Example #1
0
void pvlOut(Statistics stats1, Statistics stats2, QString name, int start,
            int end, PvlObject *one, PvlObject *two) {
  PvlGroup left(name);
  left += PvlKeyword("StartLine", toString(start + 1));
  left += PvlKeyword("EndLine", toString(end));
  left += PvlKeyword("TotalPixels", toString(stats1.TotalPixels()));
  left += PvlKeyword("ValidPixels", toString(stats1.ValidPixels()));
  if(stats1.ValidPixels() > 0) {
    left += PvlKeyword("Mean", toString(stats1.Average()));
    left += PvlKeyword("StandardDeviation", toString(stats1.StandardDeviation()));
    left += PvlKeyword("Minimum", toString(stats1.Minimum()));
    left += PvlKeyword("Maximum", toString(stats1.Maximum()));
  }
  one->addGroup(left);

  PvlGroup right(name);
  right += PvlKeyword("StartLine", toString(start + 1));
  right += PvlKeyword("EndLine", toString(end));
  right += PvlKeyword("TotalPixels", toString(stats2.TotalPixels()));
  right += PvlKeyword("ValidPixels", toString(stats2.ValidPixels()));
  if(stats2.ValidPixels() > 0) {
    right += PvlKeyword("Mean", toString(stats2.Average()));
    right += PvlKeyword("StandardDeviation", toString(stats2.StandardDeviation()));
    right += PvlKeyword("Minimum", toString(stats2.Minimum()));
    right += PvlKeyword("Maximum", toString(stats2.Maximum()));
  }
  two->addGroup(right);
}
Example #2
0
// translate the code once it is found
void TranslateCode() {
  // read the code from the image
  Chip chip(8*RADIUS, 64*RADIUS);
  chip.TackCube(codeSample+3*RADIUS, codeLine+31*RADIUS);
  chip.Load(cube);
  for (int j=0; j<32; j++) {
    for (int i=0; i<4; i++) {
      Statistics stats;
      // Get the average of the subchip
      for (int x=1; x<=2*RADIUS; x++) {
        for (int y=1; y<=2*RADIUS; y++) {
          stats.AddData(chip.GetValue(i*2*RADIUS + x,j*2*RADIUS + y));
        }
      }
      // see if it is on or off
      if (stats.Average() > 20000)
        code[i][31-j] = true;
      else code[i][31-j] = false;
    }
  }
  
  for (int j=0; j<32; j++) {
    for (int i=0; i<4; i++) {
    }
  }
}
Example #3
0
int main() {
  Isis::Preference::Preferences(true);
  cerr << "GroupedStatistics unitTest!!!\n\n";

  // test constructor
  cerr << "testing constructor...\n\n";
  GroupedStatistics *groupedStats = new GroupedStatistics();

  // test AddStatistic
  cerr << "testing AddStatistic...\n\n";
  groupedStats->AddStatistic("Height", 71.5);

  // test copy constructor
  cerr << "testing copy constructor...\n\n";
  GroupedStatistics *groupedStats2 = new GroupedStatistics(*groupedStats);

  // test GetStatistics
  cerr << "testing GetStatistics...\n";
  Statistics stats = groupedStats2->GetStatistics("Height");
  cerr << "    " << stats.Average() << "\n\n";

  // test GetStatisticTypes
  cerr << "testing GetStatisticTypes...\n";
  QVector< QString > statTypes = groupedStats->GetStatisticTypes();
  for(int i = 0; i < statTypes.size(); i++)
    cerr << "    " << statTypes[i].toStdString() << "\n";
  cerr << "\n";

  // test destructor
  delete groupedStats;
  delete groupedStats2;

  return 0;
}
Example #4
0
/**
 * @brief Compute the initial guess of the fit
 *
 * This method provides the non-linear fit with an initial guess of the
 * solution.  It involves a linear fit to the latter half of the data to
 * provide the first two coefficents, the difference of the averages of the
 * residuals at both ends of the data set and 5 times the last line time as
 * the final (fourth) element...a bit involved really.
 *
 * @return NLVector  4-element vector of the initial guess coefficients
 */
NonLinearLSQ::NLVector DriftCorrect::guess()  {
    int n = _data.dim();
    int nb = n - _badLines;

    HiVector b1 = _data.subarray(0, nb-1);
    LowPassFilterComp gfilter(b1, _history, _sWidth, _sIters);

    int nb2 = nb/2;
    _b2 = gfilter.ref();
    HiVector cc = poly_fit(_b2.subarray(nb2,_b2.dim()-1), nb2-1);

    //  Compute the 3rd term guess by getting the average of the residual
    //  at both ends of the data set.
    Statistics s;

    //  Get the head of the data set
    int n0 = MIN(nb, 20);
    for ( int k = 0 ; k < n0 ; k++ ) {
        double d = _b2[k] - (cc[0] + cc[1] * _timet(k));
        s.AddData(&d, 1);
    }
    double head = s.Average();

    //  Get the tail of the data set
    s.Reset();
    n0 = (int) (0.9 * nb);
    for ( int l = n0 ; l < nb ; l++ ) {
        double d = _b2[l] - (cc[0] + cc[1] * _timet(l));
        s.AddData(&d, 1);
    }
    double tail = s.Average();

    //  Populate the guess with the results
    NLVector g(4, 0.0);
    g[0] = cc[0];
    g[1] = cc[1];
    g[2] = head-tail;
    g[3] = -5.0/_timet(nb-1);
    _guess = g;
    _history.add("Guess["+ToString(_guess[0])+ ","+
                 ToString(_guess[1])+ ","+
                 ToString(_guess[2])+ ","+
                 ToString(_guess[3])+ "]");
    return (g);
}
Example #5
0
/**
 * This method performs pass1 on one image. It analyzes each framelet's
 * statistics and populates the necessary global variable.
 *
 * @param progress Progress message
 * @param theCube Current cube that needs processing
 *
 * @return bool True if the file contains a valid framelet
 */
bool CheckFramelets(string progress, Cube &theCube) {
    bool foundValidFramelet = false;
    LineManager mgr(theCube);
    Progress prog;
    prog.SetText(progress);
    prog.SetMaximumSteps(theCube.Lines());
    prog.CheckStatus();

    vector<double> frameletAvgs;
    // We need to store off the framelet information, because if no good
    //   framelets were found then no data should be added to the
    //   global variable for framelets, just files.
    vector< pair<int,double> > excludedFrameletsTmp;
    Statistics frameletStats;

    for(int line = 1; line <= theCube.Lines(); line++) {
        if((line-1) % numFrameLines == 0) {
            frameletStats.Reset();
        }

        mgr.SetLine(line);
        theCube.Read(mgr);
        frameletStats.AddData(mgr.DoubleBuffer(), mgr.size());

        if((line-1) % numFrameLines == numFrameLines-1) {
            if(IsSpecial(frameletStats.StandardDeviation()) ||
                    frameletStats.StandardDeviation() > maxStdev) {
                excludedFrameletsTmp.push_back(
                    pair<int,double>((line-1)/numFrameLines, frameletStats.StandardDeviation())
                );
            }
            else {
                foundValidFramelet = true;
            }

            frameletAvgs.push_back(frameletStats.Average());
        }

        prog.CheckStatus();
    }

    inputFrameletAverages.push_back(frameletAvgs);

    if(foundValidFramelet) {
        for(unsigned int i = 0; i < excludedFrameletsTmp.size(); i++) {
            excludedFramelets.insert(pair< pair<int,int>, double>(
                                         pair<int,int>(currImage, excludedFrameletsTmp[i].first),
                                         excludedFrameletsTmp[i].second
                                     )
                                    );
        }

    }

    return foundValidFramelet;
}
Example #6
0
void HiImageClean::cimage_dark() {

// Combine calibration region
  std::vector<H2DBuf> blobs;
  blobs.push_back(_caldark);
  blobs.push_back(_ancdark);
  H2DBuf dark = appendLines(blobs);


  int nsamples(dark.dim2());
  int nlines(dark.dim1());

  // Compute averages for the mask area
  int firstDark(4);
  int ndarks(dark.dim2()-firstDark);
  _predark = H1DBuf(nlines);
  for (int line = 0 ; line < nlines ; line++) {
    Statistics darkave;
    darkave.AddData(&dark[line][firstDark], ndarks);
    _predark[line] = darkave.Average();
  }

  // Get statistics to determine state of mask and next course of action
  _darkStats.Reset();
  _darkStats.AddData(&_predark[0], _predark.dim1());
  if (_darkStats.ValidPixels() <= 0) {
    std::ostringstream mess;
    mess << "No valid pixels in calibration/ancillary dark regions, " 
         << "binning = " << _binning << std::ends;
    throw(iException::Message(iException::Programmer,mess.str(),_FILEINFO_));
  }

  //  Now apply a smoothing filter
  QuickFilter smooth(_predark.dim1(), _filterWidth, 1);
  smooth.AddLine(&_predark[0]);
  nsamples = smooth.Samples();
  _dark = H1DBuf(nsamples);
  for (int s = 0 ; s < nsamples ; s++) {
    _dark[s] = smooth.Average(s);
  }

  // Now apply to all calibration data
  BigInt nbad(0);
  _calimg  = row_apply(_calimg,  _dark,               0, nbad, 1.0);
  _calbuf  = row_apply(_calbuf,  _dark,               0, nbad, 1.0);
  _caldark = row_apply(_caldark, _dark,               0, nbad, 1.0);
  _ancbuf  = row_apply(_ancbuf,  _dark, _firstImageLine, nbad, 1.0);
  _ancdark = row_apply(_ancdark, _dark, _firstImageLine, nbad, 1.0);
  return;
}
Example #7
0
void gatherAverages(Buffer &in) {
  Statistics lineStats;
  lineStats.AddData(in.DoubleBuffer(), in.size());

  double average = lineStats.Average();

  lineAverages[in.Band() - 1][in.Line() - 1] = average;

  // The cube average will finish being calculated before the correction is applied.
  if(!IsSpecial(average)) {
    cubeAverage[in.Band() - 1] += average;
  }
  else {
	numIgnoredLines ++;
  }
}
Example #8
0
// Return a PVL group containing the statistical information
PvlGroup PvlStats(Statistics &stats, const QString &name) {
  // Construct a label with the results
  PvlGroup results(name);
  if(stats.ValidPixels() != 0) {
    results += PvlKeyword("Average", toString(stats.Average()));
    results += PvlKeyword("StandardDeviation", toString(stats.StandardDeviation()));
    results += PvlKeyword("Variance", toString(stats.Variance()));
    results += PvlKeyword("Minimum", toString(stats.Minimum()));
    results += PvlKeyword("Maximum", toString(stats.Maximum()));
  }
  results += PvlKeyword("TotalPixels", toString(stats.TotalPixels()));
  results += PvlKeyword("ValidPixels", toString(stats.ValidPixels()));
  results += PvlKeyword("NullPixels", toString(stats.NullPixels()));
  results += PvlKeyword("LisPixels", toString(stats.LisPixels()));
  results += PvlKeyword("LrsPixels", toString(stats.LrsPixels()));
  results += PvlKeyword("HisPixels", toString(stats.HisPixels()));
  results += PvlKeyword("HrsPixels", toString(stats.HrsPixels()));
  return results;
}
Example #9
0
void IsisMain() {

  Preference::Preferences(true);

  ProcessImportVicar p;
  Pvl vlab;
  p.SetVicarFile("unitTest.img", vlab);
  p.SetOutputCube("TO");
  p.StartProcess();
  p.EndProcess();

  cout << vlab << endl;
  Process p2;
  CubeAttributeInput att;
  QString file = Application::GetUserInterface().GetFileName("TO");
  Cube *icube = p2.SetInputCube(file, att);
  Statistics *stat = icube->statistics();
  cout << stat->Average() << endl;
  cout << stat->Variance() << endl;
  p2.EndProcess();
  QFile::remove(file);
}
Example #10
0
//**********************************************************
// DOUSER - Get statistics on a column or row of pixels
//**********************************************************
void getStats(Buffer &in) {
  Statistics stats;
  stats.AddData(in.DoubleBuffer(), in.size());

  band.push_back(in.Band());
  element.push_back(in.Sample());

  // Sort the input buffer
  vector<double> pixels;
  for(int i = 0; i < in.size(); i++) {
    if(IsValidPixel(in[i])) pixels.push_back(in[i]);
  }
  sort(pixels.begin(), pixels.end());

  // Now obtain the median value and store in the median vector
  int size = pixels.size();
  if(size != 0) {
    int med = size / 2;
    if(size % 2 == 0) {
      median.push_back((pixels[med-1] + pixels[med]) / 2.0);
    }
    else {
      median.push_back(pixels[med]);
    }
  }
  else {
    median.push_back(Isis::Null);
  }

  // Store the statistics in the appropriate vectors
  average.push_back(stats.Average());
  stddev.push_back(stats.StandardDeviation());
  validpixels.push_back(stats.ValidPixels());
  minimum.push_back(stats.Minimum());
  maximum.push_back(stats.Maximum());
}
Example #11
0
//function to write the stats values to flat file
void writeFlat (ofstream &os, Statistics &s){
  os << ValidateValue(s.Minimum())<<","<<
        ValidateValue(s.Maximum())<<","<<
        ValidateValue(s.Average())<<","<<
        ValidateValue(s.StandardDeviation())<<",";
}
Example #12
0
void HiImageClean::cimage_mask() {

// Combine calibration region
  std::vector<H2DBuf> blobs;
  blobs.push_back(_calbuf);
  blobs.push_back(_calimg);
  blobs.push_back(_caldark);
  H2DBuf calibration = appendSamples(blobs);

