Example #1
0
void PcInfo::dumpOnePoint(const Stage& stage) const
{
    const Schema& schema = stage.getSchema();

    PointBuffer data(schema, 1);
    
    boost::scoped_ptr<StageSequentialIterator> iter(stage.createSequentialIterator(data));
    iter->skip(m_pointNumber);

    const boost::uint32_t numRead = iter->read(data);
    if (numRead != 1)
    {
        std::ostringstream oss;
        oss << "problem reading point number " << m_pointNumber;
        throw app_runtime_error(oss.str());
    }

    boost::property_tree::ptree tree = data.toPTree();
   
    std::ostream& ostr = m_outputStream ? *m_outputStream : std::cout;

    boost::property_tree::ptree output;
    output.add_child("point", tree.get_child("0"));
    if (m_useXML)
        write_xml(ostr, output);
    else
        write_json(ostr, tree.get_child("0"));
        
    return;
}
Example #2
0
void PcInfo::dumpQuery(Stage const& stage, IndexedPointBuffer& data) const
{

    boost::char_separator<char> sep(SEPARATORS);
    tokenizer tokens(m_QueryPoint, sep);
    std::vector<double> values;
    for (tokenizer::iterator t = tokens.begin(); t != tokens.end(); ++t) {
        values.push_back(boost::lexical_cast<double>(*t));
    }
    
    if (values.size() < 2)
        throw app_runtime_error("--points must be two or three values");

    boost::scoped_ptr<StageSequentialIterator> iter(stage.createSequentialIterator(data));

    const boost::uint32_t numRead = iter->read(data);
    
    bool is3D(true);
    if (values.size() < 3) 
        is3D = false;

    data.build(is3D);

    Schema const& schema = data.getSchema();
    Dimension const& dimX = schema.getDimension("X");
    Dimension const& dimY = schema.getDimension("Y");
    Dimension const& dimZ = schema.getDimension("Z");

    double x = values[0];
    double y = values[1];
    
    double z(0.0);
    if (is3D)
        z = values[2];                
    
    boost::uint32_t count(m_numPointsToWrite);
    if (!m_numPointsToWrite)
        count = 1;
    
    double d(0.0);
    std::vector<std::size_t> ids = data.neighbors(x, y, z, d, count);
    
    PointBuffer response(data.getSchema(), count);
    typedef std::vector<std::size_t>::const_iterator Iterator;
    std::vector<std::size_t>::size_type pos(0);
    for (Iterator i = ids.begin(); i != ids.end(); ++i)
    {
        response.copyPointFast(pos, *i, data);
        response.setNumPoints(response.getNumPoints() + 1);
        pos++;
    }

    boost::property_tree::ptree tree = response.toPTree();
   
    std::ostream& ostr = m_outputStream ? *m_outputStream : std::cout;

    boost::property_tree::ptree output;
    output.add_child("point", tree);
    if (m_useXML)
        write_xml(ostr, output);
    else
        write_json(ostr, tree);
    
    return;
}
Example #3
0
int Delta::execute()
{

    Options sourceOptions;
    {
        sourceOptions.add<std::string>("filename", m_sourceFile);
        sourceOptions.add<bool>("debug", isDebug());
        sourceOptions.add<boost::uint32_t>("verbose", getVerboseLevel());
    }
    Stage* source = AppSupport::makeReader(sourceOptions);
    source->initialize();
    
    boost::uint32_t totalPointCount(source->getNumPoints());
    
    PointBuffer source_data(source->getSchema(), totalPointCount);
    StageSequentialIterator* source_iter = source->createSequentialIterator(source_data);

    boost::uint32_t  numRead = source_iter->read(source_data);
    assert(numRead == source_data.getNumPoints());

    delete source_iter;
    delete source;



    Options candidateOptions;
    {
        candidateOptions.add<std::string>("filename", m_candidateFile);
        candidateOptions.add<bool>("debug", isDebug());
        candidateOptions.add<boost::uint32_t>("verbose", getVerboseLevel());
    }

    Stage* candidate = AppSupport::makeReader(candidateOptions);

    candidate->initialize();    


    IndexedPointBuffer candidate_data(candidate->getSchema(), totalPointCount);
    StageSequentialIterator* candidate_iter = candidate->createSequentialIterator(candidate_data);

    numRead = candidate_iter->read(candidate_data);
    assert(numRead == candidate_data.getNumPoints());
        
    delete candidate_iter;    


    if (source_data.getNumPoints() != candidate_data.getNumPoints())
    {
        std::cerr << "Source and candidate files do not have the same point count, testing each source point only!" << std::endl;
    }
    

    // m_summary_x(xd);
    // m_summary_y(yd);
    // m_summary_z(zd);

    if (m_outputFileName.size())
    {
        m_outputStream = FileUtils::createFile(m_outputFileName);
    }

    candidate_data.build(m_3d);
    boost::uint32_t count(std::min(source_data.getNumPoints(), candidate_data.getNumPoints()));
    


    boost::scoped_ptr<std::map<Point, Point> > points(cumulatePoints(source_data, candidate_data));
    if (m_OutputDetail)
    {
        outputDetail(source_data, candidate_data, points.get());
        return 0;
    }
    
    std::map<Point, Point>::const_iterator i;
    for(i = points->begin(); i != points->end(); ++i)
    {
        Point const& s = i->first;
        Point const& c = i->second;

        double xd = s.x - c.x;
        double yd = s.y - c.y;
        double zd = s.z - c.z;        
        m_summary_x(xd);
        m_summary_y(yd);
        m_summary_z(zd);        
    }
    
    std::string headline("------------------------------------------------------------------------------------------");
    std::cout << headline << std::endl;
    std::cout << " Delta summary for source '" << m_sourceFile << "' and candidate '" << m_candidateFile <<"'" << std::endl;
    std::cout << headline << std::endl;
    std::cout << std::endl;
    
    std::string thead("----------- --------------- --------------- --------------");
    std::cout << thead << std::endl;
    std::cout << " Dimension       X             Y                  Z    " << std::endl;
    std::cout << thead << std::endl;
    
    boost::format fmt("%.4f");
    double sminx  = (boost::accumulators::min)(m_summary_x);
    double sminy  = (boost::accumulators::min)(m_summary_y);
    double sminz  = (boost::accumulators::min)(m_summary_z);
    double smaxx  = (boost::accumulators::max)(m_summary_x);
    double smaxy  = (boost::accumulators::max)(m_summary_y);
    double smaxz  = (boost::accumulators::max)(m_summary_z);
    
    double smeanx  = (boost::accumulators::mean)(m_summary_x);
    double smeany  = (boost::accumulators::mean)(m_summary_y);
    double smeanz  = (boost::accumulators::mean)(m_summary_z);
    
    std::cout << " Min        " << fmt % sminx << "            " << fmt % sminy << "            " << fmt % sminz<<std::endl;
    std::cout << " Min        " << fmt % smaxx << "            " << fmt % smaxy << "            " << fmt % smaxz<<std::endl;
    std::cout << " Mean       " << fmt % smeanx << "            " << fmt % smeany << "            " << fmt % smeanz<<std::endl;
    std::cout << thead << std::endl;
    
    return 0;
}