LayoutUnit RenderSVGRoot::computeReplacedLogicalHeight() const { // When we're embedded through SVGImage (border-image/background-image/<html:img>/...) we're forced to resize to a specific size. if (!m_containerSize.isEmpty()) return m_containerSize.height(); if (style()->logicalHeight().isSpecified() || style()->logicalMaxHeight().isSpecified()) return RenderReplaced::computeReplacedLogicalHeight(); if (svgSVGElement().heightAttributeEstablishesViewport()) { Length height = svgSVGElement().intrinsicHeight(SVGSVGElement::IgnoreCSSProperties); if (height.isPercent()) { RenderBlock* cb = containingBlock(); ASSERT(cb); while (cb->isAnonymous() && !cb->isRenderView()) { cb = cb->containingBlock(); cb->addPercentHeightDescendant(const_cast<RenderSVGRoot&>(*this)); } } else RenderBlock::removePercentHeightDescendant(const_cast<RenderSVGRoot&>(*this)); return resolveLengthAttributeForSVG(height, style()->effectiveZoom(), containingBlock()->availableLogicalHeight(IncludeMarginBorderPadding), &view()); } // SVG embedded through object/embed/iframe. if (isEmbeddedThroughFrameContainingSVGDocument()) return frame().ownerRenderer()->availableLogicalHeight(IncludeMarginBorderPadding); // SVG embedded via SVGImage (background-image/border-image/etc) / Inline SVG. return RenderReplaced::computeReplacedLogicalHeight(); }
IntRect RenderView::selectionBounds() const { typedef WillBeHeapHashMap<RawPtrWillBeMember<RenderObject>, OwnPtrWillBeMember<RenderSelectionInfo> > SelectionMap; SelectionMap selectedObjects; RenderObject* os = m_selectionStart; RenderObject* stop = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); while (os && os != stop) { if ((os->canBeSelectionLeaf() || os == m_selectionStart || os == m_selectionEnd) && os->selectionState() != SelectionNone) { // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. selectedObjects.set(os, adoptPtrWillBeNoop(new RenderSelectionInfo(os))); RenderBlock* cb = os->containingBlock(); while (cb && !cb->isRenderView()) { OwnPtrWillBeMember<RenderSelectionInfo>& blockInfo = selectedObjects.add(cb, nullptr).storedValue->value; if (blockInfo) break; blockInfo = adoptPtrWillBeNoop(new RenderSelectionInfo(cb)); cb = cb->containingBlock(); } } os = os->nextInPreOrder(); } // Now create a single bounding box rect that encloses the whole selection. LayoutRect selRect; SelectionMap::iterator end = selectedObjects.end(); for (SelectionMap::iterator i = selectedObjects.begin(); i != end; ++i) selRect.unite(i->value->absoluteSelectionRect()); return pixelSnappedIntRect(selRect); }
static bool shouldScaleColumns(RenderTable* table) { // A special case. If this table is not fixed width and contained inside // a cell, then don't bloat the maxwidth by examining percentage growth. bool scale = true; while (table) { Length tw = table->style()->width(); if ((tw.isVariable() || tw.isPercent()) && !table->isPositioned()) { RenderBlock* cb = table->containingBlock(); while (cb && !cb->isCanvas() && !cb->isTableCell() && cb->style()->width().isVariable() && !cb->isPositioned()) cb = cb->containingBlock(); table = 0; if (cb && cb->isTableCell() && (cb->style()->width().isVariable() || cb->style()->width().isPercent())) { if (tw.isPercent()) scale = false; else { RenderTableCell* cell = static_cast<RenderTableCell*>(cb); if (cell->colSpan() > 1 || cell->table()->style()->width().isVariable()) scale = false; else table = cell->table(); } } } else table = 0; } return scale; }
LayoutUnit RenderSVGRoot::computeReplacedLogicalHeight() const { SVGSVGElement* svg = static_cast<SVGSVGElement*>(node()); ASSERT(svg); // When we're embedded through SVGImage (border-image/background-image/<html:img>/...) we're forced to resize to a specific size. if (!m_containerSize.isEmpty()) return m_containerSize.height(); if (hasReplacedLogicalHeight()) return RenderReplaced::computeReplacedLogicalHeight(); if (svg->heightAttributeEstablishesViewport()) { Length height = svg->intrinsicHeight(SVGSVGElement::IgnoreCSSProperties); if (height.isPercent()) { RenderBlock* cb = containingBlock(); ASSERT(cb); while (cb->isAnonymous()) { cb = cb->containingBlock(); cb->addPercentHeightDescendant(const_cast<RenderSVGRoot*>(this)); } } else RenderBlock::removePercentHeightDescendant(const_cast<RenderSVGRoot*>(this)); return resolveLengthAttributeForSVG(height, style()->effectiveZoom(), containingBlock()->availableLogicalHeight()); } // Only SVGs embedded in <object> reach this point. ASSERT(isEmbeddedThroughFrameContainingSVGDocument()); return document()->frame()->ownerRenderer()->availableLogicalHeight(); }
void RenderInline::splitFlow(RenderObject* beforeChild, RenderBlock* newBlockBox, RenderObject* newChild, RenderFlow* oldCont) { RenderBlock* pre = 0; RenderBlock* block = containingBlock(); // Delete our line boxes before we do the inline split into continuations. block->deleteLineBoxTree(); bool madeNewBeforeBlock = false; if (block->isAnonymousBlock() && (!block->parent() || !block->parent()->createsAnonymousWrapper())) { // We can reuse this block and make it the preBlock of the next continuation. pre = block; block = block->containingBlock(); } else { // No anonymous block available for use. Make one. pre = block->createAnonymousBlock(); madeNewBeforeBlock = true; } RenderBlock* post = block->createAnonymousBlock(); RenderObject* boxFirst = madeNewBeforeBlock ? block->firstChild() : pre->nextSibling(); if (madeNewBeforeBlock) block->insertChildNode(pre, boxFirst); block->insertChildNode(newBlockBox, boxFirst); block->insertChildNode(post, boxFirst); block->setChildrenInline(false); if (madeNewBeforeBlock) { RenderObject* o = boxFirst; while (o) { RenderObject* no = o; o = no->nextSibling(); pre->appendChildNode(block->removeChildNode(no)); no->setNeedsLayoutAndPrefWidthsRecalc(); } } splitInlines(pre, post, newBlockBox, beforeChild, oldCont); // We already know the newBlockBox isn't going to contain inline kids, so avoid wasting // time in makeChildrenNonInline by just setting this explicitly up front. newBlockBox->setChildrenInline(false); // We don't just call addChild, since it would pass things off to the // continuation, so we call addChildToFlow explicitly instead. We delayed // adding the newChild until now so that the |newBlockBox| would be fully // connected, thus allowing newChild access to a renderArena should it need // to wrap itself in additional boxes (e.g., table construction). newBlockBox->addChildToFlow(newChild, 0); // Always just do a full layout in order to ensure that line boxes (especially wrappers for images) // get deleted properly. Because objects moves from the pre block into the post block, we want to // make new line boxes instead of leaving the old line boxes around. pre->setNeedsLayoutAndPrefWidthsRecalc(); block->setNeedsLayoutAndPrefWidthsRecalc(); post->setNeedsLayoutAndPrefWidthsRecalc(); }
LayoutUnit RenderBlockFlow::logicalRightSelectionOffset(RenderBlock* rootBlock, LayoutUnit position) { LayoutUnit logicalRight = logicalRightOffsetForLine(false); if (logicalRight == logicalRightOffsetForContent()) return RenderBlock::logicalRightSelectionOffset(rootBlock, position); RenderBlock* cb = this; while (cb != rootBlock) { logicalRight += cb->logicalLeft(); cb = cb->containingBlock(); } return logicalRight; }
void RenderLineBreak::collectSelectionRects(Vector<SelectionRect>& rects, unsigned, unsigned) { ensureLineBoxes(*this); InlineElementBox* box = m_inlineBoxWrapper; if (!box) return; const RootInlineBox& rootBox = box->root(); LayoutRect rect = rootBox.computeCaretRect(box->logicalLeft(), 0, nullptr); if (rootBox.isFirstAfterPageBreak()) { if (box->isHorizontal()) rect.shiftYEdgeTo(rootBox.lineTopWithLeading()); else rect.shiftXEdgeTo(rootBox.lineTopWithLeading()); } RenderBlock* containingBlock = this->containingBlock(); // Map rect, extended left to leftOffset, and right to rightOffset, through transforms to get minX and maxX. LogicalSelectionOffsetCaches cache(*containingBlock); LayoutUnit leftOffset = containingBlock->logicalLeftSelectionOffset(*containingBlock, box->logicalTop(), cache); LayoutUnit rightOffset = containingBlock->logicalRightSelectionOffset(*containingBlock, box->logicalTop(), cache); LayoutRect extentsRect = rect; if (box->isHorizontal()) { extentsRect.setX(leftOffset); extentsRect.setWidth(rightOffset - leftOffset); } else { extentsRect.setY(leftOffset); extentsRect.setHeight(rightOffset - leftOffset); } extentsRect = localToAbsoluteQuad(FloatRect(extentsRect)).enclosingBoundingBox(); if (!box->isHorizontal()) extentsRect = extentsRect.transposedRect(); bool isFirstOnLine = !box->previousOnLineExists(); bool isLastOnLine = !box->nextOnLineExists(); if (containingBlock->isRubyBase() || containingBlock->isRubyText()) isLastOnLine = !containingBlock->containingBlock()->inlineBoxWrapper()->nextOnLineExists(); bool isFixed = false; IntRect absRect = localToAbsoluteQuad(FloatRect(rect), UseTransforms, &isFixed).enclosingBoundingBox(); bool boxIsHorizontal = !box->isSVGInlineTextBox() ? box->isHorizontal() : !style().svgStyle().isVerticalWritingMode(); // If the containing block is an inline element, we want to check the inlineBoxWrapper orientation // to determine the orientation of the block. In this case we also use the inlineBoxWrapper to // determine if the element is the last on the line. if (containingBlock->inlineBoxWrapper()) { if (containingBlock->inlineBoxWrapper()->isHorizontal() != boxIsHorizontal) { boxIsHorizontal = containingBlock->inlineBoxWrapper()->isHorizontal(); isLastOnLine = !containingBlock->inlineBoxWrapper()->nextOnLineExists(); } } rects.append(SelectionRect(absRect, box->direction(), extentsRect.x(), extentsRect.maxX(), extentsRect.maxY(), 0, box->isLineBreak(), isFirstOnLine, isLastOnLine, false, false, boxIsHorizontal, isFixed, containingBlock->isRubyText(), view().pageNumberForBlockProgressionOffset(absRect.x()))); }
static inline bool hasAutoHeightOrContainingBlockWithAutoHeight(const RenderReplaced* replaced) { Length logicalHeightLength = replaced->style()->logicalHeight(); if (logicalHeightLength.isAuto()) return true; // For percentage heights: The percentage is calculated with respect to the height of the generated box's // containing block. If the height of the containing block is not specified explicitly (i.e., it depends // on content height), and this element is not absolutely positioned, the value computes to 'auto'. if (!logicalHeightLength.isPercent() || replaced->isPositioned() || replaced->document()->inQuirksMode()) return false; for (RenderBlock* cb = replaced->containingBlock(); !cb->isRenderView(); cb = cb->containingBlock()) { if (cb->isTableCell() || (!cb->style()->logicalHeight().isAuto() || (!cb->style()->top().isAuto() && !cb->style()->bottom().isAuto()))) return false; } return true; }
