void OpenSubdMesh::add_face(int *index, int num) { OsdHbrMesh *hbrmesh = (OsdHbrMesh*)_hbrmesh; #ifndef NDEBUG /* sanity checks */ for(int j = 0; j < num; j++) { OsdHbrVertex *origin = hbrmesh->GetVertex(index[j]); OsdHbrVertex *destination = hbrmesh->GetVertex(index[(j+1)%num]); OsdHbrHalfEdge *opposite = destination->GetEdge(origin); if(origin==NULL || destination==NULL) assert("An edge was specified that connected a nonexistent vertex\n"); if(origin == destination) assert("An edge was specified that connected a vertex to itself\n"); if(opposite && opposite->GetOpposite()) assert("A non-manifold edge incident to more than 2 faces was found\n"); if(origin->GetEdge(destination)) assert("An edge connecting two vertices was specified more than once." "It's likely that an incident face was flipped\n"); } #endif OsdHbrFace *face = hbrmesh->NewFace(num, index, 0); /* this is required for limit eval patch table? */ face->SetPtexIndex(num_ptex_faces); if(num == 4) num_ptex_faces++; else num_ptex_faces += num; }
OsdHbrMesh * ConvertToHBR( int nVertices, std::vector<int> const & faceVertCounts, std::vector<int> const & faceIndices, std::vector<int> const & vtxCreaseIndices, std::vector<double> const & vtxCreases, std::vector<int> const & edgeCrease1Indices, // face index, local edge index std::vector<float> const & edgeCreases1, std::vector<int> const & edgeCrease2Indices, // 2 vertex indices (Maya friendly) std::vector<double> const & edgeCreases2, OsdHbrMesh::InterpolateBoundaryMethod interpBoundary, HbrMeshUtil::SchemeType scheme, bool usingPtex, FVarDataDesc const * fvarDesc, std::vector<float> const * fvarData ) { static OpenSubdiv::HbrBilinearSubdivision<OpenSubdiv::OsdVertex> _bilinear; static OpenSubdiv::HbrLoopSubdivision<OpenSubdiv::OsdVertex> _loop; static OpenSubdiv::HbrCatmarkSubdivision<OpenSubdiv::OsdVertex> _catmark; // Build HBR mesh with/without face varying data, according to input data. // If a face-varying descriptor is passed in its memory needs to stay // alive as long as this hbrMesh is alive (for indices and widths arrays). OsdHbrMesh *hbrMesh; if ( fvarDesc ) { if (scheme == HbrMeshUtil::kCatmark) hbrMesh = new OsdHbrMesh(&_catmark, fvarDesc->getCount(), fvarDesc->getIndices(), fvarDesc->getWidths(), fvarDesc->getTotalWidth()); else if (scheme == HbrMeshUtil::kLoop) hbrMesh = new OsdHbrMesh(&_loop, fvarDesc->getCount(), fvarDesc->getIndices(), fvarDesc->getWidths(), fvarDesc->getTotalWidth()); else hbrMesh = new OsdHbrMesh(&_bilinear, fvarDesc->getCount(), fvarDesc->getIndices(), fvarDesc->getWidths(), fvarDesc->getTotalWidth()); } else { if (scheme == HbrMeshUtil::kCatmark) hbrMesh = new OsdHbrMesh(&_catmark); else if (scheme == HbrMeshUtil::kLoop) hbrMesh = new OsdHbrMesh(&_loop); else hbrMesh = new OsdHbrMesh(&_bilinear); } // create empty verts: actual vertices initialized in UpdatePoints(); OpenSubdiv::OsdVertex v; for (int i = 0; i < nVertices; ++i) { hbrMesh->NewVertex(i, v); } std::vector<int> vIndex; int nFaces = (int)faceVertCounts.size(); int fvcOffset = 0; // face-vertex count offset int ptxIdx = 0; for (int fi = 0; fi < nFaces; ++fi) { int nFaceVerts = faceVertCounts[fi]; vIndex.resize(nFaceVerts); bool valid = true; for (int fvi = 0; fvi < nFaceVerts; ++fvi) { vIndex[fvi] = faceIndices[fvi + fvcOffset]; int vNextIndex = faceIndices[(fvi+1) % nFaceVerts + fvcOffset]; // check for non-manifold face OsdHbrVertex * origin = hbrMesh->GetVertex(vIndex[fvi]); OsdHbrVertex * destination = hbrMesh->GetVertex(vNextIndex); if (!origin || !destination) { OSD_ERROR("ERROR : An edge was specified that connected