// Set the mask depending on the binning mode
  _firstMaskLine = 20;
  _lastMaskLine = 39;
  switch (_binning) {
    case 1:
      _firstMaskLine = 21;
      _lastMaskLine = 38;
      break;
    case 2:
      _firstMaskLine = 21;
      _lastMaskLine = 29;
      break;
    case 3:
      _firstMaskLine = 21;
      _lastMaskLine = 26;
      break;
    case 4:
      _firstMaskLine = 21;
      _lastMaskLine = 24;
      break;
    case 8:
      _firstMaskLine = 21;
      _lastMaskLine = 22;
      break;
    case 16:
      _firstMaskLine = 21;
      _lastMaskLine = 21;
      break;
    default:
      std::ostringstream msg;
      msg << "Invalid binning mode (" << _binning 
          << ") - valid are 1-4, 8 and 16" << std::ends;
      throw(iException::Message(iException::Programmer,msg.str(),_FILEINFO_));
  }

  //  Initialize lines and samples of mask area of interest
  int nsamples(calibration.dim2());
  int nlines(_lastMaskLine - _firstMaskLine + 1);

  // Compute averages for the mask area
  _premask = H1DBuf(nsamples);
  for (int samp = 0 ; samp < nsamples; samp++) {
    H1DBuf maskcol = slice(calibration, samp);
    Statistics maskave;
    maskave.AddData(&maskcol[_firstMaskLine], nlines);
    _premask[samp] = maskave.Average();
  }
  _mask = _premask.copy();

  // Get statistics to determine state of mask and next course of action
  _maskStats.Reset();
  _maskStats.AddData(&_premask[0], nsamples);
  if (_maskStats.ValidPixels() <= 0) {
    std::ostringstream mess;
    mess << "No valid pixels in calibration mask region in lines " 
         << (_firstMaskLine+1) << " to " << (_lastMaskLine+1) << ", binning = "
         << _binning << std::ends;
    throw(iException::Message(iException::Programmer,mess.str(),_FILEINFO_));
  }

  //  If there are any missing values, replace with mins/maxs of region
  if (_maskStats.TotalPixels() != _maskStats.ValidPixels()) {
    for (int samp = 0 ; samp < nsamples ; samp++) {
      if (Pixel::IsLow(_premask[samp]) || Pixel::IsNull(_premask[samp])) {
        _mask[samp] = _maskStats.Minimum();
      }
      else if (Pixel::IsHigh(_premask[samp])) {
        _mask[samp] = _maskStats.Maximum();
      }
    }
  }

  // Now apply to all calibration data
  BigInt nbad(0);
  _calimg  = column_apply(_calimg,  _mask, _firstImageSample,  nbad, 1.0);
  _calbuf  = column_apply(_calbuf,  _mask, _firstBufferSample, nbad, 1.0);
  _caldark = column_apply(_caldark, _mask, _firstDarkSample,   nbad, 1.0);
  _ancbuf  = column_apply(_ancbuf,  _mask, _firstBufferSample, nbad, 1.0);
  _ancdark = column_apply(_ancdark, _mask, _firstDarkSample,   nbad, 1.0);
  return;
}
Example #13
0
/**
 * This calculates the coefficients for specific energy corrections
 */
void calculateSpecificEnergy(Cube *icube) {
  PvlGroup &inst = icube->label()->findGroup("Instrument", Pvl::Traverse);
  bool vis = (inst["Channel"][0] != "IR");

  double coefficient = 1.0;

  if(inst["GainMode"][0] == "HIGH") {
    coefficient /= 2;
  }

  if(vis && inst["SamplingMode"][0] == "HI-RES") {
    coefficient *= 3;
  }

  if(vis) {
    coefficient /= toDouble(inst["ExposureDuration"][1]) / 1000.0;
  }
  else {
    coefficient /= (toDouble(inst["ExposureDuration"][0]) * 1.01725) / 1000.0 - 0.004;
  }

  QString specEnergyFile = "$cassini/calibration/vims/";

  if(vis) {
    specEnergyFile += "vis_perf_v????.cub";
  }
  else {
    specEnergyFile += "ir_perf_v????.cub";
  }

  QString waveCalFile = "$cassini/calibration/vims/wavecal_v????.cub";

  FileName specEnergyFileName(specEnergyFile);
  specEnergyFileName = specEnergyFileName.highestVersion();

  FileName waveCalFileName(waveCalFile);
  waveCalFileName = waveCalFileName.highestVersion();

  Cube specEnergyCube;
  specEnergyCube.open(specEnergyFileName.expanded());

  Cube waveCalCube;
  waveCalCube.open(waveCalFileName.expanded());

  LineManager specEnergyMgr(specEnergyCube);
  LineManager waveCalMgr(waveCalCube);

  for(int i = 0; i < icube->bandCount(); i++) {
    Statistics specEnergyStats;
    Statistics waveCalStats;

    if(vis) {
      specEnergyMgr.SetLine(1, i + 1);
      waveCalMgr.SetLine(1, i + 1);
    }
    else {
      specEnergyMgr.SetLine(1, i + 1);
      // ir starts at band 97
      waveCalMgr.SetLine(1, i + 96 + 1);
    }

    specEnergyCube.read(specEnergyMgr);
    waveCalCube.read(waveCalMgr);

    specEnergyStats.AddData(specEnergyMgr.DoubleBuffer(), specEnergyMgr.size());
    waveCalStats.AddData(waveCalMgr.DoubleBuffer(), waveCalMgr.size());

    double bandCoefficient = coefficient * specEnergyStats.Average() * waveCalStats.Average();

    specificEnergyCorrections.push_back(bandCoefficient);
  }
}
Example #14
0
// Main Program
void IsisMain() {

  UserInterface &ui = Application::GetUserInterface();
  Isis::FileName fromFile = ui.GetFileName("FROM");

  Isis::Cube inputCube;
  inputCube.open(fromFile.expanded());

  //Check to make sure we got the cube properly
  if(!inputCube.isOpen()) {
    QString msg = "Could not open FROM cube" + fromFile.expanded();
    throw IException(IException::User, msg, _FILEINFO_);
  }

  ProcessByLine processByLine;
  Cube *icube = processByLine.SetInputCube("FROM");
  int totalSamples = icube->sampleCount();

  //We'll be going through the cube by line, manually differentiating
  // between phases
  Isis::LineManager lineManager(inputCube);
  lineManager.begin();


  Table hifix("HiRISE Ancillary");
  int channel = icube->group("Instrument")["ChannelNumber"];

  if(channel == 0) {
    phases = channel0Phases;
  }
  else {
    phases = channel1Phases;
  }
  int binning_mode = icube->group("Instrument")["Summing"];
  if(binning_mode != 1 && binning_mode != 2) {
    /*IString msg = "You may only use input with binning mode 1 or 2, not";
    msg += binning_mode;
    throw iException::Message(iException::User, msg, _FILEINFO_);*/
    DestripeForOtherBinningModes(totalSamples);
  }
  else {
    //Adjust phase breaks based on the binning mode
    for(int i = 0 ; i < num_phases ; i++) {
      phases[i] /= binning_mode;
    }

    //Phases must be able to stretch across the entire cube
    if(totalSamples != phases[3]) {
      QString required_samples(phases[3]);
      QString bin_QString(binning_mode);
      QString msg = "image must have exactly ";
      msg += required_samples;
      msg += " samples per line for binning mode ";
      msg += bin_QString;
      throw IException(IException::User, msg, _FILEINFO_);
    }

    //Index starts at 1 and will go up to totalLines. This must be done since
    // lines go into different statistics vectors based on their index
    myIndex = 1;
    processByLine.StartProcess(getStats);

    //This program is trying to find horizontal striping in the image that occurs
    // in every other line, but at runtime we do not know whether that striping
    // occurs on the odd numbered lines (1, 3, 5, etc.) or the even numbered
    // ones (2, 4, 6, etc.). The below algorithm determines which of these is the
    // case.

    QString parity = ui.GetString("PARITY");
    if(parity == "EVEN") {
      offset = 1;
    }
    else if(parity == "ODD") {
      offset = 0;
    }
    else {
      //PRECONDITION: getStats must have been run
      long double maxDiff = 0;
      int maxDiffIndex = 0;
      for(int i = 0 ; i < num_phases ; i++) {
        long double thisDiff;
        thisDiff = lineStats[i].Average() - stats.Average();
        if(thisDiff < 0) {
          thisDiff *= -1;
        }
        if(thisDiff > maxDiff) {
          maxDiff = thisDiff;
          maxDiffIndex = i;
        }
      }
      if(maxDiffIndex == 1 || maxDiffIndex == 3) {
        offset = 1;
      }
      else {
        offset = 0;
      }
    }

    //Again we must reset the index, because we apply corrections only on every
    // other line and the fix processing function has no concept of where it is
    // in the cube.
    myIndex = 1;

    mode = (ui.GetString("CORRECTION") == "MULTIPLY");

    processByLine.SetOutputCube("TO");
    processByLine.StartProcess(fix);
    processByLine.EndProcess();
  }
}
Example #15
0
/**
 * This method is the pass 2 processing routine. A ProcessByBrick
 * will call this method for sets of data (depending on the camera
 * type) and this method is responsible for writing the entire output
 * temporary cube.
 *
 * @param in Input raw image data, not including excluded files
 */
void CreateTemporaryData(Buffer &in) {
    /**
     * Line scan cameras process by frame columns.
     */
    if(cameraType == LineScan) {
        // The statistics of every column of data need to be known
        //   before we can write to the temp file. Gather stats for this
        //   column.
        Statistics inputColStats;

        for(int i = 0; i < in.size(); i++) {
            inputColStats.AddData(in[i]);

            // We'll also need the stats for the entire frame in order to
            //   normalize and in order to decide whether or not we want
            //   to toss out the frame
            inputFrameStats.AddData(in[i]);
        }

        // Store off the column stats
        outputTmpAverages[in.Sample()-1] = inputColStats.Average();
        outputTmpCounts[in.Sample()-1] = inputColStats.ValidPixels();

        // Test if this is the last column and we've got all of our stats
        if(in.Sample() == numOutputSamples) {
            // Decide if we want this data
            if(IsSpecial(inputFrameStats.StandardDeviation()) ||
                    inputFrameStats.StandardDeviation() > maxStdev) {
                // We don't want this data...
                //   CreateNullData is a helper method for this case that
                //   nulls out the stats
                CreateNullData();

                // Record the exclusion
                PvlGroup currExclusion("ExcludedLines");
                currExclusion += PvlKeyword("FrameStartLine", iString(in.Line()));
                currExclusion += PvlKeyword("ValidPixels", iString(inputFrameStats.ValidPixels()));

                if(!IsSpecial(inputFrameStats.StandardDeviation()))
                    currExclusion += PvlKeyword("StandardDeviation", inputFrameStats.StandardDeviation());
                else
                    currExclusion += PvlKeyword("StandardDeviation", "N/A");

                excludedDetails[excludedDetails.size()-1].AddGroup(currExclusion);
            }

            // Let's write our data... CreateNullData took care of nulls for us
            // Band 1 is our normalized average
            oLineMgr->SetLine(oLineMgr->Line(),1);
            for(int i = 0; i < (int)outputTmpAverages.size(); i++) {
                if(!IsSpecial(outputTmpAverages[i])) {
                    (*oLineMgr)[i] = outputTmpAverages[i] / inputFrameStats.Average();
                }
                else {
                    (*oLineMgr)[i] = Isis::Null;
                }
            }

            ocube->Write(*oLineMgr);
            oLineMgr->SetLine(oLineMgr->Line(),2);

            // band 2 is our valid dn counts
            for(int i = 0; i < (int)outputTmpCounts.size(); i++) {
                (*oLineMgr)[i] = outputTmpCounts[i];
                numInputDns[i] += (int)(outputTmpCounts[i] + 0.5);
            }

            ocube->Write(*oLineMgr);
            (*oLineMgr) ++;

            inputFrameStats.Reset();
        }
    }
    else if(cameraType == Framing || cameraType == PushFrame) {
        // Framing cameras and push frames are treated identically;
        //   the framelet size for a framelet in the framing camera
        //   is the entire image!
        int framelet = (in.Line()-1) / numFrameLines;
        double stdev;
        bool excluded = Excluded(currImage, framelet, stdev);

        if(excluded && ((in.Line()-1) % numFrameLines == 0)) {
            PvlGroup currExclusion("ExcludedFramelet");
            currExclusion += PvlKeyword("FrameletStartLine", iString(in.Line()));
            currExclusion += PvlKeyword("FrameletNumber", (in.Line()-1) / numFrameLines);

            if(!IsSpecial(stdev)) {
                currExclusion += PvlKeyword("StandardDeviation",
                                            stdev);
            }
            else {
                currExclusion += PvlKeyword("StandardDeviation",
                                            "N/A");
            }

            excludedDetails[excludedDetails.size()-1].AddGroup(currExclusion);
        }

        // Since this is a line by line iterative process, we need to get the current
        //   data in the temp file
        oLineMgr->SetLine(((in.Line() - 1) % numFrameLines) + 1, 1);

        if(!excluded || !cubeInitialized) {
            ocube->Read(*oLineMgr);
        }

        if(!cubeInitialized) {
            for(int i = 0; i < oLineMgr->size(); i++) {
                (*oLineMgr)[i] = Isis::Null;
            }
        }

        vector<bool> isValidData;

        if(!excluded || !cubeInitialized) {
            isValidData.resize(in.size());

            for(int samp = 0; samp < in.size(); samp++) {
                if(IsSpecial((*oLineMgr)[samp]) && !IsSpecial(in[samp])) {
                    (*oLineMgr)[samp] = 0.0;
                }

                if(!IsSpecial(in[samp])) {
                    isValidData[samp] = true;
                    (*oLineMgr)[samp] += in[samp] / inputFrameletAverages[currImage][framelet];
                }
                else {
                    isValidData[samp] = false;
                }
            }
        }

        if(!excluded || !cubeInitialized) {
            ocube->Write(*oLineMgr);
        }

        oLineMgr->SetLine(oLineMgr->Line(), 2);

        if(!excluded || !cubeInitialized) {
            ocube->Read(*oLineMgr);
        }

        if(!cubeInitialized) {
            for(int i = 0; i < oLineMgr->size(); i++) {
                (*oLineMgr)[i] = Isis::Null;
            }

            if(ocube->Lines() == oLineMgr->Line())
                cubeInitialized = true;
        }

        if(!excluded || !cubeInitialized) {
            for(int i = 0; i < (int)isValidData.size(); i++) {
                if(IsSpecial((*oLineMgr)[i])) {
                    (*oLineMgr)[i] = 0.0;
                }

                if(isValidData[i]) {
                    (*oLineMgr)[i] ++;
                }
            }
        }

        if(!excluded || !cubeInitialized) {
            ocube->Write(*oLineMgr);
        }
    }
}
Example #16
0
/** The ISIS smtk main application */
void IsisMain() {
  UserInterface &ui = Application::GetUserInterface();

