Example #1
0
 Stats<T> BivarStats<T>::estimateDeviation(const std::vector< std::pair<T, T> >& d) const
 {
    Stats<T> estats;
    size_t max( d.size() );
    for (size_t i=0; i<max; i++)
       estats.Add(std::abs(d[i].second - eval(d[i].first)));
    return estats;
 }
Example #2
0
//------------------------------------------------------------------------------------
// TD i don't think weighted stddev is right...
// TD add setw(width) everywhere
int main(int argc, char **argv)
{
    clock_t totaltime;            // for timing tests
    // begin counting time
    totaltime = clock();
    try {
        bool help,nostats=false,plot=false,qplot=false,domin=false,domax=false;
        bool doKS=false,dobeg=false,doend=false,doseq=false;
        int i,j,col=1,xcol=-1,fit=0,prec=3,width=0;
        unsigned int brief=0;
        double sigout=0.0,min,max,beg,end;
        string filename,label=string();
        ostream *pout;

        // process command line --------------------------------------------------
        help = (argc <= 1);
        for(i=1; i<argc; i++) {
            if(argv[i][0] == '-') { // && argv[i][1] == '-')
                string arg(argv[i]);
                if(arg == string("--help") || arg == string("-h"))
                    help = true;
// input
                else if(arg == string("--col")
                        || arg == string("-c") || arg == string("-y")) {
                    if(i==argc-1) return BadOption(arg);
                    j = atoi(argv[++i]);
                    if(j <= 0) {
                        cout << "Ignore invalid option --col " << j << endl;
                        help = true;
                    }
                    else col = j;
                }
                else if(arg == string("--xcol") || arg == string("-x")) {
                    if(i==argc-1) return BadOption(arg);
                    j = atoi(argv[++i]);
                    if(j <= 0) {
                        cout << "Ignore invalid option --xcol " << j << endl;
                        help = true;
                    }
                    else xcol = j;
                }
                else if(arg == string("--beg")) {
                    if(i==argc-1) return BadOption(arg);
                    beg = atof(argv[++i]);
                    dobeg = true;
                }
                else if(arg == string("--end")) {
                    if(i==argc-1) return BadOption(arg);
                    end = atof(argv[++i]);
                    doend = true;
                }
                else if(arg == string("--min")) {
                    if(i==argc-1) return BadOption(arg);
                    min = atof(argv[++i]);
                    domin = true;
                }
                else if(arg == string("--max")) {
                    if(i==argc-1) return BadOption(arg);
                    max = atof(argv[++i]);
                    domax = true;
                }
// plots
                else if(arg == string("--plot"))
                    plot = true;
                else if(arg == string("--qplot") || arg == string("-q"))
                    qplot = true;
// analysis
                else if(arg == string("--fit") || arg == string("-f")) {
                    if(i==argc-1) return BadOption(arg);
                    fit = atoi(argv[++i]);
                }
                else if(arg == string("--seq") || arg == string("-s")) {
                    doseq = true;
                }
                else if(arg == string("--nostats") || arg == string("-n"))
                    nostats = true;
// outputs
                else if(arg == string("--outliers") || arg == string("--outs")
                        || arg == string("-o")) {
                    if(i==argc-1) return BadOption(arg);
                    sigout = atof(argv[++i]);
                }
                else if(arg == string("--prec") || arg == string("-p")) {
                    if(i==argc-1) return BadOption(arg);
                    prec = atoi(argv[++i]);
                }
                else if(arg == string("--width") || arg == string("-w")) {
                    if(i==argc-1) return BadOption(arg);
                    width = atoi(argv[++i]);
                }
                else if(arg == string("--KS")) {
                    doKS = true;
                }
                else if(arg.substr(0,7) == string("--brief") ||
                        arg.substr(0,2) == string("-b")) {
                    if(arg == string("--brief") || arg == string("-b")) brief |= 1;
                    else if(arg == string("--briefc") || arg == string("-bc")) brief |= 1;
                    else if(arg == string("--briefw") || arg == string("-bw")) brief |= 2;
                    else if(arg == string("--briefr") || arg == string("-br")) brief |= 4;
                    else if(arg == string("--brief2") || arg == string("-b2")) brief |= 8;
                    else cout << "Ignore unknown option: " << arg << endl;
                }
                else if(arg == string("--label") || arg == string("-l")) {
                    if(i==argc-1) return BadOption(arg);
                    label = string(argv[++i]);
                }
                else {
                    cout << "Ignore unknown option: " << arg << endl;
                }
            }
            else {
                filename = string(argv[i]);
            }
        }