IntRect RenderView::selectionBounds(bool clipToVisibleContent) const { document()->updateStyleIfNeeded(); typedef HashMap<RenderObject*, RenderSelectionInfo*> SelectionMap; SelectionMap selectedObjects; RenderObject* os = m_selectionStart; RenderObject* stop = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); while (os && os != stop) { if ((os->canBeSelectionLeaf() || os == m_selectionStart || os == m_selectionEnd) && os->selectionState() != SelectionNone) { // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. selectedObjects.set(os, new RenderSelectionInfo(os, clipToVisibleContent)); RenderBlock* cb = os->containingBlock(); while (cb && !cb->isRenderView()) { RenderSelectionInfo* blockInfo = selectedObjects.get(cb); if (blockInfo) break; selectedObjects.set(cb, new RenderSelectionInfo(cb, clipToVisibleContent)); cb = cb->containingBlock(); } } os = os->nextInPreOrder(); } // Now create a single bounding box rect that encloses the whole selection. IntRect selRect; SelectionMap::iterator end = selectedObjects.end(); for (SelectionMap::iterator i = selectedObjects.begin(); i != end; ++i) { RenderSelectionInfo* info = i->second; // RenderSelectionInfo::rect() is in the coordinates of the repaintContainer, so map to page coordinates. IntRect currRect = info->rect(); if (RenderBoxModelObject* repaintContainer = info->repaintContainer()) { FloatQuad absQuad = repaintContainer->localToAbsoluteQuad(FloatRect(currRect)); currRect = absQuad.enclosingBoundingBox(); } selRect.unite(currRect); delete info; } return selRect; }
IntRect RenderView::selectionBounds(bool clipToVisibleContent) const { typedef HashMap<RawPtr<RenderObject>, OwnPtr<RenderSelectionInfo> > SelectionMap; SelectionMap selectedObjects; RenderObject* os = m_selectionStart; RenderObject* stop = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); while (os && os != stop) { if ((os->canBeSelectionLeaf() || os == m_selectionStart || os == m_selectionEnd) && os->selectionState() != SelectionNone) { // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. selectedObjects.set(os, adoptPtr(new RenderSelectionInfo(os, clipToVisibleContent))); RenderBlock* cb = os->containingBlock(); while (cb && !cb->isRenderView()) { OwnPtr<RenderSelectionInfo>& blockInfo = selectedObjects.add(cb, nullptr).storedValue->value; if (blockInfo) break; blockInfo = adoptPtr(new RenderSelectionInfo(cb, clipToVisibleContent)); cb = cb->containingBlock(); } } os = os->nextInPreOrder(); } // Now create a single bounding box rect that encloses the whole selection. LayoutRect selRect; SelectionMap::iterator end = selectedObjects.end(); for (SelectionMap::iterator i = selectedObjects.begin(); i != end; ++i) { RenderSelectionInfo* info = i->value.get(); // RenderSelectionInfo::rect() is in the coordinates of the paintInvalidationContainer, so map to page coordinates. LayoutRect currRect = info->rect(); if (const RenderLayerModelObject* paintInvalidationContainer = info->paintInvalidationContainer()) { FloatQuad absQuad = paintInvalidationContainer->localToAbsoluteQuad(FloatRect(currRect)); currRect = absQuad.enclosingBoundingBox(); } selRect.unite(currRect); } return pixelSnappedIntRect(selRect); }
bool RenderBoxModelObject::hasAutoHeightOrContainingBlockWithAutoHeight() const { Length logicalHeightLength = style()->logicalHeight(); if (logicalHeightLength.isAuto()) return true; // For percentage heights: The percentage is calculated with respect to the height of the generated box's // containing block. If the height of the containing block is not specified explicitly (i.e., it depends // on content height), and this element is not absolutely positioned, the value computes to 'auto'. if (!logicalHeightLength.isPercent() || isOutOfFlowPositioned() || document().inQuirksMode()) return false; // Anonymous block boxes are ignored when resolving percentage values that would refer to it: // the closest non-anonymous ancestor box is used instead. RenderBlock* cb = containingBlock(); while (cb->isAnonymous()) cb = cb->containingBlock(); // Matching RenderBox::percentageLogicalHeightIsResolvableFromBlock() by // ignoring table cell's attribute value, where it says that table cells violate // what the CSS spec says to do with heights. Basically we // don't care if the cell specified a height or not. if (cb->isTableCell()) return false; // Match RenderBox::availableLogicalHeightUsing by special casing // the render view. The available height is taken from the frame. if (cb->isRenderView()) return false; if (cb->isOutOfFlowPositioned() && !cb->style()->logicalTop().isAuto() && !cb->style()->logicalBottom().isAuto()) return false; // If the height of the containing block computes to 'auto', then it hasn't been 'specified explicitly'. return cb->hasAutoHeightOrContainingBlockWithAutoHeight(); }
IntRect RenderView::selectionBounds(bool clipToVisibleContent) const { document()->updateRendering(); typedef HashMap<RenderObject*, SelectionInfo*> SelectionMap; SelectionMap selectedObjects; RenderObject* os = m_selectionStart; RenderObject* stop = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); while (os && os != stop) { if ((os->canBeSelectionLeaf() || os == m_selectionStart || os == m_selectionEnd) && os->selectionState() != SelectionNone) { // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. selectedObjects.set(os, new SelectionInfo(os, clipToVisibleContent)); RenderBlock* cb = os->containingBlock(); while (cb && !cb->isRenderView()) { SelectionInfo* blockInfo = selectedObjects.get(cb); if (blockInfo) break; selectedObjects.set(cb, new SelectionInfo(cb, clipToVisibleContent)); cb = cb->containingBlock(); } } os = os->nextInPreOrder(); } // Now create a single bounding box rect that encloses the whole selection. IntRect selRect; SelectionMap::iterator end = selectedObjects.end(); for (SelectionMap::iterator i = selectedObjects.begin(); i != end; ++i) { SelectionInfo* info = i->second; selRect.unite(info->rect()); delete info; } return selRect; }