  // Open the first cube.  It is the left hand image.
  Cube lhImage;
  CubeAttributeInput &attLeft = ui.GetInputAttribute("FROM");
  vector<QString> bandLeft = attLeft.bands();
  lhImage.setVirtualBands(bandLeft);
  lhImage.open(ui.GetFileName("FROM"),"r");

  // Open the second cube, it is geomertricallty altered.  We will be matching the
  // first to this one by attempting to compute a sample/line offsets
  Cube rhImage;
  CubeAttributeInput &attRight = ui.GetInputAttribute("MATCH");
  vector<QString> bandRight = attRight.bands();
  rhImage.setVirtualBands(bandRight);
  rhImage.open(ui.GetFileName("MATCH"),"r");

  // Ensure only single bands
  if (lhImage.bandCount() != 1 || rhImage.bandCount() != 1) {
    QString msg = "Input Cubes must have only one band!";
    throw IException(IException::User,msg,_FILEINFO_);
  }

  //  Both images must have a Camera and can also have a Projection.  We will
  //  only deal with a Camera, however as a projected, non-mosaicked image
  //  uses a Projection internal to the Camera object.
  Camera *lhCamera = NULL;
  Camera *rhCamera = NULL;
  try {
    lhCamera = lhImage.camera();
    rhCamera = rhImage.camera();
  }
  catch (IException &ie) {
    QString msg = "Both input images must have a camera";
    throw IException(ie, IException::User, msg, _FILEINFO_);
  }

  //  Since we are generating a DEM, we must turn off any existing
  //  DEM that may have been initialized with spiceinit.
  lhCamera->IgnoreElevationModel(true);
  rhCamera->IgnoreElevationModel(true);

  // Get serial number
  QString serialLeft = SerialNumber::Compose(lhImage, true);
  QString serialRight = SerialNumber::Compose(rhImage, true);

//  This still precludes band to band registrations.
  if (serialLeft == serialRight) {
    QString sLeft = FileName(lhImage.fileName()).name();
    QString sRight = FileName(rhImage.fileName()).name();
    if (sLeft == sRight) {
      QString msg = "Cube Serial Numbers must be unique - FROM=" + serialLeft +
                   ", MATCH=" + serialRight;
      throw IException(IException::User,msg,_FILEINFO_);
    }
    serialLeft = sLeft;
    serialRight = sRight;
  }

  Progress prog;
  prog.SetText("Finding Initial Seeds");

  int nl = lhImage.lineCount();
  int ns = lhImage.sampleCount();
  BigInt numAttemptedInitialPoints = 0;

  //  Declare Gruen matcher
  SmtkMatcher matcher(ui.GetFileName("REGDEF"), &lhImage, &rhImage);

  // Get line/sample linc/sinc parameters
  int space   = ui.GetInteger("SPACE");
  int linc (space), sinc(space);

  // Do we have a seed points from a control net file?
  bool useseed = ui.WasEntered("CNET");

  // Base points on an input cnet
  SmtkQStack gstack;
  double lastEigen(0.0);
  if (useseed) {
    ControlNet cnet(ui.GetFileName("CNET"));
    prog.SetMaximumSteps(cnet.GetNumPoints());
    prog.CheckStatus();

    gstack.reserve(cnet.GetNumPoints());

    for (int cpIndex = 0; cpIndex < cnet.GetNumPoints(); cpIndex ++) {
      ControlPoint *cp = cnet.GetPoint(cpIndex);

      if (!cp->IsIgnored()) {
        ControlMeasure *cmLeft(0), *cmRight(0);
        for(int cmIndex = 0; cmIndex < cp->GetNumMeasures(); cmIndex ++) {
          ControlMeasure *cm = cp->GetMeasure(cmIndex);
          if (!cm->IsIgnored()) {
            if (cm->GetCubeSerialNumber() == serialLeft)
              cmLeft = cp->GetMeasure(cmIndex);
            if (cm->GetCubeSerialNumber() == serialRight)
              cmRight = cp->GetMeasure(cmIndex);
          }
        }

        //  If we have both left and right images in the control point, save it
        if ( (cmLeft != 0) && (cmRight != 0) ) {
          Coordinate left = Coordinate(cmLeft->GetLine(), cmLeft->GetSample());
          Coordinate right = Coordinate(cmRight->GetLine(), cmRight->GetSample());
          SmtkPoint spnt = matcher.Create(left, right);

          // Insert the point (unregistered)
          if ( spnt.isValid() ) {
            int line = (int) cmLeft->GetLine();
            int samp = (int) cmLeft->GetSample();
            matcher.isValid(spnt);
            gstack.insert(qMakePair(line, samp), spnt);
            lastEigen = spnt.GoodnessOfFit();
          }
        }
      }

      prog.CheckStatus();
    }
  }
  else {
  // We want to create a grid of control points that is N rows by M columns.

    int rows = (lhImage.lineCount() + linc - 1)/linc;
    int cols = (lhImage.sampleCount() + sinc - 1)/sinc;

    prog.SetMaximumSteps(rows * cols);
    prog.CheckStatus();

    // First pass stack and eigen value statistics
    SmtkQStack fpass;
    fpass.reserve(rows * cols);
    Statistics temp_mev;

    // Loop through grid of points and get statistics to compute
    // initial set of points
    for (int line = linc / 2 + 1; line < nl; line += linc) {
      for (int samp = sinc / 2 + 1 ; samp < ns; samp += sinc) {
        numAttemptedInitialPoints ++;
        SmtkPoint spnt = matcher.Register(Coordinate(line,samp));
        if ( spnt.isValid() ) {
          matcher.isValid(spnt);
          fpass.insert(qMakePair(line, samp), spnt);
          temp_mev.AddData(spnt.GoodnessOfFit());
        }
        prog.CheckStatus();
      }
    }

    //  Now select a subset of fpass points as the seed points
    cout << "Number of Potential Seed Points: " << fpass.size() << "\n";
    cout << "Min / Max Eigenvalues Matched: " << temp_mev.Minimum() << ", "
         << temp_mev.Maximum() << "\n";

    // How many seed points are requested
    double nseed = ui.GetDouble("NSEED");
    int inseed;
    if (nseed >= 1.0) inseed = (int) nseed;
    else if (nseed > 0.0) inseed = (int) (nseed * (double) (fpass.size()));
    else inseed = (int) ((double) (fpass.size()) * 0.05);

    double seedsample = ui.GetDouble("SEEDSAMPLE");

    // Generate a new stack
    gstack.reserve(inseed);
    while ((gstack.size() < inseed) && (!fpass.isEmpty() )) {
      SmtkQStack::iterator bestm;
      if (seedsample <= 0.0) {
        bestm = matcher.FindSmallestEV(fpass);
      }
      else {
        bestm = matcher.FindExpDistEV(fpass, seedsample, temp_mev.Minimum(),
                                      temp_mev.Maximum());
      }

      //  Add point to stack
      if (bestm != fpass.end()) {
        Coordinate right = bestm.value().getRight();
        matcher.isValid(bestm.value());
        gstack.insert(bestm.key(), bestm.value());
        lastEigen = bestm.value().GoodnessOfFit();
        fpass.erase(bestm);
      }
    }

    // If a user wants to see the seed network, write it out here
    if (ui.WasEntered("OSEEDNET")) {
      WriteCnet(ui.GetFileName("OSEEDNET"), gstack,
                lhCamera->target()->name(), serialLeft, serialRight);
    }

  }

  ///////////////////////////////////////////////////////////////////////
  // All done with seed points.  Sanity check ensures we actually found
  // some.
  ///////////////////////////////////////////////////////////////////////
  if (gstack.size() <= 0) {
    QString msg = "No seed points found - may need to check Gruen parameters.";
    throw IException(IException::User, msg, _FILEINFO_);
  }

  //  Report seed point status
  if (!useseed) {
    cout << "Number of Seed Points used: " << gstack.size() << "\n";
    cout << "EV of last Seed Point:      " << lastEigen << "\n";
  }
  else {
    cout << "Number of Manual Seed Points:   " << gstack.size() << "\n";
  }

  // Use seed points (in stack) to grow
  SmtkQStack bmf;
  bmf.reserve(gstack.size());  // Probably need much more but for starters...

  BigInt numOrigPoints = gstack.size();
  BigInt passpix2 = 0;

  int subcbox = ui.GetInteger("SUBCBOX");
  int halfBox((subcbox-1)/2);
  while (!gstack.isEmpty()) {

    SmtkQStackIter cstack = matcher.FindSmallestEV(gstack);

    // Print number on stack
    if ((gstack.size() % 1000) == 0) {
      cout << "Number on Stack: " << gstack.size()
           << ". " << cstack.value().GoodnessOfFit() << "\n";
    }

    // Test to see if already determined
    SmtkQStackIter bmfPt = bmf.find(cstack.key());
    if (bmfPt == bmf.end()) {
      // Its not in the final stack, process it

      //  Retrieve the point
      SmtkPoint spnt = cstack.value();
      //  Register if its not already registered
      if (!spnt.isRegistered()) {
        spnt = matcher.Register(spnt, spnt.getAffine());
      }

      // Still must check for validity if the point was just registered,
      // otherwise should be good
      if ( spnt.isValid() ) {
        passpix2++;
        bmf.insert(cstack.key(), spnt);  // inserts (0,0) offset excluded below
        int line   = cstack.key().first;
        int sample = cstack.key().second;

        //  Determine match points
        double eigen(spnt.GoodnessOfFit());
        for (int sampBox = -halfBox ; sampBox <= halfBox ; sampBox++ ) {
          int csamp = sample + sampBox;
          for (int lineBox = -halfBox ; lineBox <= halfBox ; lineBox++) {
            int cline = line + lineBox;
            if ( !( (sampBox == 0) && (lineBox == 0)) ) {// Already added above
              SmtkQPair dupPair(cline, csamp);
              SmtkQStackIter temp = bmf.find(dupPair);
              SmtkPoint bmfpnt;
              if (temp != bmf.end()) {
                if (temp.value().GoodnessOfFit() > eigen) {
                  // Create cloned point with better fit
                  bmfpnt = matcher.Clone(spnt, Coordinate(cline,csamp));
                }
              }
              else {  // ISIS2 is BMF(SAMP,LINE,7) .EQ VALID_MAX4)
                // Clone new point for insert
                bmfpnt = matcher.Clone(spnt, Coordinate(cline,csamp));
              }

              //  Add if good point
              if (bmfpnt.isValid()) {
                bmf.insert(dupPair, bmfpnt);
              }
            }
          }
        }

        // Grow stack with spacing adding info to stack
        for (int i = -1 ; i <= 1 ; i ++) {  // Sample
          for (int j = -1 ; j <= 1 ; j ++) {  // Line
            // Don't re-add the original sample, line
            if ( !((i == 0) && (j == 0)) ) {
              //  Grow based upon spacing
              double ssamp = sample + (i * space);
              double sline = line   + (j * space);
              Coordinate pnt = Coordinate(sline, ssamp);
              SmtkPoint gpnt = matcher.Clone(spnt, pnt);

              if ( gpnt.isValid() ) {
                SmtkQPair growpt((int) sline, (int) ssamp);

                // double check we don't have a finalized result at this position
                SmtkQStackIter temp = bmf.find(growpt);
                if(temp == bmf.end()) {
                  gstack.insert(growpt, gpnt);
                }
              }
            }
          }
        }
      }
    }

    // Remove the current point from the grow stack (hole)
    gstack.erase(cstack);
  }

/////////////////////////////////////////////////////////////////////////
// All done with creating points.  Perform output options.
/////////////////////////////////////////////////////////////////////////

  // If a TO parameter was specified, create DEM with errors
  if (ui.WasEntered("TO")) {
    //  Create the output DEM
    cout << "\nCreating output DEM from " << bmf.size() << " points.\n";
    Process  p;
    Cube *icube = p.SetInputCube("FROM");
    Cube *ocube = p.SetOutputCube("TO", icube->sampleCount(),
                                  icube->lineCount(), 3);
    p.ClearInputCubes();

    int boxsize = ui.GetInteger("BOXSIZE");
    double plotdist = ui.GetDouble("PLOTDIST");

    TileManager dem(*ocube), eigen(*ocube), stErr(*ocube);
    dem.SetTile(1, 1);      //  DEM Data/elevation
    stErr.SetTile(1, 2);    //  Error in stereo computation
    eigen.SetTile(1, 3);    //  Eigenvalue of the solution

    int nBTiles(eigen.Tiles()/3);  // Total tiles / 3 bands

    prog.SetText("Creating DEM");
    prog.SetMaximumSteps(nBTiles);
    prog.CheckStatus();

    Statistics stAng;
    while ( !eigen.end() ) {   // Must use the last band for this!!
      PointPlot tm = for_each(bmf.begin(), bmf.end(), PointPlot(dem, plotdist));
      tm.FillPoints(*lhCamera, *rhCamera, boxsize, dem, stErr, eigen, &stAng);

      ocube->write(dem);
      ocube->write(stErr);
      ocube->write(eigen);

      dem.next();
      stErr.next();
      eigen.next();

      prog.CheckStatus();
    }

    //  Report Stereo separation angles
    PvlGroup stresultsPvl("StereoSeparationAngle");
    stresultsPvl += PvlKeyword("Minimum", toString(stAng.Minimum()), "deg");
    stresultsPvl += PvlKeyword("Average", toString(stAng.Average()), "deg");
    stresultsPvl += PvlKeyword("Maximum", toString(stAng.Maximum()), "deg");
    stresultsPvl += PvlKeyword("StandardDeviation", toString(stAng.StandardDeviation()), "deg");
    Application::Log(stresultsPvl);