        if(help) {
            cout <<
                 "Usage: rstats [options] <file>\n"
                 "  Compute standard and robust statistics on numbers in one column of <file>.\n"
                 "  Options (default):\n"
                 "# input\n"
                 "   --col <c>   use data in column <c> (1)\n"
                 "   --xcol <cx> specify another column, and output 2-sample stats ()\n"
                 "   --beg <b>   include only data that satisfies x > b\n"
                 "   --end <e>   include only data that satisfies x < e\n"
                 "   --min <lo>  include only data that satisfies d > lo\n"
                 "   --max <hi>  include only data that satisfies d < hi\n"
                 "# plots\n"
                 "   --plot      generate a stem-and-leaf plot\n"
                 "   --qplot     generate data for a quantile-quantile plot [write qplot.out]\n"
                 "# analysis\n"
                 "   --fit <f>   fit a robust polynomial of degree <f> (>0) to data,\n"
                 "                using xcol as independent variable, output in rstats.out;\n"
                 "                stats that follow are for residuals of fit.\n"
                 "   --seq       output data, in input order, with sequential stats\n"
                 "   --nostats   supress total stats output (for fit, seq)\n"
                 "# outputs\n"
                 "   --outs <s>  explicitly list all data outside s*outlier limits\n"
                 "   --prec <p>  specify precision of all outputs (" << prec << ")\n"
                 "   --width <w> specify width of all outputs (" << width << ")\n"
                 "   --KS        output the Anderson-Darling statistic (a form of the KS-test),\n"
                 "                where AD>0.752 means non-normal\n"
                 "   --brief     brief output (conventional stats)\n"
                 "                (--briefw for wt'ed, --briefr for robust --brief2 for 2-sample)\n"
                 "   --label <l> add label l to the (brief,fit,seq) outputs\n"
                 "   --help      print this and quit\n"
                 ;
            return -1;
        }

        if(fit > 0 && xcol == -1) {
            cout << "Error: --fit requires --xcol <xcol>\n";
            return -1;
        }

        // open input file -------------------------------------------------------
        istream *pin;                 // do it this way for Windows...
        if(!filename.empty()) {
            pin = new ifstream(filename.c_str());
            if(pin->fail()) {
                cout << "Could not open file " << filename << " .. abort.\n";
                return -2;
            }
        }
        else {
            filename = string("stdin");
            pin = &cin;
        }

        // 1-line message to screen
        if(brief) {
            ;
        }
        else {
            cout << "# rstats for ";
            if(pin == &cin) cout << "data from stdin";
            else            cout << "file: " << filename;
            cout << ", stats (col " << col << ")";
            if(xcol > -1) {
                cout << " and 2-sample stats (x-col " << xcol << ")";
                if(fit > 0) {
                    cout << ", fit (" << fit << ")";
                    if(nostats) cout << " (but no stats)";
                }
            }
            cout << endl;
        }

        // read input file -------------------------------------------------------
        const int BUFF_SIZE=1024;
        char buffer[BUFF_SIZE];
        size_t nd,nxd;
        double d,xd;
        string stuff;
        vector<double> data,wts,xdata;
        Stats<double> S;
        Stats<double> cstats;
        TwoSampleStats<double> TSS;
        ostringstream oss;

        nd = nxd = 0;
        while(pin->getline(buffer,BUFF_SIZE)) {
            //if(buffer[0] == '#') continue;
            string line = buffer;
            stripTrailing(line,'\r');
            // remove leading whitespace
            line = stripLeading(line,string(" "));
            // skip comments
            if(line[0] == '#') continue;
            // tab separated
            change(line,"\t"," ");
            // check that column col is there...
            if(numWords(line) < col) {
                nd++;
                continue;
            }
            // pull it out
            stuff = word(line,col-1);
            // is it a number?
            if(!(isScientificString(stuff))) {
                nd++;
                continue;
            }
            // convert it to double and save it
            d = asDouble(stuff);
            if(domin && d <= min) continue;
            if(domax && d >= max) continue;
            data.push_back(d);
            S.Add(d);