a nonexistent vertex"); valid = false; } if (origin == destination) { OSD_ERROR("ERROR : An edge was specified that connected a vertex to itself"); valid = false; } OsdHbrHalfedge * opposite = destination->GetEdge(origin); if (opposite && opposite->GetOpposite()) { OSD_ERROR("ERROR : A non-manifold edge incident to more than 2 faces was found"); valid = false; } if (origin->GetEdge(destination)) { OSD_ERROR("ERROR : An edge connecting two vertices was specified more than once. " "It's likely that an incident face was flipped"); valid = false; } } if ( valid ) { if (scheme == HbrMeshUtil::kLoop) { // triangulate int triangle[3]; triangle[0] = vIndex[0]; for (int fvi = 2; fvi < nFaceVerts; ++fvi) { triangle[1] = vIndex[fvi-1]; triangle[2] = vIndex[fvi]; hbrMesh->NewFace(3, triangle, 0); } // ptex not fully implemented for loop, yet // fvar not fully implemented for loop, yet } else { // bilinear not entirely implemented OsdHbrFace *face = hbrMesh->NewFace(nFaceVerts, &(vIndex[0]), 0); if (usingPtex) { face->SetPtexIndex(ptxIdx); ptxIdx += (nFaceVerts == 4) ? 1 : nFaceVerts; } if (fvarData) { int fvarWidth = hbrMesh->GetTotalFVarWidth(); const float *faceData = &(*fvarData)[ fvcOffset*fvarWidth ]; for(int fvi=0; fvi<nFaceVerts; ++fvi) { OsdHbrVertex *v = hbrMesh->GetVertex( vIndex[fvi] ); OsdHbrFVarData& fvarData = v->GetFVarData(face); if ( ! fvarData.IsInitialized() ) { fvarData.SetAllData( fvarWidth, faceData ); } else if (!fvarData.CompareAll(fvarWidth, faceData)) { OsdHbrFVarData& fvarData = v->NewFVarData(face); fvarData.SetAllData( fvarWidth, faceData ); } // advance pointer to next set of face-varying data faceData += fvarWidth; } } } } else { OSD_ERROR("Face %d will be ignored\n", fi); } fvcOffset += nFaceVerts; } // Assign boundary interpolation methods hbrMesh->SetInterpolateBoundaryMethod(interpBoundary); if ( fvarDesc ) hbrMesh->SetFVarInterpolateBoundaryMethod(fvarDesc->getInterpBoundary()); // XXX hbr behavior doesn't match naming of k_Interpolate constants // hbrMesh->SetFVarInterpolateBoundaryMethod(OsdHbrMesh::k_InterpolateBoundaryEdgeAndCorner); // no for cube // hbrMesh->SetFVarInterpolateBoundaryMethod(OsdHbrMesh::k_InterpolateBoundaryNone); // yes for cube // hbrMesh->SetFVarInterpolateBoundaryMethod(OsdHbrMesh::k_InterpolateBoundaryEdgeOnly); // set edge crease in two different indexing way size_t nEdgeCreases = edgeCreases1.size(); for (size_t i = 0; i < nEdgeCreases; ++i) { if (edgeCreases1[i] <= 0.0) continue; OsdHbrHalfedge * e = hbrMesh-> GetFace(edgeCrease1Indices[i*2])-> GetEdge(edgeCrease1Indices[i*2+1]); if (!e) { OSD_ERROR("Can't find edge (face %d edge %d)\n", edgeCrease1Indices[i*2], edgeCrease1Indices[i*2+1]); continue; } e->SetSharpness(static_cast<float>(edgeCreases1[i])); } nEdgeCreases = edgeCreases2.size(); for (size_t i = 0; i < nEdgeCreases; ++i) { if (edgeCreases2[i] <= 0.0) continue; OsdHbrVertex * v0 = hbrMesh->GetVertex(edgeCrease2Indices[i*2]); OsdHbrVertex * v1 = hbrMesh->GetVertex(edgeCrease2Indices[i*2+1]); OsdHbrHalfedge * e = NULL; if (v0 && v1) if (!(e = v0->GetEdge(v1))) e = v1->GetEdge(v0); if (!e) { OSD_ERROR("ERROR can't find edge"); continue; } e->SetSharpness(static_cast<float>(edgeCreases2[i])); } // set corner { size_t nVertexCreases = vtxCreases.size(); for (size_t i = 0; i < nVertexCreases; ++i) { if (vtxCreases[i] <= 0.0) continue; OsdHbrVertex * v = hbrMesh->GetVertex(vtxCreaseIndices[i]); if (!v) { OSD_ERROR("Can't find vertex %d\n", vtxCreaseIndices[i]); continue; } v->SetSharpness(static_cast<float>(vtxCreases[i])); } } hbrMesh->Finish(); return hbrMesh; }