    // Update the label with BandBin keywords
    PvlKeyword filter("FilterName", "Elevation", "meters");
    filter.addValue("ElevationError", "meters");
    filter.addValue("GoodnessOfFit", "unitless");
    PvlKeyword center("Center", "1.0");
    center.addValue("1.0");
    center.addValue("1.0");

    PvlGroup &bandbin = ocube->label()->findGroup("BandBin", PvlObject::Traverse);
    bandbin.addKeyword(filter, PvlContainer::Replace);
    bandbin.addKeyword(center, PvlContainer::Replace);
    center.setName("Width");
    bandbin.addKeyword(center, PvlContainer::Replace);


    p.EndProcess();
  }

  // If a cnet file was entered, write the ControlNet pvl to the file
  if (ui.WasEntered("ONET")) {
    WriteCnet(ui.GetFileName("ONET"), bmf, lhCamera->target()->name(), serialLeft,
              serialRight);
  }

  // Create output data
  PvlGroup totalPointsPvl("Totals");
  totalPointsPvl += PvlKeyword("AttemptedPoints", toString(numAttemptedInitialPoints));
  totalPointsPvl += PvlKeyword("InitialSuccesses", toString(numOrigPoints));
  totalPointsPvl += PvlKeyword("GrowSuccesses", toString(passpix2));
  totalPointsPvl += PvlKeyword("ResultingPoints", toString(bmf.size()));

  Application::Log(totalPointsPvl);

  Pvl arPvl = matcher.RegistrationStatistics();
  PvlGroup smtkresultsPvl("SmtkResults");
  smtkresultsPvl += PvlKeyword("SpiceOffImage", toString(matcher.OffImageErrorCount()));
  smtkresultsPvl += PvlKeyword("SpiceDistanceError", toString(matcher.SpiceErrorCount()));
  arPvl.addGroup(smtkresultsPvl);

  for(int i = 0; i < arPvl.groups(); i++) {
    Application::Log(arPvl.group(i));
  }

  // add the auto registration information to print.prt
  PvlGroup autoRegTemplate = matcher.RegTemplate();
  Application::Log(autoRegTemplate);

  // Don't need the cubes opened anymore
  lhImage.close();
  rhImage.close();
}
Example #17
0
/**
 * This is the main method. Makeflat runs in three steps:
 *
 * 1) Calculate statistics
 *   - For all cameras, this checks for one band and matching
 *       sample counts.
 *   - For framing cameras, this checks the standard deviation of
 *       the images and records the averages of each image
 *   - For push frame cameras, this calls CheckFramelets for each
 *       image.
 *
 * 2) Create the temporary file, collect more detailed statistics
 *   - For all cameras, this generates the temporary file and calculates
 *       the final exclusion list
 *   - For framing/push frame cameras, the temporary file is
 *       2 bands, where the first is a sum of DNs from each image/framelet
 *       and the second band is a count of valid DNs that went into each sum
 *
 *  3) Create the final flat field file
 *   - For all cameras, this processes the temporary file to create the final flat
 *       field file.
 */
void IsisMain() {
    // Initialize variables
    ResetGlobals();

    UserInterface &ui = Application::GetUserInterface();
    maxStdev = ui.GetDouble("STDEVTOL");

    if(ui.GetString("IMAGETYPE") == "FRAMING") {
        cameraType = Framing;

        // framing cameras need to figure this out automatically
        //   during step 1
        numFrameLines = -1;
    }
    else if(ui.GetString("IMAGETYPE") == "LINESCAN") {
        cameraType = LineScan;
        numFrameLines = ui.GetInteger("NUMLINES");
    }
    else {
        cameraType = PushFrame;
        numFrameLines = ui.GetInteger("FRAMELETHEIGHT");
    }

    FileList inList(ui.GetFilename("FROMLIST"));
    Progress progress;

    tempFileLength = 0;
    numOutputSamples = 0;

    /**
     * Line scan progress is based on the input list, whereas
     * the other cameras take much longer and are based on the
     * images themselves. Prepare the progress if we're doing
     * line scan.
     */
    if(cameraType == LineScan) {
        progress.SetText("Calculating Number of Image Lines");
        progress.SetMaximumSteps(inList.size());
        progress.CheckStatus();
    }

    /**
     *  For a push frame camera, the temp file is one framelet.
     *   Technically this is the same for the framing, but we
     *   don't know the height of a framelet yet.
     */
    if(cameraType == PushFrame) {
        tempFileLength = numFrameLines;
    }

    /**
     * Start pass 1, use global currImage so that methods called
     *   know the image we're processing.
     */
    for(currImage = 0; currImage < inList.size(); currImage++) {
        /**
         * Read the current cube into memory
         */
        Cube tmp;
        tmp.Open(Filename(inList[currImage]).Expanded());

        /**
         * If we haven't determined how many samples the output
         *   should have, we can do so now
         */
        if(numOutputSamples == 0 && tmp.Bands() == 1) {
            numOutputSamples = tmp.Samples();
        }

        /**
         * Try and validate the image, quick tests first!
         *
         * (imageValid &= means imageValid = imageValid && ...)
         */
        bool imageValid = true;

        // Only single band images are acceptable
        imageValid &= (tmp.Bands() == 1);

        // Sample sizes must always match
        imageValid &= (numOutputSamples == tmp.Samples());

        // For push frame cameras, there must be valid all framelets
        if(cameraType == PushFrame) {
            imageValid &=  (tmp.Lines() % numFrameLines == 0);
        }

        // For framing cameras, we need to figure out the size...
        //    setTempFileLength is used to revert if the file
        //    is decided to be invalid
        bool setTempFileLength = false;
        if(cameraType == Framing) {
            if(tempFileLength == 0 && imageValid) {
                tempFileLength = tmp.Lines();
                numFrameLines = tempFileLength;
                setTempFileLength = true;
            }

            imageValid &= (tempFileLength == tmp.Lines());
        }

        // Statistics are necessary at this point for push frame and framing cameras
        //   because the framing camera standard deviation tolerance is based on
        //   entire images, and push frame framelet exclusion stats can not be collected
        //   during pass 2 cleanly
        if((cameraType == Framing || cameraType == PushFrame) && imageValid) {
            string prog = "Calculating Standard Deviation " + iString((int)currImage+1) + "/";
            prog += iString((int)inList.size()) + " (" + Filename(inList[currImage]).Name() + ")";

            if(cameraType == Framing) {
                Statistics *stats = tmp.Statistics(1, prog);
                imageValid &= !IsSpecial(stats->StandardDeviation());
                imageValid &= !IsSpecial(stats->Average());
                imageValid &= stats->StandardDeviation() <= maxStdev;

                vector<double> fileStats;
                fileStats.push_back(stats->Average());
                inputFrameletAverages.push_back(fileStats);

                delete stats;
            }
            else if(cameraType == PushFrame) {
                imageValid &= CheckFramelets(prog, tmp);
            }

            if(setTempFileLength && !imageValid) {
                tempFileLength = 0;
            }
        }

        // The line scan camera needs to actually count the number of lines in each image to know
        //   how many total frames there are before beginning pass 2.
        if(imageValid && (cameraType == LineScan)) {
            int lines = (tmp.Lines() / numFrameLines);

            // partial frame?
            if(tmp.Lines() % numFrameLines != 0) {
                lines ++;
            }

            tempFileLength += lines;
        }
        else if(!imageValid) {
            excludedFiles.insert(pair<int, bool>(currImage, true));
        }

        tmp.Close();

        if(cameraType == LineScan) {
            progress.CheckStatus();
        }
    }

    /**
     * If the number of output samples could not be determined, we never
     *   found a legitimate cube.
     */
    if(numOutputSamples <= 0) {
        string msg = "No valid input cubes were found";
        throw iException::Message(iException::User,msg,_FILEINFO_);
    }

    /**
     * If theres no temp file length, which is based off of valid data in
     *   the input cubes, then we havent found any valid data.
     */
    if(tempFileLength <= 0) {
        string msg = "No valid input data was found";
        throw iException::Message(iException::User,msg,_FILEINFO_);
    }

    /**
     * ocube is now the temporary file (for pass 2).
     */
    ocube = new Cube();
    ocube->SetDimensions(numOutputSamples, tempFileLength, 2);
    PvlGroup &prefs = Preference::Preferences().FindGroup("DataDirectory", Pvl::Traverse);
    iString outTmpName = (string)prefs["Temporary"][0] + "/";
    outTmpName += Filename(ui.GetFilename("TO")).Basename() + ".tmp.cub";
    ocube->Create(outTmpName);
    oLineMgr = new LineManager(*ocube);
    oLineMgr->SetLine(1);

    ProcessByBrick p;
    int excludedCnt = 0;

    if(cameraType == LineScan) {
        outputTmpAverages.resize(numOutputSamples);
        outputTmpCounts.resize(numOutputSamples);
        numInputDns.resize(numOutputSamples);
    }

    cubeInitialized = false;
    for(currImage = 0; currImage < inList.size(); currImage++) {
        if(Excluded(currImage)) {
            excludedCnt ++;
            continue;
        }

        PvlObject currFile("Exclusions");
        currFile += PvlKeyword("Filename", inList[currImage]);
        currFile += PvlKeyword("Tolerance", maxStdev);

        if(cameraType == LineScan) {
            currFile += PvlKeyword("FrameLines", numFrameLines);
        }
        else if(cameraType == PushFrame) {
            currFile += PvlKeyword("FrameletLines", numFrameLines);
        }

        excludedDetails.push_back(currFile);

        CubeAttributeInput inAtt;

        // This needs to be set constantly because ClearInputCubes
        //   seems to be removing the input brick size.
        if(cameraType == LineScan) {
            p.SetBrickSize(1, numFrameLines, 1);
        }
        else if(cameraType == Framing || cameraType == PushFrame) {
            p.SetBrickSize(numOutputSamples, 1, 1);
        }

        p.SetInputCube(inList[currImage], inAtt);
        iString progText = "Calculating Averages " + iString((int)currImage+1);
        progText += "/" + iString((int)inList.size());
        progText += " (" + Filename(inList[currImage]).Name() + ")";
        p.Progress()->SetText(progText);

        p.StartProcess(CreateTemporaryData);
        p.EndProcess();
        p.ClearInputCubes();

        if(excludedDetails[excludedDetails.size()-1].Groups() == 0) {
            excludedDetails.resize(excludedDetails.size()-1);
        }
    }

    /**
     * Pass 2 completed. The processing methods were responsible for writing
     * the entire temporary cube.
     */
    if(oLineMgr) {
        delete oLineMgr;
        oLineMgr = NULL;
    }

    if(ocube) {
        ocube->Close();
        delete ocube;
    }

    /**
     * ocube is now the final output
     */
    ocube = new Cube();

    if(cameraType == LineScan) {
        ocube->SetDimensions(numOutputSamples, 1, 1);
    }
    else if(cameraType == Framing || cameraType == PushFrame) {
        ocube->SetDimensions(numOutputSamples, tempFileLength, 1);
    }

    ocube->Create(Filename(ui.GetFilename("TO")).Expanded());
    oLineMgr = new LineManager(*ocube);
    oLineMgr->SetLine(1);

    // We now have the necessary temp file, let's go ahead and combine it into
    //   the final output!
    p.SetInputBrickSize(numOutputSamples, 1, 2);
    p.SetOutputBrickSize(numOutputSamples, 1, 1);

    cubeInitialized = false;
    CubeAttributeInput inAtt;
    p.Progress()->SetText("Calculating Final Flat Field");
    p.SetInputCube(outTmpName, inAtt);
    p.StartProcess(ProcessTemporaryData);
    p.EndProcess();

    if(cameraType == LineScan) {
        ocube->Write(*oLineMgr);
    }

    if(oLineMgr) {
        delete oLineMgr;
        oLineMgr = NULL;
    }

    if(ocube) {
        ocube->Close();
        delete ocube;
        ocube = NULL;
    }

    /**
     * Build a list of excluded files
     */
    PvlGroup excludedFiles("ExcludedFiles");
    for(currImage = 0; currImage < inList.size(); currImage++) {
        if(Excluded(currImage)) {
            excludedFiles += PvlKeyword("File", inList[currImage]);
        }
    }

    // log the results
    Application::Log(excludedFiles);

    if(ui.WasEntered("EXCLUDE")) {
        Pvl excludeFile;

        // Find excluded files
        excludeFile.AddGroup(excludedFiles);

        for(unsigned int i = 0; i < excludedDetails.size(); i++) {
            excludeFile.AddObject(excludedDetails[i]);
        }

        excludeFile.Write(Filename(ui.GetFilename("EXCLUDE")).Expanded());
    }

    remove(outTmpName.c_str());

    // Clean up settings
    ResetGlobals();
}
Example #18
0
void IsisMain() {

  Preference::Preferences(true);

  cout << "Testing ProcessImport Class ... " << endl;

  Preference::Preferences(true);

  ProcessImport p;
  p.SetInputFile("$base/testData/isisTruth.dat");
  p.SetBase(0.0);
  p.SetMultiplier(1.0);
  p.SetDataHeaderBytes(0);
  p.SetDataPrefixBytes(0);
  p.SetDataSuffixBytes(0);
  p.SetDataTrailerBytes(0);
  p.SetDimensions(126, 126, 1);
  p.SetFileHeaderBytes(16384);
  p.SetOrganization(ProcessImport::BSQ);
  p.SetPixelType(Real);
  p.SetByteOrder(Lsb);
  p.SetOutputCube("TO");
  p.StartProcess();
  p.EndProcess();