void RenderInline::splitFlow(RenderObject *beforeChild, RenderBlock *newBlockBox, RenderObject *newChild, RenderFlow *oldCont) { RenderBlock *pre = 0; RenderBlock *block = containingBlock(); bool madeNewBeforeBlock = false; if(block->isAnonymousBlock()) { // We can reuse this block and make it the preBlock of the next continuation. pre = block; block = block->containingBlock(); } else { // No anonymous block available for use. Make one. pre = block->createAnonymousBlock(); madeNewBeforeBlock = true; } RenderBlock *post = block->createAnonymousBlock(); RenderObject *boxFirst = madeNewBeforeBlock ? block->firstChild() : pre->nextSibling(); if(madeNewBeforeBlock) block->insertChildNode(pre, boxFirst); block->insertChildNode(newBlockBox, boxFirst); block->insertChildNode(post, boxFirst); block->setChildrenInline(false); if(madeNewBeforeBlock) { RenderObject *o = boxFirst; while(o) { RenderObject *no = o; o = no->nextSibling(); pre->appendChildNode(block->removeChildNode(no)); no->setNeedsLayoutAndMinMaxRecalc(); } } splitInlines(pre, post, newBlockBox, beforeChild, oldCont); // We already know the newBlockBox isn't going to contain inline kids, so avoid wasting // time in makeChildrenNonInline by just setting this explicitly up front. newBlockBox->setChildrenInline(false); // We don't just call addChild, since it would pass things off to the // continuation, so we call addChildToFlow explicitly instead. We delayed // adding the newChild until now so that the |newBlockBox| would be fully // connected, thus allowing newChild access to a renderArena should it need // to wrap itself in additional boxes (e.g., table construction). newBlockBox->addChildToFlow(newChild, 0); // XXXdwh is any of this even necessary? I don't think it is. pre->close(); pre->setPos(0, -500000); pre->setNeedsLayout(true); newBlockBox->close(); newBlockBox->setPos(0, -500000); newBlockBox->setNeedsLayout(true); post->close(); post->setPos(0, -500000); post->setNeedsLayout(true); updatePseudoChildren(); block->setNeedsLayoutAndMinMaxRecalc(); }
void RenderView::repaintSelection() const { document().updateStyleIfNeeded(); HashSet<RenderBlock*> processedBlocks; RenderObject* end = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); for (RenderObject* o = m_selectionStart; o && o != end; o = o->nextInPreOrder()) { if (!o->canBeSelectionLeaf() && o != m_selectionStart && o != m_selectionEnd) continue; if (o->selectionState() == SelectionNone) continue; RenderSelectionInfo(o, true).repaint(); // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. for (RenderBlock* block = o->containingBlock(); block && !block->isRenderView(); block = block->containingBlock()) { if (!processedBlocks.add(block).isNewEntry) break; RenderSelectionInfo(block, true).repaint(); } } }
void RenderView::setSelection(RenderObject* start, int startPos, RenderObject* end, int endPos, SelectionRepaintMode blockRepaintMode) { // Make sure both our start and end objects are defined. // Check www.msnbc.com and try clicking around to find the case where this happened. if ((start && !end) || (end && !start)) return; // Just return if the selection hasn't changed. if (m_selectionStart == start && m_selectionStartPos == startPos && m_selectionEnd == end && m_selectionEndPos == endPos) return; // Record the old selected objects. These will be used later // when we compare against the new selected objects. int oldStartPos = m_selectionStartPos; int oldEndPos = m_selectionEndPos; // Objects each have a single selection rect to examine. typedef HashMap<RenderObject*, OwnPtr<RenderSelectionInfo> > SelectedObjectMap; SelectedObjectMap oldSelectedObjects; SelectedObjectMap newSelectedObjects; // Blocks contain selected objects and fill gaps between them, either on the left, right, or in between lines and blocks. // In order to get the repaint rect right, we have to examine left, middle, and right rects individually, since otherwise // the union of those rects might remain the same even when changes have occurred. typedef HashMap<RenderBlock*, OwnPtr<RenderBlockSelectionInfo> > SelectedBlockMap; SelectedBlockMap oldSelectedBlocks; SelectedBlockMap newSelectedBlocks; RenderObject* os = m_selectionStart; RenderObject* stop = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); while (os && os != stop) { if ((os->canBeSelectionLeaf() || os == m_selectionStart || os == m_selectionEnd) && os->selectionState() != SelectionNone) { // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. oldSelectedObjects.set(os, adoptPtr(new RenderSelectionInfo(os, true))); if (blockRepaintMode == RepaintNewXOROld) { RenderBlock* cb = os->containingBlock(); while (cb && !cb->isRenderView()) { OwnPtr<RenderBlockSelectionInfo>& blockInfo = oldSelectedBlocks.add(cb, nullptr).iterator->second; if (blockInfo) break; blockInfo = adoptPtr(new RenderBlockSelectionInfo(cb)); cb = cb->containingBlock(); } } } os = os->nextInPreOrder(); } // Now clear the selection. SelectedObjectMap::iterator oldObjectsEnd = oldSelectedObjects.end(); for (SelectedObjectMap::iterator i = oldSelectedObjects.begin(); i != oldObjectsEnd; ++i) i->first->setSelectionStateIfNeeded(SelectionNone); // set selection start and end m_selectionStart = start; m_selectionStartPos = startPos; m_selectionEnd = end; m_selectionEndPos = endPos; // Update the selection status of all objects between m_selectionStart and m_selectionEnd if (start && start == end) start->setSelectionStateIfNeeded(SelectionBoth); else { if (start) start->setSelectionStateIfNeeded(SelectionStart); if (end) end->setSelectionStateIfNeeded(SelectionEnd); } RenderObject* o = start; stop = rendererAfterPosition(end, endPos); while (o && o != stop) { if (o != start && o != end && o->canBeSelectionLeaf()) o->setSelectionStateIfNeeded(SelectionInside); o = o->nextInPreOrder(); } if (blockRepaintMode != RepaintNothing) m_layer->clearBlockSelectionGapsBounds(); // Now that the selection state has been updated for the new objects, walk them again and // put them in the new objects list. o = start; while (o && o != stop) { if ((o->canBeSelectionLeaf() || o == start || o == end) && o->selectionState() != SelectionNone) { newSelectedObjects.set(o, adoptPtr(new RenderSelectionInfo(o, true))); RenderBlock* cb = o->containingBlock(); while (cb && !cb->isRenderView()) { OwnPtr<RenderBlockSelectionInfo>& blockInfo = newSelectedBlocks.add(cb, nullptr).iterator->second; if (blockInfo) break; blockInfo = adoptPtr(new RenderBlockSelectionInfo(cb)); cb = cb->containingBlock(); } } o = o->nextInPreOrder(); } if (!m_frameView || blockRepaintMode == RepaintNothing) return; m_frameView->beginDeferredRepaints(); // Have any of the old selected objects changed compared to the new selection? for (SelectedObjectMap::iterator i = oldSelectedObjects.begin(); i != oldObjectsEnd; ++i) { RenderObject* obj = i->first; RenderSelectionInfo* newInfo = newSelectedObjects.get(obj); RenderSelectionInfo* oldInfo = i->second.get(); if (!newInfo || oldInfo->rect() != newInfo->rect() || oldInfo->state() != newInfo->state() || (m_selectionStart == obj && oldStartPos != m_selectionStartPos) || (m_selectionEnd == obj && oldEndPos != m_selectionEndPos)) { oldInfo->repaint(); if (newInfo) { newInfo->repaint(); newSelectedObjects.remove(obj); } } } // Any new objects that remain were not found in the old objects dict, and so they need to be updated. SelectedObjectMap::iterator newObjectsEnd = newSelectedObjects.end(); for (SelectedObjectMap::iterator i = newSelectedObjects.begin(); i != newObjectsEnd; ++i) i->second->repaint(); // Have any of the old blocks changed? SelectedBlockMap::iterator oldBlocksEnd = oldSelectedBlocks.end(); for (SelectedBlockMap::iterator i = oldSelectedBlocks.begin(); i != oldBlocksEnd; ++i) { RenderBlock* block = i->first; RenderBlockSelectionInfo* newInfo = newSelectedBlocks.get(block); RenderBlockSelectionInfo* oldInfo = i->second.get(); if (!newInfo || oldInfo->rects() != newInfo->rects() || oldInfo->state() != newInfo->state()) { oldInfo->repaint(); if (newInfo) { newInfo->repaint(); newSelectedBlocks.remove(block); } } } // Any new blocks that remain were not found in the old blocks dict, and so they need to be updated. SelectedBlockMap::iterator newBlocksEnd = newSelectedBlocks.end(); for (SelectedBlockMap::iterator i = newSelectedBlocks.begin(); i != newBlocksEnd; ++i) i->second->repaint(); m_frameView->endDeferredRepaints(); }
void RenderView::invalidatePaintForSelection() const { HashSet<RenderBlock*> processedBlocks; // For querying RenderLayer::compositingState() // FIXME: this may be wrong. crbug.com/407416 DisableCompositingQueryAsserts disabler; RenderObject* end = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); for (RenderObject* o = m_selectionStart; o && o != end; o = o->nextInPreOrder()) { if (!o->canBeSelectionLeaf() && o != m_selectionStart && o != m_selectionEnd) continue; if (o->selectionState() == SelectionNone) continue; RenderSelectionInfo(o, true).invalidatePaint(); // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. for (RenderBlock* block = o->containingBlock(); block && !block->isRenderView(); block = block->containingBlock()) { if (!processedBlocks.add(block).isNewEntry) break; RenderSelectionInfo(block, true).invalidatePaint(); } } }
void RenderView::invalidatePaintForSelection() const { HashSet<RenderBlock*> processedBlocks; RenderObject* end = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); for (RenderObject* o = m_selectionStart; o && o != end; o = o->nextInPreOrder()) { if (!o->canBeSelectionLeaf() && o != m_selectionStart && o != m_selectionEnd) continue; if (o->selectionState() == SelectionNone) continue; o->setShouldInvalidateSelection(); // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. for (RenderBlock* block = o->containingBlock(); block && !block->isRenderView(); block = block->containingBlock()) { if (!processedBlocks.add(block).isNewEntry) break; block->setShouldInvalidateSelection(); } } }
void RenderView::setSelection(RenderObject* start, int startPos, RenderObject* end, int endPos, SelectionPaintInvalidationMode blockPaintInvalidationMode) { // This code makes no assumptions as to if the rendering tree is up to date or not // and will not try to update it. Currently clearSelection calls this // (intentionally) without updating the rendering tree as it doesn't care. // Other callers may want to force recalc style before calling this. // Make sure both our start and end objects are defined. // Check www.msnbc.com and try clicking around to find the case where this happened. if ((start && !end) || (end && !start)) return; // Just return if the selection hasn't changed. if (m_selectionStart == start && m_selectionStartPos == startPos && m_selectionEnd == end && m_selectionEndPos == endPos) return; // Record the old selected objects. These will be used later // when we compare against the new selected objects. int oldStartPos = m_selectionStartPos; int oldEndPos = m_selectionEndPos; // Objects each have a single selection rect to examine. typedef WillBeHeapHashMap<RawPtrWillBeMember<RenderObject>, SelectionState > SelectedObjectMap; SelectedObjectMap oldSelectedObjects; // FIXME: |newSelectedObjects| doesn't really need to store the SelectionState, it's just more convenient // to have it use the same data structure as |oldSelectedObjects|. SelectedObjectMap newSelectedObjects; // Blocks contain selected objects and fill gaps between them, either on the left, right, or in between lines and blocks. // In order to get the paint invalidation rect right, we have to examine left, middle, and right rects individually, since otherwise // the union of those rects might remain the same even when changes have occurred. typedef WillBeHeapHashMap<RawPtrWillBeMember<RenderBlock>, SelectionState > SelectedBlockMap; SelectedBlockMap oldSelectedBlocks; // FIXME: |newSelectedBlocks| doesn't really need to store the SelectionState, it's just more convenient // to have it use the same data structure as |oldSelectedBlocks|. SelectedBlockMap newSelectedBlocks; RenderObject* os = m_selectionStart; RenderObject* stop = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); bool exploringBackwards = false; bool continueExploring = os && (os != stop); while (continueExploring) { if ((os->canBeSelectionLeaf() || os == m_selectionStart || os == m_selectionEnd) && os->selectionState() != SelectionNone) { // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. oldSelectedObjects.set(os, os->selectionState()); if (blockPaintInvalidationMode == PaintInvalidationNewXOROld) { RenderBlock* cb = os->containingBlock(); while (cb && !cb->isRenderView()) { SelectedBlockMap::AddResult result = oldSelectedBlocks.add(cb, cb->selectionState()); if (!result.isNewEntry) break; cb = cb->containingBlock(); } } } os = getNextOrPrevRenderObjectBasedOnDirection(os, stop, continueExploring, exploringBackwards); } // Now clear the selection. SelectedObjectMap::iterator oldObjectsEnd = oldSelectedObjects.end(); for (SelectedObjectMap::iterator i = oldSelectedObjects.begin(); i != oldObjectsEnd; ++i) i->key->setSelectionStateIfNeeded(SelectionNone); // set selection start and end m_selectionStart = start; m_selectionStartPos = startPos; m_selectionEnd = end; m_selectionEndPos = endPos; // Update the selection status of all objects between m_selectionStart and m_selectionEnd if (start && start == end) start->setSelectionStateIfNeeded(SelectionBoth); else { if (start) start->setSelectionStateIfNeeded(SelectionStart); if (end) end->setSelectionStateIfNeeded(SelectionEnd); } RenderObject* o = start; stop = rendererAfterPosition(end, endPos); while (o && o != stop) { if (o != start && o != end && o->canBeSelectionLeaf()) o->setSelectionStateIfNeeded(SelectionInside); o = o->nextInPreOrder(); } layer()->clearBlockSelectionGapsBounds(); // Now that the selection state has been updated for the new objects, walk them again and // put them in the new objects list. o = start; exploringBackwards = false; continueExploring = o && (o != stop); while (continueExploring) { if ((o->canBeSelectionLeaf() || o == start || o == end) && o->selectionState() != SelectionNone) { newSelectedObjects.set(o, o->selectionState()); RenderBlock* cb = o->containingBlock(); while (cb && !cb->isRenderView()) { SelectedBlockMap::AddResult result = newSelectedBlocks.add(cb, cb->selectionState()); if (!result.isNewEntry) break; cb = cb->containingBlock(); } } o = getNextOrPrevRenderObjectBasedOnDirection(o, stop, continueExploring, exploringBackwards); } if (!m_frameView) return; // Have any of the old selected objects changed compared to the new selection? for (SelectedObjectMap::iterator i = oldSelectedObjects.begin(); i != oldObjectsEnd; ++i) { RenderObject* obj = i->key; SelectionState newSelectionState = obj->selectionState(); SelectionState oldSelectionState = i->value; if (newSelectionState != oldSelectionState || (m_selectionStart == obj && oldStartPos != m_selectionStartPos) || (m_selectionEnd == obj && oldEndPos != m_selectionEndPos)) { obj->setShouldInvalidateSelection(); newSelectedObjects.remove(obj); } } // Any new objects that remain were not found in the old objects dict, and so they need to be updated. SelectedObjectMap::iterator newObjectsEnd = newSelectedObjects.end(); for (SelectedObjectMap::iterator i = newSelectedObjects.begin(); i != newObjectsEnd; ++i) i->key->setShouldInvalidateSelection(); // Have any of the old blocks changed? SelectedBlockMap::iterator oldBlocksEnd = oldSelectedBlocks.end(); for (SelectedBlockMap::iterator i = oldSelectedBlocks.begin(); i != oldBlocksEnd; ++i) { RenderBlock* block = i->key; SelectionState newSelectionState = block->selectionState(); SelectionState oldSelectionState = i->value; if (newSelectionState != oldSelectionState) { block->setShouldInvalidateSelection(); newSelectedBlocks.remove(block); } } // Any new blocks that remain were not found in the old blocks dict, and so they need to be updated. SelectedBlockMap::iterator newBlocksEnd = newSelectedBlocks.end(); for (SelectedBlockMap::iterator i = newSelectedBlocks.begin(); i != newBlocksEnd; ++i) i->key->setShouldInvalidateSelection(); }
void findGoodTouchTargets(const IntRect& touchBox, LocalFrame* mainFrame, Vector<IntRect>& goodTargets, WillBeHeapVector<RawPtrWillBeMember<Node> >& highlightNodes) { goodTargets.clear(); int touchPointPadding = ceil(std::max(touchBox.width(), touchBox.height()) * 0.5); IntPoint touchPoint = touchBox.center(); IntPoint contentsPoint = mainFrame->view()->windowToContents(touchPoint); HitTestResult result = mainFrame->eventHandler().hitTestResultAtPoint(contentsPoint, HitTestRequest::ReadOnly | HitTestRequest::Active | HitTestRequest::ConfusingAndOftenMisusedDisallowShadowContent, IntSize(touchPointPadding, touchPointPadding)); const WillBeHeapListHashSet<RefPtrWillBeMember<Node> >& hitResults = result.rectBasedTestResult(); // Blacklist nodes that are container of disambiguated nodes. // It is not uncommon to have a clickable <div> that contains other clickable objects. // This heuristic avoids excessive disambiguation in that case. WillBeHeapHashSet<RawPtrWillBeMember<Node> > blackList; for (WillBeHeapListHashSet<RefPtrWillBeMember<Node> >::const_iterator it = hitResults.begin(); it != hitResults.end(); ++it) { // Ignore any Nodes that can't be clicked on. RenderObject* renderer = it->get()->renderer(); if (!renderer || !it->get()->willRespondToMouseClickEvents()) continue; // Blacklist all of the Node's containers. for (RenderBlock* container = renderer->containingBlock(); container; container = container->containingBlock()) { Node* containerNode = container->node(); if (!containerNode) continue; if (!blackList.add(containerNode).isNewEntry) break; } } WillBeHeapHashMap<RawPtrWillBeMember<Node>, TouchTargetData> touchTargets; float bestScore = 0; for (WillBeHeapListHashSet<RefPtrWillBeMember<Node> >::const_iterator it = hitResults.begin(); it != hitResults.end(); ++it) { for (Node* node = it->get(); node; node = node->parentNode()) { if (blackList.contains(node)) continue; if (node->isDocumentNode() || isHTMLHtmlElement(*node) || isHTMLBodyElement(*node)) break; if (node->willRespondToMouseClickEvents()) { TouchTargetData& targetData = touchTargets.add(node, TouchTargetData()).storedValue->value; targetData.windowBoundingBox = boundingBoxForEventNodes(node); targetData.score = scoreTouchTarget(touchPoint, touchPointPadding, targetData.windowBoundingBox); bestScore = std::max(bestScore, targetData.score); break; } } } for (WillBeHeapHashMap<RawPtrWillBeMember<Node>, TouchTargetData>::iterator it = touchTargets.begin(); it != touchTargets.end(); ++it) { // Currently the scoring function uses the overlap area with the fat point as the score. // We ignore the candidates that has less than 1/2 overlap (we consider not really ambiguous enough) than the best candidate to avoid excessive popups. if (it->value.score < bestScore * 0.5) continue; goodTargets.append(it->value.windowBoundingBox); highlightNodes.append(it->key); } }
LayoutRect RenderNamedFlowThread::decorationsClipRectForBoxInNamedFlowFragment(const RenderBox& box, RenderNamedFlowFragment& fragment) const { LayoutRect visualOverflowRect = fragment.visualOverflowRectForBox(&box); LayoutUnit initialLogicalX = style().isHorizontalWritingMode() ? visualOverflowRect.x() : visualOverflowRect.y(); // The visual overflow rect returned by visualOverflowRectForBox is already flipped but the // RenderRegion::rectFlowPortionForBox method expects it unflipped. flipForWritingModeLocalCoordinates(visualOverflowRect); visualOverflowRect = fragment.rectFlowPortionForBox(&box, visualOverflowRect); // Now flip it again. flipForWritingModeLocalCoordinates(visualOverflowRect); // Take the scrolled offset of this object's parents into consideration. IntSize scrolledContentOffset; RenderBlock* containingBlock = box.containingBlock(); while (containingBlock) { if (containingBlock->isRenderNamedFlowThread()) { // We've reached the flow thread, take the scrolled offset of the region into consideration. ASSERT(containingBlock == this); scrolledContentOffset += fragment.fragmentContainer().scrolledContentOffset(); break; } scrolledContentOffset += containingBlock->scrolledContentOffset(); containingBlock = containingBlock->containingBlock(); } if (!scrolledContentOffset.isZero()) { if (style().isFlippedBlocksWritingMode()) scrolledContentOffset = -scrolledContentOffset; visualOverflowRect.inflateX(scrolledContentOffset.width()); visualOverflowRect.inflateY(scrolledContentOffset.height()); } // Layers are in physical coordinates so the origin must be moved to the physical top-left of the flowthread. if (style().isFlippedBlocksWritingMode()) { if (style().isHorizontalWritingMode()) visualOverflowRect.moveBy(LayoutPoint(0, height())); else visualOverflowRect.moveBy(LayoutPoint(width(), 0)); } const RenderBox* iterBox = &box; while (iterBox && iterBox != this) { RenderBlock* containerBlock = iterBox->containingBlock(); // FIXME: This doesn't work properly with flipped writing modes. // https://bugs.webkit.org/show_bug.cgi?id=125149 if (iterBox->isPositioned()) { // For positioned elements, just use the layer's absolute bounding box. visualOverflowRect.moveBy(iterBox->layer()->absoluteBoundingBox().location()); break; } LayoutRect currentBoxRect = iterBox->frameRect(); if (iterBox->style().isFlippedBlocksWritingMode()) { if (iterBox->style().isHorizontalWritingMode()) currentBoxRect.setY(currentBoxRect.height() - currentBoxRect.maxY()); else currentBoxRect.setX(currentBoxRect.width() - currentBoxRect.maxX()); } if (containerBlock->style().writingMode() != iterBox->style().writingMode()) iterBox->flipForWritingMode(currentBoxRect); visualOverflowRect.moveBy(currentBoxRect.location()); iterBox = containerBlock; } // Since the purpose of this method is to make sure the borders of a fragmented // element don't overflow the region in the fragmentation direction, there's no // point in restricting the clipping rect on the logical X axis. // This also saves us the trouble of handling percent-based widths and margins // since the absolute bounding box of a positioned element would not contain // the correct coordinates relative to the region we're interested in, but rather // relative to the actual flow thread. if (style().isHorizontalWritingMode()) { if (initialLogicalX < visualOverflowRect.x()) visualOverflowRect.shiftXEdgeTo(initialLogicalX); if (visualOverflowRect.width() < frameRect().width()) visualOverflowRect.setWidth(frameRect().width()); } else { if (initialLogicalX < visualOverflowRect.y()) visualOverflowRect.shiftYEdgeTo(initialLogicalX); if (visualOverflowRect.height() < frameRect().height()) visualOverflowRect.setHeight(frameRect().height()); } return visualOverflowRect; }
static inline RenderBlock* firstContainingBlockWithLogicalWidth(const RenderReplaced* replaced) { // We have to lookup the containing block, which has an explicit width, which must not be equal to our direct containing block. // If the embedded document appears _after_ we performed the initial layout, our intrinsic size is 300x150. If our containing // block doesn't provide an explicit width, it's set to the 300 default, coming from the initial layout run. RenderBlock* containingBlock = replaced->containingBlock(); if (!containingBlock) return 0; for (; containingBlock && !is<RenderView>(*containingBlock) && !containingBlock->isBody(); containingBlock = containingBlock->containingBlock()) { if (containingBlock->style().logicalWidth().isSpecified()) return containingBlock; } return 0; }
