int main(int argc, char **argv) { int num_points = 0; // check for arg, # of points to use in projection SBA if (argc > 1) num_points = atoi(argv[1]); double euc_noise = 0.1; // noise in position, m double pix_noise = 1.0; // pixel noise // double outlier_ratio = 0.1; SparseOptimizer optimizer; optimizer.setVerbose(false); // variable-size block solver BlockSolverX::LinearSolverType * linearSolver = new LinearSolverCSparse<g2o ::BlockSolverX::PoseMatrixType>(); BlockSolverX * solver_ptr = new BlockSolverX(linearSolver); g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr); optimizer.setAlgorithm(solver); vector<Vector3d> true_points; for (size_t i=0;i<1000; ++i) { true_points.push_back(Vector3d((Sample::uniform()-0.5)*3, Sample::uniform()-0.5, Sample::uniform()+10)); } // set up camera params Vector2d focal_length(500,500); // pixels Vector2d principal_point(320,240); // 640x480 image double baseline = 0.075; // 7.5 cm baseline // set up camera params and projection matrices on vertices g2o::VertexSCam::setKcam(focal_length[0],focal_length[1], principal_point[0],principal_point[1], baseline); // set up two poses int vertex_id = 0; for (size_t i=0; i<2; ++i) { // set up rotation and translation for this node Vector3d t(0,0,i); Quaterniond q; q.setIdentity(); Eigen::Isometry3d cam; // camera pose cam = q; cam.translation() = t; // set up node VertexSCam *vc = new VertexSCam(); vc->setEstimate(cam); vc->setId(vertex_id); // vertex id cerr << t.transpose() << " | " << q.coeffs().transpose() << endl; // set first cam pose fixed if (i==0) vc->setFixed(true); // make sure projection matrices are set vc->setAll(); // add to optimizer optimizer.addVertex(vc); vertex_id++; } // set up point matches for GICP for (size_t i=0; i<true_points.size(); ++i) { // get two poses VertexSE3* vp0 = dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second); VertexSE3* vp1 = dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second); // calculate the relative 3D position of the point Vector3d pt0,pt1; pt0 = vp0->estimate().inverse() * true_points[i]; pt1 = vp1->estimate().inverse() * true_points[i]; // add in noise pt0 += Vector3d(Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise )); pt1 += Vector3d(Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise )); // form edge, with normals in varioius positions Vector3d nm0, nm1; nm0 << 0, i, 1; nm1 << 0, i, 1; nm0.normalize(); nm1.normalize(); Edge_V_V_GICP * e // new edge with correct cohort for caching = new Edge_V_V_GICP(); e->vertices()[0] // first viewpoint = dynamic_cast<OptimizableGraph::Vertex*>(vp0); e->vertices()[1] // second viewpoint = dynamic_cast<OptimizableGraph::Vertex*>(vp1); EdgeGICP meas; meas.pos0 = pt0; meas.pos1 = pt1; meas.normal0 = nm0; meas.normal1 = nm1; e->setMeasurement(meas); meas = e->measurement(); // e->inverseMeasurement().pos() = -kp; // use this for point-plane e->information() = meas.prec0(0.01); // use this for point-point // e->information().setIdentity(); // e->setRobustKernel(true); //e->setHuberWidth(0.01); optimizer.addEdge(e); } // set up SBA projections with some number of points true_points.clear(); for (int i=0;i<num_points; ++i) { true_points.push_back(Vector3d((Sample::uniform()-0.5)*3, Sample::uniform()-0.5, Sample::uniform()+10)); } // add point projections to this vertex for (size_t i=0; i<true_points.size(); ++i) { g2o::VertexSBAPointXYZ * v_p = new g2o::VertexSBAPointXYZ(); v_p->setId(vertex_id++); v_p->setMarginalized(true); v_p->setEstimate(true_points.at(i) + Vector3d(Sample::gaussian(1), Sample::gaussian(1), Sample::gaussian(1))); optimizer.addVertex(v_p); for (size_t j=0; j<2; ++j) { Vector3d z; dynamic_cast<g2o::VertexSCam*> (optimizer.vertices().find(j)->second) ->mapPoint(z,true_points.at(i)); if (z[0]>=0 && z[1]>=0 && z[0]<640 && z[1]<480) { z += Vector3d(Sample::gaussian(pix_noise), Sample::gaussian(pix_noise), Sample::gaussian(pix_noise/16.0)); g2o::Edge_XYZ_VSC * e = new g2o::Edge_XYZ_VSC(); e->vertices()[0] = dynamic_cast<g2o::OptimizableGraph::Vertex*>(v_p); e->vertices()[1] = dynamic_cast<g2o::OptimizableGraph::Vertex*> (optimizer.vertices().find(j)->second); e->setMeasurement(z); //e->inverseMeasurement() = -z; e->information() = Matrix3d::Identity(); //e->setRobustKernel(false); //e->setHuberWidth(1); optimizer.addEdge(e); } } } // done with adding projection points // move second cam off of its true position VertexSE3* vc = dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second); Eigen::Isometry3d cam = vc->estimate(); cam.translation() = Vector3d(-0.1,0.1,0.2); vc->setEstimate(cam); optimizer.initializeOptimization(); optimizer.computeActiveErrors(); cout << "Initial chi2 = " << FIXED(optimizer.chi2()) << endl; optimizer.setVerbose(true); optimizer.optimize(20); cout << endl << "Second vertex should be near 0,0,1" << endl; cout << dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second) ->estimate().translation().transpose() << endl; cout << dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second) ->estimate().translation().transpose() << endl; }