  Process p2;
  CubeAttributeInput att;
  QString file = Application::GetUserInterface().GetFileName("TO");
  Cube *icube = p2.SetInputCube(file, att);
  Statistics *stat = icube->statistics();
  cout << endl << "Average: " << stat->Average() << endl;
  cout << endl << "Variance: " << stat->Variance() << endl;
  p2.EndProcess();
  QFile::remove(file);
  cout << endl;

  //Checks the setting of special pixel ranges

  cout << "Check the settings of the special pixel ranges" << endl;

  ProcessImport pNull;
  pNull.SetNull(0.0, 45.0);
  try { // Should NOT throw an error
    pNull.SetNull(0.0, 45.0);
  }
  catch(IException e) {
    cout << e.toString() << endl;
  }
  cout << endl;
  try { // Should throw an error
    pNull.SetLRS(35.0, 55.0);
  }
  catch(IException e) {
    cout << e.toString() << endl;
  }
  cout << endl;
  try { // Should NOT throw an error
    pNull.SetLIS(50.0, 52.0);
  }
  catch(IException e) {
    cout << e.toString() << endl;
  }
  cout << endl;
  try { // Should throw an error
    pNull.SetHRS(-10.0, 5.0);
  }
  catch(IException e) {
    cout << e.toString() << endl;
  }
  cout << endl;

  ProcessImport pLRS;
  pLRS.SetLRS(10.0, 145.0);
  try { // Should throw an error
    pLRS.SetNull(35.0, 55.0);
  }
  catch(IException e) {
    cout << e.toString() << endl;
  }
  cout << endl;
  try { // Should throw an error
    pNull.SetLIS(0.0, 15.0);
  }
  catch(IException e) {
    cout << e.toString() << endl;
  }
  cout << endl;
  try { // Should throw an error
    pLRS.SetHIS(-10.0, 155.0);
  }
  catch(IException e) {
    cout << e.toString() << endl;
  }
  cout << endl;
  try { // Should NOT throw an error
    pLRS.SetHIS(145.0, 155.0);
  }
  catch(IException e) {
    cout << e.toString() << endl;
  }
  cout << endl;

  cout << "Testing ProcessBil()" << endl;
  ProcessImport p3;
  p3.SetInputFile("$base/testData/isisTruth.dat");
  p3.SetBase(0.0);
  p3.SetMultiplier(1.0);
  p3.SetDataHeaderBytes(0);
  p3.SetDataPrefixBytes(0);
  p3.SetDataSuffixBytes(0);
  p3.SetDataTrailerBytes(0);
  p3.SetDimensions(126, 126, 1);
  p3.SetFileHeaderBytes(16384);
  p3.SetOrganization(ProcessImport::BIL);
  p3.SetPixelType(Real);
  p3.SetByteOrder(Lsb);
  p3.SetOutputCube("TO");
  p3.StartProcess();
  p3.EndProcess();

  cout << endl << "Testing ProcessBip()" << endl;
  ProcessImport p4;
  p4.SetInputFile("$base/testData/isisTruth.dat");
  p4.SetBase(0.0);
  p4.SetMultiplier(1.0);
  p4.SetDataHeaderBytes(0);
  p4.SetDataPrefixBytes(0);
  p4.SetDataSuffixBytes(0);
  p4.SetDataTrailerBytes(0);
  p4.SetDimensions(126, 126, 1);
  p4.SetFileHeaderBytes(16384);
  p4.SetOrganization(ProcessImport::BIP);
  p4.SetPixelType(Real);
  p4.SetByteOrder(Lsb);
  p4.SetOutputCube("TO");
  p4.StartProcess();
  p4.EndProcess();
}
Example #19
0
void IsisMain() {
  //Create a process to create the input cubes
  Process p;
  //Create the input cubes, matching sample/lines
  Cube *inCube = p.SetInputCube ("FROM");
  Cube *latCube = p.SetInputCube("LATCUB", SpatialMatch);
  Cube *lonCube = p.SetInputCube("LONCUB", SpatialMatch);

  //A 1x1 brick to read in the latitude and longitude DN values from
  //the specified cubes
  Brick latBrick(1,1,1, latCube->PixelType());
  Brick lonBrick(1,1,1, lonCube->PixelType());

  UserInterface &ui = Application::GetUserInterface();

  //Set the sample and line increments
  int sinc = (int)(inCube->Samples() * 0.10);
  if(ui.WasEntered("SINC")) {
    sinc = ui.GetInteger("SINC");
  }

  int linc = (int)(inCube->Lines() * 0.10);
  if(ui.WasEntered("LINC")) {
    linc = ui.GetInteger("LINC");
  }

  //Set the degree of the polynomial to use in our functions
  int degree = ui.GetInteger("DEGREE");

  //We are using a polynomial with two variables
  PolynomialBivariate sampFunct(degree); 
  PolynomialBivariate lineFunct(degree);

  //We will be solving the function using the least squares method
  LeastSquares sampSol(sampFunct);
  LeastSquares lineSol(lineFunct);

  //Setup the variables for solving the stereographic projection
  //x = cos(latitude) * sin(longitude - lon_center)
  //y = cos(lat_center) * sin(latitude) - sin(lat_center) * cos(latitude) * cos(longitude - lon_center)

  //Get the center lat and long from the input cubes
  double lat_center = latCube->Statistics()->Average() * PI/180.0;
  double lon_center = lonCube->Statistics()->Average() * PI/180.0;


  /**
   * Loop through lines and samples projecting the latitude and longitude at those
   * points to stereographic x and y and adding these points to the LeastSquares 
   * matrix. 
   */
  for(int i = 1; i <= inCube->Lines(); i+= linc) {
    for(int j = 1; j <= inCube->Samples(); j+= sinc) {
      latBrick.SetBasePosition(j, i, 1);
      latCube->Read(latBrick);
      if(IsSpecial(latBrick.at(0))) continue;
      double lat = latBrick.at(0) * PI/180.0;
      lonBrick.SetBasePosition(j, i, 1);
      lonCube->Read(lonBrick);
      if(IsSpecial(lonBrick.at(0))) continue;
      double lon = lonBrick.at(0) * PI/180.0;

      //Project lat and lon to x and y using a stereographic projection
      double k = 2/(1 + sin(lat_center) * sin(lat) + cos(lat_center)*cos(lat)*cos(lon - lon_center));
      double x = k * cos(lat) * sin(lon - lon_center);
      double y = k * (cos(lat_center) * sin(lat)) - (sin(lat_center) * cos(lat) * cos(lon - lon_center));

      //Add x and y to the least squares matrix
      vector<double> data;
      data.push_back(x);
      data.push_back(y);
      sampSol.AddKnown(data, j);
      lineSol.AddKnown(data, i);

      //If the sample increment goes past the last sample in the line, we want to
      //always read the last sample..
      if(j != inCube->Samples() && j + sinc > inCube->Samples()) {
        j = inCube->Samples() - sinc;
      }
    }
    //If the line increment goes past the last line in the cube, we want to
    //always read the last line..
    if(i != inCube->Lines() && i + linc > inCube->Lines()) {    
      i = inCube->Lines() - linc;
    }
  }

  //Solve the least squares functions using QR Decomposition
  sampSol.Solve(LeastSquares::QRD);
  lineSol.Solve(LeastSquares::QRD);

  //If the user wants to save the residuals to a file, create a file and write
  //the column titles to it.
  TextFile oFile;
  if(ui.WasEntered("RESIDUALS")) {
    oFile.Open(ui.GetFilename("RESIDUALS"), "overwrite");
    oFile.PutLine("Sample,\tLine,\tX,\tY,\tSample Error,\tLine Error\n");
  }

  //Gather the statistics for the residuals from the least squares solutions
  Statistics sampErr;
  Statistics lineErr;
  vector<double> sampResiduals = sampSol.Residuals();
  vector<double> lineResiduals = lineSol.Residuals();
  for(int i = 0; i < (int)sampResiduals.size(); i++) {
    sampErr.AddData(sampResiduals[i]);
    lineErr.AddData(lineResiduals[i]);
  }

  //If a residuals file was specified, write the previous data, and the errors to the file.
  if(ui.WasEntered("RESIDUALS")) {
    for(int i = 0; i < sampSol.Rows(); i++) {
      vector<double> data = sampSol.GetInput(i);
      iString tmp = "";
      tmp += iString(sampSol.GetExpected(i));
      tmp += ",\t";
      tmp += iString(lineSol.GetExpected(i));
      tmp += ",\t";
      tmp += iString(data[0]);
      tmp += ",\t";
      tmp += iString(data[1]);
      tmp += ",\t";
      tmp += iString(sampResiduals[i]);
      tmp += ",\t";
      tmp += iString(lineResiduals[i]);
      oFile.PutLine(tmp + "\n");
    }
  }
  oFile.Close();

  //Records the error to the log
  PvlGroup error( "Error" );
  error += PvlKeyword( "Degree", degree );
  error += PvlKeyword( "NumberOfPoints", (int)sampResiduals.size() );
  error += PvlKeyword( "SampleMinimumError", sampErr.Minimum() );
  error += PvlKeyword( "SampleAverageError", sampErr.Average() );
  error += PvlKeyword( "SampleMaximumError", sampErr.Maximum() );
  error += PvlKeyword( "SampleStdDeviationError", sampErr.StandardDeviation() );
  error += PvlKeyword( "LineMinimumError", lineErr.Minimum() );
  error += PvlKeyword( "LineAverageError", lineErr.Average() );
  error += PvlKeyword( "LineMaximumError", lineErr.Maximum() );
  error += PvlKeyword( "LineStdDeviationError", lineErr.StandardDeviation() );
  Application::Log( error );

  //Close the input cubes for cleanup
  p.EndProcess();

  //If we want to warp the image, then continue, otherwise return
  if(!ui.GetBoolean("NOWARP")) {
    //Creates the mapping group
    Pvl mapFile;
    mapFile.Read(ui.GetFilename("MAP"));
    PvlGroup &mapGrp = mapFile.FindGroup("Mapping",Pvl::Traverse);

    //Reopen the lat and long cubes
    latCube = new Cube();
    latCube->SetVirtualBands(ui.GetInputAttribute("LATCUB").Bands());
    latCube->Open(ui.GetFilename("LATCUB"));

    lonCube = new Cube();
    lonCube->SetVirtualBands(ui.GetInputAttribute("LONCUB").Bands());
    lonCube->Open(ui.GetFilename("LONCUB"));

    PvlKeyword targetName;

    //If the user entered the target name
    if(ui.WasEntered("TARGET")) {
      targetName = PvlKeyword("TargetName", ui.GetString("TARGET"));
    }
    //Else read the target name from the input cube
    else {
      Pvl fromFile;
      fromFile.Read(ui.GetFilename("FROM"));
      targetName = fromFile.FindKeyword("TargetName", Pvl::Traverse);
    }

    mapGrp.AddKeyword(targetName, Pvl::Replace);

    PvlKeyword equRadius;
    PvlKeyword polRadius;


    //If the user entered the equatorial and polar radii
    if(ui.WasEntered("EQURADIUS") && ui.WasEntered("POLRADIUS")) {
      equRadius = PvlKeyword("EquatorialRadius", ui.GetDouble("EQURADIUS"));
      polRadius = PvlKeyword("PolarRadius", ui.GetDouble("POLRADIUS"));
    }
    //Else read them from the pck
    else {
      Filename pckFile("$base/kernels/pck/pck?????.tpc");
      pckFile.HighestVersion();

      string pckFilename = pckFile.Expanded();

      furnsh_c(pckFilename.c_str());

      string target = targetName[0];
      SpiceInt code;
      SpiceBoolean found;

      bodn2c_c (target.c_str(), &code, &found);

      if (!found) {
        string msg = "Could not convert Target [" + target +
                     "] to NAIF code";
        throw Isis::iException::Message(Isis::iException::Io,msg,_FILEINFO_);
      }

      SpiceInt n;
      SpiceDouble radii[3];

      bodvar_c(code,"RADII",&n,radii);

      equRadius = PvlKeyword("EquatorialRadius", radii[0] * 1000);
      polRadius = PvlKeyword("PolarRadius", radii[2] * 1000);
    }

    mapGrp.AddKeyword(equRadius, Pvl::Replace);
    mapGrp.AddKeyword(polRadius, Pvl::Replace);


    //If the latitude type is not in the mapping group, copy it from the input
    if(!mapGrp.HasKeyword("LatitudeType")) {
      if(ui.GetString("LATTYPE") == "PLANETOCENTRIC") {
        mapGrp.AddKeyword(PvlKeyword("LatitudeType","Planetocentric"), Pvl::Replace);
      }
      else {
        mapGrp.AddKeyword(PvlKeyword("LatitudeType","Planetographic"), Pvl::Replace);
      }
    }

    //If the longitude direction is not in the mapping group, copy it from the input
    if(!mapGrp.HasKeyword("LongitudeDirection")) {
      if(ui.GetString("LONDIR") == "POSITIVEEAST") {
        mapGrp.AddKeyword(PvlKeyword("LongitudeDirection","PositiveEast"), Pvl::Replace);
      }
      else {
        mapGrp.AddKeyword(PvlKeyword("LongitudeDirection","PositiveWest"), Pvl::Replace);
      }
    }

    //If the longitude domain is not in the mapping group, assume it is 360
    if(!mapGrp.HasKeyword("LongitudeDomain")) {
      mapGrp.AddKeyword(PvlKeyword("LongitudeDomain","360"), Pvl::Replace);
    }

    //If the default range is to be computed, use the input lat/long cubes to determine the range
    if(ui.GetString("DEFAULTRANGE") == "COMPUTE") {
      //NOTE - When computing the min/max longitude this application does not account for the 
      //longitude seam if it exists. Since the min/max are calculated from the statistics of
      //the input longitude cube and then converted to the mapping group's domain they may be
      //invalid for cubes containing the longitude seam. 
    