void RenderView::setSelection(RenderObject *s, int sp, RenderObject *e, int ep) { // Make sure both our start and end objects are defined. // Check www.msnbc.com and try clicking around to find the case where this happened. if ((s && !e) || (e && !s)) return; // Just return if the selection hasn't changed. if (m_selectionStart == s && m_selectionStartPos == sp && m_selectionEnd == e && m_selectionEndPos == ep) return; // Record the old selected objects. These will be used later // when we compare against the new selected objects. int oldStartPos = m_selectionStartPos; int oldEndPos = m_selectionEndPos; // Objects each have a single selection rect to examine. typedef HashMap<RenderObject*, SelectionInfo*> SelectedObjectMap; SelectedObjectMap oldSelectedObjects; SelectedObjectMap newSelectedObjects; // Blocks contain selected objects and fill gaps between them, either on the left, right, or in between lines and blocks. // In order to get the repaint rect right, we have to examine left, middle, and right rects individually, since otherwise // the union of those rects might remain the same even when changes have occurred. typedef HashMap<RenderBlock*, BlockSelectionInfo*> SelectedBlockMap; SelectedBlockMap oldSelectedBlocks; SelectedBlockMap newSelectedBlocks; RenderObject* os = m_selectionStart; RenderObject* stop = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); while (os && os != stop) { if ((os->canBeSelectionLeaf() || os == m_selectionStart || os == m_selectionEnd) && os->selectionState() != SelectionNone) { // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. oldSelectedObjects.set(os, new SelectionInfo(os)); RenderBlock* cb = os->containingBlock(); while (cb && !cb->isRenderView()) { BlockSelectionInfo* blockInfo = oldSelectedBlocks.get(cb); if (blockInfo) break; oldSelectedBlocks.set(cb, new BlockSelectionInfo(cb)); cb = cb->containingBlock(); } } os = os->nextInPreOrder(); } // Now clear the selection. SelectedObjectMap::iterator oldObjectsEnd = oldSelectedObjects.end(); for (SelectedObjectMap::iterator i = oldSelectedObjects.begin(); i != oldObjectsEnd; ++i) i->first->setSelectionState(SelectionNone); // set selection start and end m_selectionStart = s; m_selectionStartPos = sp; m_selectionEnd = e; m_selectionEndPos = ep; // Update the selection status of all objects between m_selectionStart and m_selectionEnd if (s && s == e) s->setSelectionState(SelectionBoth); else { if (s) s->setSelectionState(SelectionStart); if (e) e->setSelectionState(SelectionEnd); } RenderObject* o = s; stop = rendererAfterPosition(e, ep); while (o && o != stop) { if (o != s && o != e && o->canBeSelectionLeaf()) o->setSelectionState(SelectionInside); o = o->nextInPreOrder(); } // Now that the selection state has been updated for the new objects, walk them again and // put them in the new objects list. o = s; while (o && o != stop) { if ((o->canBeSelectionLeaf() || o == s || o == e) && o->selectionState() != SelectionNone) { newSelectedObjects.set(o, new SelectionInfo(o)); RenderBlock* cb = o->containingBlock(); while (cb && !cb->isRenderView()) { BlockSelectionInfo* blockInfo = newSelectedBlocks.get(cb); if (blockInfo) break; newSelectedBlocks.set(cb, new BlockSelectionInfo(cb)); cb = cb->containingBlock(); } } o = o->nextInPreOrder(); } if (!m_frameView) return; // Have any of the old selected objects changed compared to the new selection? for (SelectedObjectMap::iterator i = oldSelectedObjects.begin(); i != oldObjectsEnd; ++i) { RenderObject* obj = i->first; SelectionInfo* newInfo = newSelectedObjects.get(obj); SelectionInfo* oldInfo = i->second; if (!newInfo || oldInfo->rect() != newInfo->rect() || oldInfo->state() != newInfo->state() || (m_selectionStart == obj && oldStartPos != m_selectionStartPos) || (m_selectionEnd == obj && oldEndPos != m_selectionEndPos)) { m_frameView->updateContents(oldInfo->rect()); if (newInfo) { m_frameView->updateContents(newInfo->rect()); newSelectedObjects.remove(obj); delete newInfo; } } delete oldInfo; } // Any new objects that remain were not found in the old objects dict, and so they need to be updated. SelectedObjectMap::iterator newObjectsEnd = newSelectedObjects.end(); for (SelectedObjectMap::iterator i = newSelectedObjects.begin(); i != newObjectsEnd; ++i) { SelectionInfo* newInfo = i->second; m_frameView->updateContents(newInfo->rect()); delete newInfo; } // Have any of the old blocks changed? SelectedBlockMap::iterator oldBlocksEnd = oldSelectedBlocks.end(); for (SelectedBlockMap::iterator i = oldSelectedBlocks.begin(); i != oldBlocksEnd; ++i) { RenderBlock* block = i->first; BlockSelectionInfo* newInfo = newSelectedBlocks.get(block); BlockSelectionInfo* oldInfo = i->second; if (!newInfo || oldInfo->rects() != newInfo->rects() || oldInfo->state() != newInfo->state()) { m_frameView->updateContents(oldInfo->rects()); if (newInfo) { m_frameView->updateContents(newInfo->rects()); newSelectedBlocks.remove(block); delete newInfo; } } delete oldInfo; } // Any new blocks that remain were not found in the old blocks dict, and so they need to be updated. SelectedBlockMap::iterator newBlocksEnd = newSelectedBlocks.end(); for (SelectedBlockMap::iterator i = newSelectedBlocks.begin(); i != newBlocksEnd; ++i) { BlockSelectionInfo* newInfo = i->second; m_frameView->updateContents(newInfo->rects()); delete newInfo; } }