            // do the same for xcol
            if(xcol > -1) {
                if(numWords(line) < xcol)
                {
                    data.pop_back();
                    nxd++;
                    continue;
                }
                stuff = word(line,xcol-1);
                if(!(isScientificString(stuff)))
                {
                    data.pop_back();
                    nxd++;
                    continue;
                }
                xd = asDouble(stuff);
                if(dobeg && xd <= beg) continue;
                if(doend && xd >= end) continue;
                TSS.Add(xd, d);
                xdata.push_back(xd);
            }

            data.push_back(d);
            cstats.Add(d);
        }  // end input loop

        if(pin != &cin) {
            ((ifstream *)pin)->close();
            delete pin;
        }

        // check that input was good
        if(data.size() < 2) {
            cout << "Abort: not enough data: " << data.size() << " data read";
            if(nd > 0) cout << " [data(col) not found on " << nd << " lines]";
            if(nxd > 0) cout << " [data(xcol) not found on " << nxd << " lines]";
            cout << "." << endl;
            return -3;
        }
        if(xcol != -1 && xdata.size() == 0) {
            cout << "Abort: No data found in 'x' column." << endl;
            return -3;
        }
        if(nd > data.size()/2)
            cout << "Warning: data(col) not found on " << nd << " lines" << endl;
        if(nxd > xdata.size()/2)
            cout << "Warning: data(xcol) not found on " << nxd << " lines" << endl;

        //cout << "Collected " << data.size() << " data.\n" << fixed;
        //for(i=0; i<data.size(); i++) {
        //   cout << " " << setprecision(prec) << data[i];
        //   if(xcol > -1) cout << " : " << xdata[i] << " ";
        //   if(!((i+1)%(xcol > -1 ? 4 : 10))) cout << endl;
        //} cout << endl;
        //
        //cout << "Conventional median is " << median(data) << endl;

        // label used in output
        oss.str("");
        oss << "Data of column " << col;
        if(xcol != -1) oss << ", x column " << xcol;
        oss << ", file " << filename;
        string msg(oss.str());

        // process fit -----------------------------------------------------------
        if(fit > 0) {
            vector<double> savedata(data);
            double *coef,eval,tt,t0;
            wts.resize(data.size());

            coef = new double[fit];
            if(!coef) {
                cout << "Abort: allocate coefficients failed.\n";
                return -4;
            }

            int iret = Robust::RobustPolyFit(&data[0], &xdata[0], data.size(),
                                             fit, &coef[0], &wts[0]);

            cout << "RobustPolyFit returns " << iret << endl;
            if(iret == 0) {
                cout << " Coefficients:" << setprecision(prec);
                for(i=0; i<fit; i++) {
                    if(fabs(coef[i]) < 0.001)
                        cout << " " << scientific;
                    else
                        cout << " " << fixed;
                    cout << coef[i];
                }
                cout << endl << fixed << setprecision(prec);
                cout << " Offsets: Y(col " << col << ") " << savedata[0]
                     << " X(col " << xcol << ") " << xdata[0] << endl;

                // output to file rstats.out
                pout = new ofstream("rstats.out");
                if(pout->fail()) {
                    cout << "Unable to open file rstats.out - output to screen\n";
                    pout = &cout;
                }
                else {
                    cout << "Output polynomial fit to file rstats.out\n";
                    //cout << " try `plot rstats.out -x 1 -y 2,data,points -y 3,fit,lines"
                    //<< " -y 4,residuals -y2 5,weights --y2range -0.1:1.1 "
                    //<< "-t \"Robust fit (degree " << fit
                    //<< "), output of rstats for file " << filename << "\"`" << endl;
                    cout << "try the command plot rstats.out -x 1 -y 4,residuals "
                         << "-y2 2,data,points -y2 3,fit,lines -xl X -yl Residuals \\\n     "
                         << "-y2l \"Data and fit\" -t \"Robust fit (degree " << fit
                         << "), output of rstats for file " << filename << "\"" << endl;
                }
                t0 = xdata[0];
                *pout << "#Xdata, Data, fit, resid, weight (" << data.size() << " pts):"
                      << fixed << setprecision(prec) << endl;
                for(i=0; i<int(data.size()); i++) {
                    eval = savedata[0] + coef[0];
                    tt = xdata[i]-t0;
                    for(j=1; j<fit; j++) {
                        eval += coef[j]*tt;
                        tt *= (xdata[i]-t0);
                    }
                    *pout << fixed << setprecision(prec)
                          << xdata[i] << " " << savedata[i]
                          << " " << eval << " " << data[i]
                          << scientific << " " << wts[i] << endl;
                }
                if(pout != &cout) ((ofstream *)pout)->close();
                //QSort(&wts[0],wts.size());
                //Robust::StemLeafPlot(cout, &wts[0], wts.size(), "weights");
            }
            //cout << endl;
            delete[] coef;
            if(nostats) return 0;

            oss.str("");
            oss << "Residuals of fit (deg " << fit << ") col " << col
                << " vs x col " << xcol << ", file " << filename;
            msg = oss.str();
        }  // end if fit