      Statistics *latStats = latCube->Statistics();
      Statistics *lonStats = lonCube->Statistics();

      double minLat = latStats->Minimum();
      double maxLat = latStats->Maximum();

      bool isOcentric = ((std::string)mapGrp.FindKeyword("LatitudeType")) == "Planetocentric";
 
      if(isOcentric) {
        if(ui.GetString("LATTYPE") != "PLANETOCENTRIC") {
          minLat = Projection::ToPlanetocentric(minLat, (double)equRadius, (double)polRadius);
          maxLat = Projection::ToPlanetocentric(maxLat, (double)equRadius, (double)polRadius);
        }
      }
      else {
        if(ui.GetString("LATTYPE") == "PLANETOCENTRIC") {
          minLat = Projection::ToPlanetographic(minLat, (double)equRadius, (double)polRadius);
          maxLat = Projection::ToPlanetographic(maxLat, (double)equRadius, (double)polRadius);
        }
      }

      int lonDomain = (int)mapGrp.FindKeyword("LongitudeDomain");
      double minLon = lonDomain == 360 ? Projection::To360Domain(lonStats->Minimum()) : Projection::To180Domain(lonStats->Minimum());
      double maxLon = lonDomain == 360 ? Projection::To360Domain(lonStats->Maximum()) : Projection::To180Domain(lonStats->Maximum());

      bool isPosEast = ((std::string)mapGrp.FindKeyword("LongitudeDirection")) == "PositiveEast";
      
      if(isPosEast) {
        if(ui.GetString("LONDIR") != "POSITIVEEAST") {
          minLon = Projection::ToPositiveEast(minLon, lonDomain);
          maxLon = Projection::ToPositiveEast(maxLon, lonDomain);
        }
      }
      else {
        if(ui.GetString("LONDIR") == "POSITIVEEAST") {
          minLon = Projection::ToPositiveWest(minLon, lonDomain);
          maxLon = Projection::ToPositiveWest(maxLon, lonDomain);
        }
      }

      if(minLon > maxLon) {
        double temp = minLon;
        minLon = maxLon;
        maxLon = temp;
      }

      mapGrp.AddKeyword(PvlKeyword("MinimumLatitude", minLat),Pvl::Replace);
      mapGrp.AddKeyword(PvlKeyword("MaximumLatitude", maxLat),Pvl::Replace);
      mapGrp.AddKeyword(PvlKeyword("MinimumLongitude", minLon),Pvl::Replace);
      mapGrp.AddKeyword(PvlKeyword("MaximumLongitude", maxLon),Pvl::Replace);
    }

    //If the user decided to enter a ground range then override
    if (ui.WasEntered("MINLAT")) {
      mapGrp.AddKeyword(PvlKeyword("MinimumLatitude",
                                        ui.GetDouble("MINLAT")),Pvl::Replace);
    }
  
    if (ui.WasEntered("MAXLAT")) {
      mapGrp.AddKeyword(PvlKeyword("MaximumLatitude",
                                        ui.GetDouble("MAXLAT")),Pvl::Replace);
    }

    if (ui.WasEntered("MINLON")) {
      mapGrp.AddKeyword(PvlKeyword("MinimumLongitude",
                                        ui.GetDouble("MINLON")),Pvl::Replace);
    }
  
    if (ui.WasEntered("MAXLON")) {
      mapGrp.AddKeyword(PvlKeyword("MaximumLongitude",
                                        ui.GetDouble("MAXLON")),Pvl::Replace);
    }
  
    //If the pixel resolution is to be computed, compute the pixels/degree from the input
    if (ui.GetString("PIXRES") == "COMPUTE") {
      latBrick.SetBasePosition(1,1,1);
      latCube->Read(latBrick);

      lonBrick.SetBasePosition(1,1,1);
      lonCube->Read(lonBrick);

      //Read the lat and long at the upper left corner
      double a = latBrick.at(0) * PI/180.0;
      double c = lonBrick.at(0) * PI/180.0;
  
      latBrick.SetBasePosition(latCube->Samples(),latCube->Lines(),1);
      latCube->Read(latBrick);

      lonBrick.SetBasePosition(lonCube->Samples(),lonCube->Lines(),1);     
      lonCube->Read(lonBrick);

      //Read the lat and long at the lower right corner
      double b = latBrick.at(0) * PI/180.0;
      double d = lonBrick.at(0) * PI/180.0;

      //Determine the angle between the two points
      double angle = acos(cos(a) * cos(b) * cos(c - d) + sin(a) * sin(b));
      //double angle = acos((cos(a1) * cos(b1) * cos(b2)) + (cos(a1) * sin(b1) * cos(a2) * sin(b2)) + (sin(a1) * sin(a2)));
      angle *= 180/PI;

      //Determine the number of pixels between the two points
      double pixels = sqrt(pow(latCube->Samples() -1.0, 2.0) + pow(latCube->Lines() -1.0, 2.0));

      //Add the scale in pixels/degree to the mapping group
      mapGrp.AddKeyword(PvlKeyword("Scale",
                                        pixels/angle, "pixels/degree"),
                                        Pvl::Replace);
      if (mapGrp.HasKeyword("PixelResolution")) {
        mapGrp.DeleteKeyword("PixelResolution");
      }
    }


    // If the user decided to enter a resolution then override
    if (ui.GetString("PIXRES") == "MPP") {
      mapGrp.AddKeyword(PvlKeyword("PixelResolution",
                                        ui.GetDouble("RESOLUTION"), "meters/pixel"),
                                        Pvl::Replace);
      if (mapGrp.HasKeyword("Scale")) {
        mapGrp.DeleteKeyword("Scale");
      }
    }
    else if (ui.GetString("PIXRES") == "PPD") {
      mapGrp.AddKeyword(PvlKeyword("Scale",
                                        ui.GetDouble("RESOLUTION"), "pixels/degree"),
                                        Pvl::Replace);
      if (mapGrp.HasKeyword("PixelResolution")) {
        mapGrp.DeleteKeyword("PixelResolution");
      }
    }

    //Create a projection using the map file we created
    int samples,lines;
    Projection *outmap = ProjectionFactory::CreateForCube(mapFile,samples,lines,false);

    //Write the map file to the log
    Application::GuiLog(mapGrp);

    //Create a process rubber sheet
    ProcessRubberSheet r;

    //Set the input cube
    inCube = r.SetInputCube("FROM");

    double tolerance = ui.GetDouble("TOLERANCE") * outmap->Resolution();

    //Create a new transform object
    Transform *transform = new nocam2map (sampSol, lineSol, outmap,
                                          latCube, lonCube,
                                          ui.GetString("LATTYPE") == "PLANETOCENTRIC",
                                          ui.GetString("LONDIR") == "POSITIVEEAST",
                                          tolerance, ui.GetInteger("ITERATIONS"),
                                          inCube->Samples(), inCube->Lines(),
                                          samples, lines);
  
    //Allocate the output cube and add the mapping labels
    Cube *oCube = r.SetOutputCube ("TO", transform->OutputSamples(),
                                              transform->OutputLines(),
                                              inCube->Bands());
    oCube->PutGroup(mapGrp);

    //Determine which interpolation to use
    Interpolator *interp = NULL;
    if (ui.GetString("INTERP") == "NEARESTNEIGHBOR") {
      interp = new Interpolator(Interpolator::NearestNeighborType);
    }
    else if (ui.GetString("INTERP") == "BILINEAR") {
      interp = new Interpolator(Interpolator::BiLinearType);
    }
    else if (ui.GetString("INTERP") == "CUBICCONVOLUTION") {
      interp = new Interpolator(Interpolator::CubicConvolutionType);
    }
  
    //Warp the cube
    r.StartProcess(*transform, *interp);
    r.EndProcess();

    // add mapping to print.prt
    PvlGroup mapping = outmap->Mapping(); 
    Application::Log(mapping); 

    //Clean up
    delete latCube;
    delete lonCube;

    delete outmap;
    delete transform;
    delete interp;
  }
}
Example #20
0
void IsisMain() {
  const QString caminfo_program  = "caminfo";
  UserInterface &ui = Application::GetUserInterface();

  QList< QPair<QString, QString> > *general = NULL, *camstats = NULL, *statistics = NULL;
  BandGeometry *bandGeom = NULL;

  // Get input filename
  FileName in = ui.GetFileName("FROM");

  // Get the format
  QString sFormat = ui.GetAsString("FORMAT");

  // if true then run spiceinit, xml default is FALSE
  // spiceinit will use system kernels
  if(ui.GetBoolean("SPICE")) {
    QString parameters = "FROM=" + in.expanded();
    ProgramLauncher::RunIsisProgram("spiceinit", parameters);
  }

  Process p;
  Cube *incube = p.SetInputCube("FROM");

  // General data gathering
  general = new QList< QPair<QString, QString> >;
  general->append(MakePair("Program",     caminfo_program));
  general->append(MakePair("IsisVersion", Application::Version()));
  general->append(MakePair("RunDate",     iTime::CurrentGMT()));
  general->append(MakePair("IsisId",      SerialNumber::Compose(*incube)));
  general->append(MakePair("From",        in.baseName() + ".cub"));
  general->append(MakePair("Lines",       toString(incube->lineCount())));
  general->append(MakePair("Samples",     toString(incube->sampleCount())));
  general->append(MakePair("Bands",       toString(incube->bandCount())));

  // Run camstats on the entire image (all bands)
  // another camstats will be run for each band and output
  // for each band.
  if(ui.GetBoolean("CAMSTATS")) {
    camstats = new QList< QPair<QString, QString> >;

    QString filename = ui.GetAsString("FROM");
    int sinc = ui.GetInteger("SINC");
    int linc = ui.GetInteger("LINC");
    CameraStatistics stats(filename, sinc, linc);
    Pvl camPvl = stats.toPvl();

    PvlGroup cg = camPvl.findGroup("Latitude", Pvl::Traverse);
    camstats->append(MakePair("MinimumLatitude", cg["latitudeminimum"][0]));
    camstats->append(MakePair("MaximumLatitude", cg["latitudemaximum"][0]));

    cg = camPvl.findGroup("Longitude", Pvl::Traverse);
    camstats->append(MakePair("MinimumLongitude", cg["longitudeminimum"][0]));
    camstats->append(MakePair("MaximumLongitude", cg["longitudemaximum"][0]));

    cg = camPvl.findGroup("Resolution", Pvl::Traverse);
    camstats->append(MakePair("MinimumResolution", cg["resolutionminimum"][0]));
    camstats->append(MakePair("MaximumResolution", cg["resolutionmaximum"][0]));

    cg = camPvl.findGroup("PhaseAngle", Pvl::Traverse);
    camstats->append(MakePair("MinimumPhase", cg["phaseminimum"][0]));
    camstats->append(MakePair("MaximumPhase", cg["phasemaximum"][0]));

    cg = camPvl.findGroup("EmissionAngle", Pvl::Traverse);
    camstats->append(MakePair("MinimumEmission", cg["emissionminimum"][0]));
    camstats->append(MakePair("MaximumEmission", cg["emissionmaximum"][0]));

    cg = camPvl.findGroup("IncidenceAngle", Pvl::Traverse);
    camstats->append(MakePair("MinimumIncidence", cg["incidenceminimum"][0]));
    camstats->append(MakePair("MaximumIncidence", cg["incidencemaximum"][0]));

    cg = camPvl.findGroup("LocalSolarTime", Pvl::Traverse);
    camstats->append(MakePair("LocalTimeMinimum", cg["localsolartimeMinimum"][0]));
    camstats->append(MakePair("LocalTimeMaximum", cg["localsolartimeMaximum"][0]));
  }

  // Compute statistics for entire cube
  if(ui.GetBoolean("STATISTICS")) {
    statistics = new QList< QPair<QString, QString> >;

    LineManager iline(*incube);
    Statistics stats;
    Progress progress;
    progress.SetText("Statistics...");
    progress.SetMaximumSteps(incube->lineCount()*incube->bandCount());
    progress.CheckStatus();
    iline.SetLine(1);
    for(; !iline.end() ; iline.next()) {
      incube->read(iline);
      stats.AddData(iline.DoubleBuffer(), iline.size());
      progress.CheckStatus();
    }

    //  Compute stats of entire cube
    double nPixels     = stats.TotalPixels();
    double nullpercent = (stats.NullPixels() / (nPixels)) * 100;
    double hispercent  = (stats.HisPixels() / (nPixels)) * 100;
    double hrspercent  = (stats.HrsPixels() / (nPixels)) * 100;
    double lispercent  = (stats.LisPixels() / (nPixels)) * 100;
    double lrspercent  = (stats.LrsPixels() / (nPixels)) * 100;

    // Statitics output for band
    statistics->append(MakePair("MeanValue", toString(stats.Average())));
    statistics->append(MakePair("StandardDeviation", toString(stats.StandardDeviation())));
    statistics->append(MakePair("MinimumValue", toString(stats.Minimum())));
    statistics->append(MakePair("MaximumValue", toString(stats.Maximum())));
    statistics->append(MakePair("PercentHIS", toString(hispercent)));
    statistics->append(MakePair("PercentHRS", toString(hrspercent)));
    statistics->append(MakePair("PercentLIS", toString(lispercent)));
    statistics->append(MakePair("PercentLRS", toString(lrspercent)));
    statistics->append(MakePair("PercentNull", toString(nullpercent)));
    statistics->append(MakePair("TotalPixels", toString(stats.TotalPixels())));
  }

  bool getFootBlob = ui.GetBoolean("USELABEL");
  bool doGeometry = ui.GetBoolean("GEOMETRY");
  bool doPolygon = ui.GetBoolean("POLYGON");
  if(doGeometry || doPolygon || getFootBlob) {
    Camera *cam = incube->camera();

