPtr = stack+1;        //!< current stack pointer
      StackItemInt32<NodeRef>* stackEnd = stack+stackSize;
      stack[0].ptr = bvh->root;
      stack[0].dist = neg_inf;
      
      /*! offsets to select the side that becomes the lower or upper bound */
      const size_t nearX = ray.dir.x >= 0.0f ? 0*sizeof(ssef) : 1*sizeof(ssef);
      const size_t nearY = ray.dir.y >= 0.0f ? 2*sizeof(ssef) : 3*sizeof(ssef);
      const size_t nearZ = ray.dir.z >= 0.0f ? 4*sizeof(ssef) : 5*sizeof(ssef);
      
#if 0 // FIXME: why is this slower
      /*! load the ray */
      Vec3fa ray_org = ray.org;
      Vec3fa ray_dir = ray.dir;
      ssef ray_near  = max(ray.tnear,FLT_MIN); // we do not support negative tnear values in this kernel due to integer optimizations
      ssef ray_far   = ray.tfar; 
#if defined(__FIX_RAYS__)
      const float float_range = 0.1f*FLT_MAX;
      ray_org = clamp(ray_org,Vec3fa(-float_range),Vec3fa(+float_range));
      ray_dir = clamp(ray_dir,Vec3fa(-float_range),Vec3fa(+float_range));
      ray_far = min(ray_far,float(inf)); 
#endif
      const Vec3fa ray_rdir = rcp_safe(ray_dir);
      const sse3f org(ray_org), dir(ray_dir);
      const sse3f norg(-ray_org), rdir(ray_rdir), org_rdir(ray_org*ray_rdir);
#else
      /*! load the ray into SIMD registers */
      const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
      const Vec3fa ray_rdir = rcp_safe(ray.dir);
      const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
      const Vec3fa ray_org_rdir = ray.org*ray_rdir;
      const sse3f org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z);
      const ssef  ray_near(ray.tnear);
      ssef ray_far(ray.tfar);
#endif

      /* pop loop */
      while (true) pop:
      {
        /*! pop next node */
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = NodeRef(stackPtr->ptr);
        
        /*! if popped node is too far, pop next one */
        if (unlikely(*(float*)&stackPtr->dist > ray.tfar))
          continue;
        
        /* downtraversal loop */
        while (true)
        {
          /*! stop if we found a leaf */
          if (unlikely(cur.isLeaf())) break;
          STAT3(normal.trav_nodes,1,1,1);
          
          /*! single ray intersection with 4 boxes */
          const Node* node = cur.node();
          const size_t farX  = nearX ^ 16, farY  = nearY ^ 16, farZ  = nearZ ^ 16;
#if defined (__AVX2__)
          const ssef tNearX = msub(load4f((const char*)node+nearX), rdir.x, org_rdir.x);
          const ssef tNearY = msub(load4f((const char*)node+nearY), rdir.y, org_rdir.y);
          const ssef tNearZ = msub(load4f((const char*)node+nearZ), rdir.z, org_rdir.z);
          const ssef tFarX  = msub(load4f((const char*)node+farX ), rdir.x, org_rdir.x);
          const ssef tFarY  = msub(load4f((const char*)node+farY ), rdir.y, org_rdir.y);
          const ssef tFarZ  = msub(load4f((const char*)node+farZ ), rdir.z, org_rdir.z);
#else
          const ssef tNearX = (norg.x + load4f((const char*)node+nearX)) * rdir.x;
          const ssef tNearY = (norg.y + load4f((const char*)node+nearY)) * rdir.y;
          const ssef tNearZ = (norg.z + load4f((const char*)node+nearZ)) * rdir.z;
          const ssef tFarX  = (norg.x + load4f((const char*)node+farX )) * rdir.x;
          const ssef tFarY  = (norg.y + load4f((const char*)node+farY )) * rdir.y;
          const ssef tFarZ  = (norg.z + load4f((const char*)node+farZ )) * rdir.z;
#endif

#if defined(__SSE4_1__)
          const ssef tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,ray_near));
          const ssef tFar  = mini(mini(tFarX ,tFarY ),mini(tFarZ ,ray_far ));
          const sseb vmask = cast(tNear) > cast(tFar);
          size_t mask = movemask(vmask)^0xf;
#else
          const ssef tNear = max(tNearX,tNearY,tNearZ,ray_near);
          const ssef tFar  = min(tFarX ,tFarY ,tFarZ ,ray_far);
          const sseb vmask = tNear <= tFar;
          size_t mask = movemask(vmask);
#endif
          
          /*! if no child is hit, pop next node */
          if (unlikely(mask == 0))
            goto pop;
          
          /*! one child is hit, continue with that child */
          size_t r = __bscf(mask);
          if (likely(mask == 0)) {
            cur = node->child(r);
            assert(cur != BVH4::emptyNode);
            continue;
          }
          
          /*! two children are hit, push far child, and continue with closer child */
          NodeRef c0 = node->child(r); const unsigned int d0 = ((unsigned int*)&tNear)[r];
          r = __bscf(mask);
          NodeRef c1 = node->child(r); const unsigned int d1 = ((unsigned int*)&tNear)[r];
          assert(c0 != BVH4::emptyNode);
          assert(c1 != BVH4::emptyNode);
          if (likely(mask == 0)) {
            assert(stackPtr < stackEnd); 
            if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; }
            else         { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; }
          }
          
          /*! Here starts the slow path for 3 or 4 hit children. We push
           *  all nodes onto the stack to sort them there. */
          assert(stackPtr < stackEnd); 
          stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++;
          assert(stackPtr < stackEnd); 
          stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++;
          
          /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */
          assert(stackPtr < stackEnd); 
          r = __bscf(mask);
          NodeRef c = node->child(r); unsigned int d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
          assert(c != BVH4::emptyNode);
          if (likely(mask == 0)) {
            sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
            cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
            continue;
          }
          
          /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */
          assert(stackPtr < stackEnd); 
          r = __bscf(mask);
          c = node->child(r); d = *(unsigned int*)&tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
          assert(c != BVH4::emptyNode);
          sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
          cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
        }
        
        /*! this is a leaf node */
        STAT3(normal.trav_leaves,1,1,1);
        size_t num; Primitive* prim = (Primitive*) cur.leaf(num);
        PrimitiveIntersector::intersect(ray,prim,num,bvh->geometry);
        ray_far = ray.tfar;
      }
    }