        // output data with sequential stats -------------------------------------
        if(doseq) {
            cstats.Reset();
            cout << "Data and sequential stats ([lab] [xdata] data n ave std)\n";
            cout << fixed << setprecision(prec);
            for(i=0; i<int(data.size()); i++) {
                cstats.Add(data[i]);
                if(!label.empty()) cout << label << " ";
                if(xdata.size()>0) cout << xdata[i] << " ";
                cout << data[i] << "   " << cstats.N() << " "
                     << cstats.Average() << " "
                     << (cstats.N() > 1 ? cstats.StdDev() : 0.0) << endl;
            }
            if(nostats) return 0;
        }

        // compute robust stats --------------------------------------------------
        double median,mad,mest,Q1,Q3,KS;
        if(xdata.size() > 0) QSort(&data[0],&xdata[0],xdata.size());
        else                 QSort(&data[0],data.size());
        Robust::Quartiles(&data[0],data.size(),Q1,Q3);
        // outlier limit (high) 2.5Q3-1.5Q1
        // outlier limit (low ) 2.5Q1-1.5Q3
        mad = Robust::MedianAbsoluteDeviation(&data[0],data.size(),median);
        wts.resize(data.size());
        mest = Robust::MEstimate(&data[0], data.size(), median, mad, &wts[0]);
        cout << "Conventional statistics:\n"
             << fixed << setprecision(8) << S << endl;

        if(xcol > -1)
            cout << "Two-sample statistics:\n" << setprecision(8) << TSS << endl;


        cout << fixed << setprecision(prec);

        // output stats ----------------------------------------------------------
        if(brief & 1 || brief & 8)
            cout << "rstats(con):" << (label.empty() ? "" : " "+label)
                 << " N " << setw(prec) << cstats.N()
                 << "  Ave " << setw(prec+3) << cstats.Average()
                 << "  Std " << setw(prec+3) << cstats.StdDev()
                 << "  Var " << setw(prec+3) << cstats.Variance()
                 << "  Min " << setw(prec+3) << cstats.Minimum()
                 << "  Max " << setw(prec+3) << cstats.Maximum()
                 << "  P2P " << setw(prec+3) << cstats.Maximum()-cstats.Minimum()
                 << endl;
        else if(brief==0)
            cout << "Conventional statistics: " << msg << ":\n"
                 << cstats << endl;

        if(doKS) {
            KS = ADtest(&data[0],data.size(),cstats.Average(),cstats.StdDev(),false);
            cout << " KS test = " << setprecision(prec) << KS << endl;
        }

        cstats.Reset();
        for(i=0; i<int(data.size()); i++) {
            //cout << "WTD " << i << fixed << setprecision(8)
            //<< " " << data[i] << " " << wts[i] << endl;
            cstats.Add(data[i],wts[i]);
        }

        if(brief & 2) cout << "rstats(wtd)" << (fit==0 ? "" : "(fit resid)")
                               << ":" << (label.empty() ? "" : " "+label)
                               << " N " << setw(prec) << cstats.N()
                               << "  Ave " << setw(prec+3) << cstats.Average()
                               << "  Std " << setw(prec+3) << cstats.StdDev()
                               << "  Var " << setw(prec+3) << cstats.Variance()
                               << "  Min " << setw(prec+3) << cstats.Minimum()
                               << "  Max " << setw(prec+3) << cstats.Maximum()
                               << "  P2P " << setw(prec+3) << cstats.Maximum()-cstats.Minimum()
                               << endl;
        else if(brief==0)
            cout << "Conventional statistics with robust weighting: " << msg << ":\n"
                 << fixed << setprecision(prec) << cstats << endl;