    QString incType = ui.GetString("INCTYPE");
    int polySinc, polyLinc;
    if(doPolygon && incType.toUpper() == "VERTICES") {
      ImagePolygon poly;
      poly.initCube(*incube);
      polySinc = polyLinc = (int)(0.5 + (((poly.validSampleDim() * 2) +
                                 (poly.validLineDim() * 2) - 3.0) /
                                 ui.GetInteger("NUMVERTICES")));
    }
    else if (incType.toUpper() == "LINCSINC"){
      if(ui.WasEntered("POLYSINC")) {
        polySinc = ui.GetInteger("POLYSINC");
      }
      else {
        polySinc = (int)(0.5 + 0.10 * incube->sampleCount());
        if(polySinc == 0) polySinc = 1;
      }
      if(ui.WasEntered("POLYLINC")) {
        polyLinc = ui.GetInteger("POLYLINC");
      }
      else {
        polyLinc = (int)(0.5 + 0.10 * incube->lineCount());
        if(polyLinc == 0) polyLinc = 1;
      }
    }
    else {
      QString msg = "Invalid INCTYPE option[" + incType + "]";
      throw IException(IException::Programmer, msg, _FILEINFO_);
    }

    bandGeom = new BandGeometry();
    bandGeom->setSampleInc(polySinc);
    bandGeom->setLineInc(polyLinc);
    bandGeom->setMaxIncidence(ui.GetDouble("MAXINCIDENCE"));
    bandGeom->setMaxEmission(ui.GetDouble("MAXEMISSION"));
    bool precision = ui.GetBoolean("INCREASEPRECISION");

    if (getFootBlob) {
      // Need to read history to obtain parameters that were used to
      // create the footprint
      History hist("IsisCube", in.expanded());
      Pvl pvl = hist.ReturnHist();
      PvlObject::PvlObjectIterator objIter;
      bool found = false;
      PvlGroup fpgrp;
      for (objIter=pvl.endObject()-1; objIter>=pvl.beginObject(); objIter--) {
        if (objIter->name().toUpper() == "FOOTPRINTINIT") {
          found = true;
          fpgrp = objIter->findGroup("UserParameters");
          break;
        }
      }
      if (!found) {
        QString msg = "Footprint blob was not found in input image history";
        throw IException(IException::User, msg, _FILEINFO_);
      }
      QString prec = (QString)fpgrp.findKeyword("INCREASEPRECISION");
      prec = prec.toUpper();
      if (prec == "TRUE") {
        precision = true;
      }
      else {
        precision = false;
      }
      QString inctype = (QString)fpgrp.findKeyword("INCTYPE");
      inctype = inctype.toUpper();
      if (inctype == "LINCSINC") {
        int linc = fpgrp.findKeyword("LINC");
        int sinc = fpgrp.findKeyword("SINC");
        bandGeom->setSampleInc(sinc);
        bandGeom->setLineInc(linc);
      }
      else {
        int vertices = fpgrp.findKeyword("NUMVERTICES");
        int lincsinc = (int)(0.5 + (((incube->sampleCount() * 2) +
                       (incube->lineCount() * 2) - 3.0) /
                       vertices));
        bandGeom->setSampleInc(lincsinc);
        bandGeom->setLineInc(lincsinc);
      }
      if (fpgrp.hasKeyword("MAXINCIDENCE")) {
        double maxinc = fpgrp.findKeyword("MAXINCIDENCE");
        bandGeom->setMaxIncidence(maxinc);
      }
      if (fpgrp.hasKeyword("MAXEMISSION")) {
        double maxema = fpgrp.findKeyword("MAXEMISSION");
        bandGeom->setMaxEmission(maxema);
      }
    }
    
    bandGeom->collect(*cam, *incube, doGeometry, doPolygon, getFootBlob, precision);

    // Check if the user requires valid image center geometry
    if(ui.GetBoolean("VCAMERA") && (!bandGeom->hasCenterGeometry())) {
      QString msg = "Image center does not project in camera model";
      throw IException(IException::Unknown, msg, _FILEINFO_);
    }
  }

  if(sFormat.toUpper() == "PVL")
    GeneratePVLOutput(incube, general, camstats, statistics, bandGeom);
  else
    GenerateCSVOutput(incube, general, camstats, statistics, bandGeom);

  // Clean the data
  delete general;
  general = NULL;
  if(camstats) {
    delete camstats;
    camstats = NULL;
  }
  if(statistics) {
    delete statistics;
    statistics = NULL;
  }
  if(bandGeom) {
    delete bandGeom;
    bandGeom = NULL;
  }

}
Example #21
0
  /**
   * Retrieve the statistics based on the box size
   * and point on the cube.
   *
   * @param p
   */
  void StatisticsTool::getStatistics(QPoint p) {
    MdiCubeViewport *cvp = cubeViewport();
    if(cvp == NULL) return;

    double sample, line;
    cvp->viewportToCube(p.x(), p.y(), sample, line);

    // If we are outside of the cube, do nothing
    if((sample < 0.5) || (line < 0.5) ||
        (sample > cvp->cubeSamples() + 0.5) || (line > cvp->cubeLines() + 0.5)) {
      return;
    }

    int isamp = (int)(sample + 0.5);
    int iline = (int)(line + 0.5);

    Statistics stats;
    Brick *brick = new Brick(1, 1, 1, cvp->cube()->pixelType());


    QVector<QVector<double> > pixelData(p_boxLines, QVector<double>(p_boxSamps, Null));

    double lineDiff = p_boxLines / 2.0;
    double sampDiff = p_boxSamps / 2.0;

    p_ulSamp = isamp - (int)floor(sampDiff);
    p_ulLine = iline - (int)floor(lineDiff);

    int x, y;

    y = p_ulLine;

    for(int i = 0; i < p_boxLines; i++) {
      x = p_ulSamp;
      if(y < 1 || y > cvp->cubeLines()) {
        y++;
        continue;
      }
      for(int j = 0; j < p_boxSamps; j++) {
        if(x < 1 || x > cvp->cubeSamples()) {
          x++;
          continue;
        }
        brick->SetBasePosition(x, y, cvp->grayBand());
        cvp->cube()->read(*brick);
        stats.AddData(brick->at(0));
        pixelData[i][j] = brick->at(0);

        x++;
      }
      y++;
    }

    p_visualDisplay->setPixelData(pixelData, p_ulSamp, p_ulLine);

    if (stats.ValidPixels()) {
      p_minLabel->setText(QString("Minimum: %1").arg(stats.Minimum()));
      p_maxLabel->setText(QString("Maximum: %1").arg(stats.Maximum()));
      p_avgLabel->setText(QString("Average: %1").arg(stats.Average()));
      p_stdevLabel->setText(QString("Standard Dev: %1").arg(stats.StandardDeviation(), 0, 'f', 6));
    }
    else {
      p_minLabel->setText(QString("Minimum: n/a"));
      p_maxLabel->setText(QString("Maximum: n/a"));
      p_avgLabel->setText(QString("Average: n/a"));
      p_stdevLabel->setText(QString("Standard Dev: n/a"));
    }

    p_set = true;

    resizeScrollbars();
  }
Example #22
0
void IsisMain() {
    // We will be processing by line
    ProcessByLine p;

    // Setup the input and output cubes
    Cube *icube = p.SetInputCube("FROM");
    PvlKeyword &status = icube->group("RESEAUS")["STATUS"];
    UserInterface &ui = Application::GetUserInterface();
    QString in = ui.GetFileName("FROM");

    // Check reseau status and make sure it is not nominal or removed
    if((QString)status == "Nominal") {
        QString msg = "Input file [" + in +
                      "] appears to have nominal reseau status. You must run findrx first.";
        throw IException(IException::User, msg, _FILEINFO_);
    }
    if((QString)status == "Removed") {
        QString msg = "Input file [" + in +
                      "] appears to already have reseaus removed.";
        throw IException(IException::User, msg, _FILEINFO_);
    }

    status = "Removed";

    p.SetOutputCube("TO");

    // Start the processing
    p.StartProcess(cpy);
    p.EndProcess();

    // Get the user entered dimensions
    sdim = ui.GetInteger("SDIM");
    ldim = ui.GetInteger("LDIM");

    // Get other user entered options
    QString out = ui.GetFileName("TO");
    resvalid = ui.GetBoolean("RESVALID");
    action = ui.GetString("ACTION");

    // Open the output cube
    Cube cube;
    cube.open(out, "rw");

    PvlGroup &res = cube.label()->findGroup("RESEAUS", Pvl::Traverse);

    // Get reseau line, sample, type, and valid Keywords
    PvlKeyword lines = res.findKeyword("LINE");
    PvlKeyword samps = res.findKeyword("SAMPLE");
    PvlKeyword type = res.findKeyword("TYPE");
    PvlKeyword valid = res.findKeyword("VALID");
    int numres = lines.size();

    Brick brick(sdim, ldim, 1, cube.pixelType());
    for(int res = 0; res < numres; res++) {
        if((resvalid == 0 || toInt(valid[res]) == 1) && toInt(type[res]) != 0) {
            int baseSamp = (int)(toDouble(samps[res]) + 0.5) - (sdim / 2);
            int baseLine = (int)(toDouble(lines[res]) + 0.5) - (ldim / 2);
            brick.SetBasePosition(baseSamp, baseLine, 1);
            cube.read(brick);
            if(action == "NULL") {
                for(int i = 0; i < brick.size(); i++) brick[i] = Isis::Null;
            }
            else if(action == "BILINEAR") {
                Statistics stats;
                double array[sdim][ldim];
                for(int s = 0; s < sdim; s++) {
                    for(int l = 0; l < ldim; l++) {
                        int index = l * sdim + s;
                        array[s][l] = brick[index];
                        // Add perimeter data to stats object for calculations
                        if(s == 0 || l == 0 || s == (sdim - 1) || l == (ldim - 1)) {
                            stats.AddData(&array[s][l], 1);
                        }
                    }
                }
                // Get the average and standard deviation of the perimeter of the brick
                double avg = stats.Average();
                double sdev = stats.StandardDeviation();

                // Top Edge Reseau
                if(toInt(type[res]) == 2) {
                    int l1 = 0;
                    int l2 = ldim - 1;
                    for(int s = 0; s < sdim; s++) {
                        array[s][l1] = array[s][l2];
                    }
                }
                // Left Edge Reseau
                else if(toInt(type[res]) == 4) {
                    int s1 = 0;
                    int s2 = sdim - 1;
                    for(int l = 0; l < ldim; l++) {
                        array[s1][l] = array[s2][l];
                    }
                }
                // Right Edge Reseau
                else if(toInt(type[res]) == 6) {
                    int s1 = 0;
                    int s2 = sdim - 1;
                    for(int l = 0; l < ldim; l++) {
                        array[s2][l] = array[s1][l];
                    }
                }
                // Bottom Edge Reseau
                else if(toInt(type[res]) == 8) {
                    int l1 = 0;
                    int l2 = ldim - 1;
                    for(int s = 0; s < sdim; s++) {
                        array[s][l2] = array[s][l1];
                    }
                }
                // Walk top edge & replace data outside of 2devs with the avg
                for(int s = 0; s < sdim; s++) {
                    int l = 0;
                    double diff = fabs(array[s][l] - avg);
                    if(diff > (2 * sdev)) array[s][l] = avg;
                }
                // Walk bottom edge & replace data outside of 2devs with the avg
                for(int s = 0; s < sdim; s++) {
                    int l = ldim - 1;
                    double diff = fabs(array[s][l] - avg);
                    if(diff > (2 * sdev)) array[s][l] = avg;
                }
                // Walk left edge & replace data outside of 2devs with the avg
                for(int l = 0; l < ldim; l++) {
                    int s = 0;
                    double diff = fabs(array[s][l] - avg);
                    if(diff > (2 * sdev)) array[s][l] = avg;
                }
                // Walk right edge & replace data outside of 2devs with the avg
                for(int l = 0; l < ldim; l++) {
                    int s = sdim - 1;
                    double diff = fabs(array[s][l] - avg);
                    if(diff > (2 * sdev)) array[s][l] = avg;
                }
                srand(0);
                double dn, gdn1, gdn2;
                for(int l = 0; l < ldim; l++) {
                    int c = l * sdim;  //count
                    // Top Edge Reseau
                    if(toInt(type[res]) == 2 && l < (ldim / 2)) continue;
                    // Bottom Edge Reseau
                    if(toInt(type[res]) == 8 && l > (ldim / 2 + 1)) continue;
                    for(int s = 0; s < sdim; s++, c++) {
                        // Left Edge Reseau
                        if(toInt(type[res]) == 4 && s < (sdim / 2)) continue;
                        // Right Edge Reseau
                        if(toInt(type[res]) == 6 && s > (sdim / 2 + 1)) continue;
                        double sum = 0.0;
                        int gline1 = 0;
                        int gline2 = ldim - 1;
                        gdn1 = array[s][gline1];
                        gdn2 = array[s][gline2];

                        // Linear Interpolation to get pixel value
                        dn = gdn2 + (l - gline2) * (gdn1 - gdn2) / (gline1 - gline2);
                        sum += dn;

                        int gsamp1 = 0;
                        int gsamp2 = sdim - 1;
                        gdn1 = array[gsamp1][l];
                        gdn2 = array[gsamp2][l];

                        // Linear Interpolation to get pixel value
                        dn = gdn2 + (s - gsamp2) * (gdn1 - gdn2) / (gsamp1 - gsamp2);
                        sum += dn;
                        dn = sum / 2;
                        int rdm = rand();
                        double drandom = rdm / (double)RAND_MAX;
                        double offset = 0.0;
                        if(drandom < .333) offset = -1.0;
                        if(drandom > .666) offset = 1.0;
                        brick[c] = dn + offset;
                    }
                }
            }
        }
        cube.write(brick);
    }
    cube.close();

}
Example #23
0
void IsisMain(){

  Process p;