int main() { double euc_noise = 0.01; // noise in position, m // double outlier_ratio = 0.1; SparseOptimizer optimizer; optimizer.setVerbose(false); // variable-size block solver BlockSolverX::LinearSolverType * linearSolver = new LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>(); BlockSolverX * solver_ptr = new BlockSolverX(linearSolver); g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr); optimizer.setAlgorithm(solver); vector<Vector3d> true_points; for (size_t i=0;i<1000; ++i) { true_points.push_back(Vector3d((Sample::uniform()-0.5)*3, Sample::uniform()-0.5, Sample::uniform()+10)); } // set up two poses int vertex_id = 0; for (size_t i=0; i<2; ++i) { // set up rotation and translation for this node Vector3d t(0,0,i); Quaterniond q; q.setIdentity(); Eigen::Isometry3d cam; // camera pose cam = q; cam.translation() = t; // set up node VertexSE3 *vc = new VertexSE3(); vc->setEstimate(cam); vc->setId(vertex_id); // vertex id cerr << t.transpose() << " | " << q.coeffs().transpose() << endl; // set first cam pose fixed if (i==0) vc->setFixed(true); // add to optimizer optimizer.addVertex(vc); vertex_id++; } // set up point matches for (size_t i=0; i<true_points.size(); ++i) { // get two poses VertexSE3* vp0 = dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second); VertexSE3* vp1 = dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second); // calculate the relative 3D position of the point Vector3d pt0,pt1; pt0 = vp0->estimate().inverse() * true_points[i]; pt1 = vp1->estimate().inverse() * true_points[i]; // add in noise pt0 += Vector3d(Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise )); pt1 += Vector3d(Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise )); // form edge, with normals in varioius positions Vector3d nm0, nm1; nm0 << 0, i, 1; nm1 << 0, i, 1; nm0.normalize(); nm1.normalize(); Edge_V_V_GICP * e // new edge with correct cohort for caching = new Edge_V_V_GICP(); e->setVertex(0, vp0); // first viewpoint e->setVertex(1, vp1); // second viewpoint EdgeGICP meas; meas.pos0 = pt0; meas.pos1 = pt1; meas.normal0 = nm0; meas.normal1 = nm1; e->setMeasurement(meas); // e->inverseMeasurement().pos() = -kp; meas = e->measurement(); // use this for point-plane e->information() = meas.prec0(0.01); // use this for point-point // e->information().setIdentity(); // e->setRobustKernel(true); //e->setHuberWidth(0.01); optimizer.addEdge(e); } // move second cam off of its true position VertexSE3* vc = dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second); Eigen::Isometry3d cam = vc->estimate(); cam.translation() = Vector3d(0,0,0.2); vc->setEstimate(cam); optimizer.initializeOptimization(); optimizer.computeActiveErrors(); cout << "Initial chi2 = " << FIXED(optimizer.chi2()) << endl; optimizer.setVerbose(true); optimizer.optimize(5); cout << endl << "Second vertex should be near 0,0,1" << endl; cout << dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second) ->estimate().translation().transpose() << endl; cout << dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second) ->estimate().translation().transpose() << endl; }
void VoNode::imgCb(const sensor_msgs::ImageConstPtr& msg) { // Dummy data as the real position for the system. // static int old = msg->header.seq; // if(msg->header.seq == old) // filtered_pose.pose.position.z = 0; // else{ // filtered_pose.pose.position.z += 10.0/70.0 * (msg->header.seq-old); // } // old = msg->header.seq; ROS_INFO("Frame seq: %i", msg->header.seq); #ifdef USE_ASE_IMU tf::StampedTransform transform; try{ listener_.lookupTransform("/camera", "/worldNED", ros::Time(0), transform); } catch (tf::TransformException ex){ ROS_ERROR("%s",ex.what()); return; } #endif cv::Mat img; try { img = cv_bridge::toCvShare(msg, "mono8")->image; } catch (cv_bridge::Exception& e) { ROS_ERROR("cv_bridge exception: %s", e.what()); } processUserActions(); // Quaterniond quat(filtered_pose.pose.orientation.w,filtered_pose.pose.orientation.x,filtered_pose.pose.orientation.y, filtered_pose.pose.orientation.z); // Matrix3d orient = quat.toRotationMatrix(); // Vector3d pos(filtered_pose.pose.position.x,filtered_pose.pose.position.y, filtered_pose.pose.position.z); Quaterniond quat; quat.setIdentity(); Vector3d pos; pos.setZero(); Matrix3d orient = quat.toRotationMatrix(); #ifdef USE_ASE_IMU tf::quaternionTFToEigen(transform.getRotation(), quat); orient = quat.toRotationMatrix(); tf::vectorTFToEigen(transform.getOrigin(), pos); #endif vo_->addImage(img, msg->header.stamp.toSec(), orient, pos); visualizer_.publishMinimal(img, vo_->lastFrame(), *vo_, msg->header.stamp.toSec()); if(publish_markers_ && vo_->stage() != FrameHandlerBase::STAGE_PAUSED) visualizer_.visualizeMarkers(vo_->lastFrame(), vo_->coreKeyframes(), vo_->map()); if(publish_dense_input_) visualizer_.exportToDense(vo_->lastFrame()); if(vo_->stage() == FrameHandlerMono::STAGE_PAUSED) usleep(100000); }