  // Reset all the stats objects because they are global
  latStat.Reset();
  lonStat.Reset();
  resStat.Reset();
  sampleResStat.Reset();
  lineResStat.Reset();
  aspectRatioStat.Reset();
  phaseStat.Reset();
  emissionStat.Reset();
  incidenceStat.Reset();
  localSolarTimeStat.Reset();
  localRaduisStat.Reset();
  northAzimuthStat.Reset();

  UserInterface &ui = Application::GetUserInterface();

  Cube *icube = p.SetInputCube("FROM");
  Camera *cam = icube->Camera();

//  Cube cube;
//  cube.Open(ui.GetFilename("FROM"));
//  Camera *cam = cube.Camera();

  int eband = cam->Bands();
  // if the camera is band independent that only run one band
  if (cam->IsBandIndependent()) eband = 1;
  int linc = ui.GetInteger("LINC");
  int sinc = ui.GetInteger("SINC");

  int pTotal = eband * ((cam->Lines()-2) / linc + 2) ;
  Progress progress;
  progress.SetMaximumSteps(pTotal);
  progress.CheckStatus();

  for (int band=1; band<=eband; band++) {
    cam->SetBand(band);
    for (int line=1; line<(int)cam->Lines(); line=line+linc) {
      for (int sample=1; sample< cam->Samples(); sample=sample+sinc) {
        buildStats(cam, sample, line);
      }
      //set the sample value to the last sample and run buildstats
      int sample = cam->Samples();
      buildStats(cam, sample, line);
      progress.CheckStatus();
    }
    //set the line value to the last line and run on all samples(sample + sinc)
    int line = cam->Lines();
    for (int sample=1; sample< cam->Samples(); sample=sample+sinc) {
      buildStats(cam, sample, line);
    }
    //set last sample and run with last line
    int sample = cam->Samples();
    buildStats(cam, sample, line);
    progress.CheckStatus();
  }

  //Set up the Pvl groups and get min, max, avg, and sd for each statstics object  
  PvlGroup pUser("User Parameters");
  pUser += PvlKeyword("Filename",ui.GetFilename("FROM"));
  pUser += PvlKeyword("Linc",ui.GetInteger("LINC"));
  pUser += PvlKeyword("Sinc",ui.GetInteger("SINC"));

  PvlGroup pLat("Latitude");
  pLat += ValidateKey("LatitudeMinimum",latStat.Minimum());
  pLat += ValidateKey("LatitudeMaximum",latStat.Maximum());
  pLat += ValidateKey("LatitudeAverage",latStat.Average());
  pLat += ValidateKey("LatitudeStandardDeviation",latStat.StandardDeviation());

  PvlGroup pLon("Longitude");
  pLon += ValidateKey("LongitudeMinimum",lonStat.Minimum());
  pLon += ValidateKey("LongitudeMaximum",lonStat.Maximum());
  pLon += ValidateKey("LongitudeAverage",lonStat.Average());
  pLon += ValidateKey("LongitudeStandardDeviation",lonStat.StandardDeviation());

  PvlGroup pSampleRes("SampleResolution");
  pSampleRes += ValidateKey("SampleResolutionMinimum",sampleResStat.Minimum(),
                           "meters/pixel");
  pSampleRes += ValidateKey("SampleResolutionMaximum",sampleResStat.Maximum(),
                           "meters/pixel");
  pSampleRes += ValidateKey("SampleResolutionAverage",sampleResStat.Average(),
                           "meters/pixel");
  pSampleRes += ValidateKey("SampleResolutionStandardDeviation",
                           sampleResStat.StandardDeviation(),"meters/pixel");

  PvlGroup pLineRes("LineResolution");
  pLineRes += ValidateKey("LineResolutionMinimum",lineResStat.Minimum(),
                         "meters/pixel");
  pLineRes += ValidateKey("LineResolutionMaximum",lineResStat.Maximum(),
                         "meters/pixel");
  pLineRes += ValidateKey("LineResolutionAverage",lineResStat.Average(),
                         "meters/pixel");
  pLineRes += ValidateKey("LineResolutionStandardDeviation",
                         lineResStat.StandardDeviation(),"meters/pixel");

  PvlGroup pResolution("Resolution");
  pResolution += ValidateKey("ResolutionMinimum",resStat.Minimum(),
                            "meters/pixel");
  pResolution += ValidateKey("ResolutionMaximum",resStat.Maximum(),
                            "meters/pixel");
  pResolution += ValidateKey("ResolutionAverage",resStat.Average(),
                            "meters/pixel");
  pResolution += ValidateKey("ResolutionStandardDeviation",
                            resStat.StandardDeviation(),"meters/pixel");

  PvlGroup pAspectRatio("AspectRatio");
  pAspectRatio += ValidateKey("AspectRatioMinimum",aspectRatioStat.Minimum());
  pAspectRatio += ValidateKey("AspectRatioMaximun",aspectRatioStat.Maximum());
  pAspectRatio += ValidateKey("AspectRatioAverage",aspectRatioStat.Average());
  pAspectRatio += ValidateKey("AspectRatioStandardDeviation",
                             aspectRatioStat.StandardDeviation());

  PvlGroup pPhase("PhaseAngle");
  pPhase += ValidateKey("PhaseMinimum",phaseStat.Minimum());
  pPhase += ValidateKey("PhaseMaximum",phaseStat.Maximum());
  pPhase += ValidateKey("PhaseAverage",phaseStat.Average());
  pPhase += ValidateKey("PhaseStandardDeviation",phaseStat.StandardDeviation());

  PvlGroup pEmission("EmissionAngle");
  pEmission += ValidateKey("EmissionMinimum",emissionStat.Minimum());
  pEmission += ValidateKey("EmissionMaximum",emissionStat.Maximum());
  pEmission += ValidateKey("EmissionAverage",emissionStat.Average());
  pEmission += ValidateKey("EmissionStandardDeviation",
                          emissionStat.StandardDeviation());

  PvlGroup pIncidence("IncidenceAngle");
  pIncidence += ValidateKey("IncidenceMinimum",incidenceStat.Minimum());
  pIncidence += ValidateKey("IncidenceMaximum",incidenceStat.Maximum());
  pIncidence += ValidateKey("IncidenceAverage",incidenceStat.Average());
  pIncidence += ValidateKey("IncidenceStandardDeviation",
                           incidenceStat.StandardDeviation());

  PvlGroup pTime("LocalSolarTime");
  pTime += ValidateKey("LocalSolarTimeMinimum",localSolarTimeStat.Minimum(),
                      "hours");
  pTime += ValidateKey("LocalSolarTimeMaximum",localSolarTimeStat.Maximum(),
                      "hours");
  pTime += ValidateKey("LocalSolarTimeAverage",localSolarTimeStat.Average(),
                      "hours");
  pTime += ValidateKey("LocalSolarTimeStandardDeviation",
                      localSolarTimeStat.StandardDeviation(),"hours");

  PvlGroup pLocalRadius("LocalRadius");
  pLocalRadius += ValidateKey("LocalRadiusMinimum",localRaduisStat.Minimum());
  pLocalRadius += ValidateKey("LocalRadiusMaximum",localRaduisStat.Maximum());
  pLocalRadius += ValidateKey("LocalRadiusAverage",localRaduisStat.Average());
  pLocalRadius += ValidateKey("LocalRadiusStandardDeviation",
                             localRaduisStat.StandardDeviation());

  PvlGroup pNorthAzimuth("NorthAzimuth");
  pNorthAzimuth += ValidateKey("NorthAzimuthMinimum",northAzimuthStat.Minimum());
  pNorthAzimuth += ValidateKey("NorthAzimuthMaximum",northAzimuthStat.Maximum());
  pNorthAzimuth += ValidateKey("NorthAzimuthAverage",northAzimuthStat.Average());
  pNorthAzimuth += ValidateKey("NorthAzimuthStandardDeviation",
                              northAzimuthStat.StandardDeviation());

  // Send the Output to the log area
  Application::Log(pUser);
  Application::Log(pLat);
  Application::Log(pLon);
  Application::Log(pSampleRes);
  Application::Log(pLineRes);
  Application::Log(pResolution);
  Application::Log(pAspectRatio);
  Application::Log(pPhase);
  Application::Log(pEmission);
  Application::Log(pIncidence);
  Application::Log(pTime);
  Application::Log(pLocalRadius);
  Application::Log(pNorthAzimuth);

  if (ui.WasEntered("TO")) {
    string from = ui.GetFilename("FROM");
    string outfile = Filename(ui.GetFilename("TO")).Expanded();
    bool exists = Filename(outfile).Exists();
    bool append = ui.GetBoolean("APPEND");

    //If the user chooses a fromat of PVL then write to the output file ("TO")
    if (ui.GetString("FORMAT") == "PVL") {
      Pvl temp;
      temp.SetTerminator("");
      temp.AddGroup(pUser);
      temp.AddGroup(pLat);
      temp.AddGroup(pLon);
      temp.AddGroup(pSampleRes);
      temp.AddGroup(pLineRes);
      temp.AddGroup(pResolution);
      temp.AddGroup(pAspectRatio);
      temp.AddGroup(pPhase);
      temp.AddGroup(pEmission);
      temp.AddGroup(pIncidence);
      temp.AddGroup(pTime);
      temp.AddGroup(pLocalRadius);
      temp.AddGroup(pNorthAzimuth);

      if (append) {
        temp.Append(outfile);
      }
      else {
        temp.Write(outfile);
      }
    }

    //Create a flatfile of the data with columhn headings 
    // the flatfile is comma delimited and can be imported in to spreadsheets
    else {
      ofstream os;
      bool writeHeader = true;
      if (append) {
        os.open(outfile.c_str(),ios::app);
        if (exists) {
          writeHeader = false;
        }
      }
      else {
        os.open(outfile.c_str(),ios::out);
      }

      // if new file or append and no file exists then write header
      if(writeHeader){
      os << "Filename,"<<
        "LatitudeMinimum,"<<
        "LatitudeMaximum,"<<
        "LatitudeAverage,"<<
        "LatitudeStandardDeviation,"<<
        "LongitudeMinimum,"<<
        "LongitudeMaximum,"<<
        "LongitudeAverage,"<<
        "LongitudeStandardDeviation,"<<
        "SampleResolutionMinimum,"<<
        "SampleResolutionMaximum,"<<
        "SampleResolutionAverage,"<<
        "SampleResolutionStandardDeviation,"<<
        "LineResolutionMinimum,"<<
        "LineResolutionMaximum,"<<
        "LineResolutionAverage,"<<
        "LineResolutionStandardDeviation,"<<
        "ResolutionMinimum,"<<
        "ResolutionMaximum,"<<
        "ResolutionAverage,"<<
        "ResolutionStandardDeviation,"<<
        "AspectRatioMinimum,"<<
        "AspectRatioMaximum,"<<
        "AspectRatioAverage,"<<
        "AspectRatioStandardDeviation,"<<
        "PhaseMinimum,"<<
        "PhaseMaximum,"<<
        "PhaseAverage,"<<
        "PhaseStandardDeviation,"<<
        "EmissionMinimum,"<<
        "EmissionMaximum,"<<
        "EmissionAverage,"<<
        "EmissionStandardDeviation,"<<
        "IncidenceMinimum,"<<
        "IncidenceMaximum,"<<
        "IncidenceAverage,"<<
        "IncidenceStandardDeviation,"<<
        "LocalSolarTimeMinimum,"<<
        "LocalSolarTimeMaximum,"<<
        "LocalSolarTimeAverage,"<<
        "LocalSolarTimeStandardDeviation,"<<
        "LocalRadiusMaximum,"<<
        "LocalRadiusMaximum,"<<
        "LocalRadiusAverage,"<<
        "LocalRadiusStandardDeviation,"<<
        "NorthAzimuthMinimum,"<<
        "NorthAzimuthMaximum,"<<
        "NorthAzimuthAverage,"<<
        "NorthAzimuthStandardDeviation,"<<endl;
      }
      os << Filename(from).Expanded() <<",";
        //call the function to write out the values for each group
        writeFlat(os, latStat);
        writeFlat(os, lonStat);
        writeFlat(os, sampleResStat);
        writeFlat(os, lineResStat);
        writeFlat(os, resStat);
        writeFlat(os, aspectRatioStat);
        writeFlat(os, phaseStat);
        writeFlat(os, emissionStat);
        writeFlat(os, incidenceStat);
        writeFlat(os, localSolarTimeStat);
        writeFlat(os, localRaduisStat);
        writeFlat(os, northAzimuthStat);
        os << endl;
    }
  }

  if( ui.GetBoolean("ATTACH") ) {

    string cam_name = "CameraStatistics";

    //Creates new CameraStatistics Table
    TableField fname( "Name", Isis::TableField::Text, 20 );
    TableField fmin( "Minimum", Isis::TableField::Double );
    TableField fmax( "Maximum", Isis::TableField::Double );
    TableField favg( "Average", Isis::TableField::Double );
    TableField fstd( "StandardDeviation", Isis::TableField::Double );

    TableRecord record;
    record += fname;
    record += fmin;
    record += fmax;
    record += favg;
    record += fstd;

    Table table( cam_name, record );

    vector<PvlGroup> grps;
    grps.push_back( pLat );
    grps.push_back( pLon );
    grps.push_back( pSampleRes );
    grps.push_back( pLineRes );
    grps.push_back( pResolution );
    grps.push_back( pAspectRatio );
    grps.push_back( pPhase );
    grps.push_back( pEmission );
    grps.push_back( pIncidence );
    grps.push_back( pTime );
    grps.push_back( pLocalRadius );
    grps.push_back( pNorthAzimuth );

    for( vector<PvlGroup>::iterator g = grps.begin(); g != grps.end(); g++ ) {
      int i = 0;
      record[i++] = g->Name();
      record[i++] = (double) (*g)[0][0];
      record[i++] = (double) (*g)[1][0];
      record[i++] = (double) (*g)[2][0];
      record[i++] = (double) (*g)[3][0];
      table += record;
    }

    icube->ReOpen( "rw" );
    icube->Write( table );
    p.WriteHistory(*icube);
    icube->Close();

  }

}