        if(xcol > -1) {
            if(brief & 8) cout << "rstats(2sm)"
                                   << ":" << (label.empty() ? "" : " "+label)
                                   << " N " << data.size()
                                   //<< " VarX " << setprecision(prec) << TSS.VarianceX()
                                   //<< " VarY " << setprecision(prec) << TSS.VarianceY()
                                   << "  Int " << setprecision(prec) << TSS.Intercept()
                                   << "  Slp " << setprecision(prec) << TSS.Slope()
                                   << " +- " << setprecision(prec) << TSS.SigmaSlope()
                                   << "  CSig " << setprecision(prec) << TSS.SigmaYX()
                                   << "  Corr " << setprecision(prec) << TSS.Correlation()
                                   << endl;
            else if(brief==0) cout << "Two-sample statistics: " << msg << ":\n"
                                       << setprecision(prec) << TSS << endl;
        }

        if(brief & 4) cout << "rstats(rob)" << (fit==0 ? "" : "(fit resid)")
                               << ":" << (label.empty() ? "" : " "+label)
                               << " N " << data.size()
                               << "  Med " << setw(prec+3) << median << "  MAD " << mad
                               << "  Min " << setw(prec+3) << cstats.Minimum()
                               << "  Max " << cstats.Maximum()
                               << "  P2P " << setw(prec+3) << cstats.Maximum()-cstats.Minimum()
                               << "  Q1 " << setw(prec+3) << Q1 << "  Q3 " << setw(prec+3) << Q3
                               << endl;
        else if(brief==0) {
            cout << "Robust statistics: " << msg << ":\n";
            cout << " Number    = " << data.size() << endl;
            cout << " Quartiles = " << setw(11) << setprecision(prec) << Q1
                 << " " << setw(11) << setprecision(prec) << Q3 << endl;
            cout << " Median    = " << setw(11) << setprecision(prec) << median << endl;
            cout << " MEstimate = " << setw(11) << setprecision(prec) << mest << endl;
            cout << " MAD       = " << setw(11) << setprecision(prec) << mad << endl;
        }

        // output stem and leaf plot ---------------------------------------------
        if(plot) {
            try {
                Robust::StemLeafPlot(cout, &data[0], data.size(), msg);
            }
            catch(Exception& e) {
                if(e.getText(0) == string("Invalid input") ||
                        e.getText(0) == string("Array has zero range")) {
                    cout << "(No stem and leaf plot; data is trivial)\n";
                    return 0;
                }
                //if(e.getText(0) == string("Array is not sorted"))
                GPSTK_RETHROW(e);
            }
        }

        // output outliers -------------------------------------------------------
        if(sigout) {      // TD does this work when ave != 0?
            double OH = Q3 + sigout*1.5*(Q3-Q1); // normally 2.5*Q3 - 1.5*Q1;
            double OL = Q1 - sigout*1.5*(Q3-Q1); // normally 2.5*Q1 - 1.5*Q3;
            vector<int> outhi,outlo;
            for(i=0; i<int(data.size()); i++) {
                if(data[i] > OH)
                    outhi.push_back(i);
                else if(data[i] < OL)
                    outlo.push_back(i);
            }
            cout << "There are " << outhi.size()+outlo.size() << " outliers; "
                 << outlo.size() << " low (< " << setprecision(prec) << OL << ") and "
                 << outhi.size() << " high (> " << setprecision(prec) << OH << ")."
                 << endl << "     n  " << (xdata.size() > 0 ? "x-value" : "")
                 << "   value  val/outlim" << endl;
            // NB data and xdata have been sorted together
            for(j=1,i=0; i<int(outlo.size()); i++,j++) {
                cout << " OTL " << j << " ";
                if(xdata.size() > 0) cout << xdata[outlo[i]] << " ";
                cout << data[outlo[i]] << " " << data[outlo[i]]/OL << endl;
            }
            for(i=0; i<int(outhi.size()); i++,j++) {
                cout << " OTH " << j << " ";
                if(xdata.size() > 0) cout << xdata[outhi[i]] << " ";
                cout << data[outhi[i]] << " " << data[outhi[i]]/OH << endl;
            }
        }

        // output quantile plot --------------------------------------------------
        if(qplot) {
            xdata.resize(data.size());    // replace xcol data with quantiles.
            Robust::QuantilePlot(&data[0],data.size(),&xdata[0]);
            // output to file rstats.out
            pout = new ofstream("qplot.out");
            if(pout->fail()) {
                cout << "Unable to open file qplot.out - output to screen\n";
                pout = &cout;
            }
            else cout << "Output q-q data to file qplot.out (plot column 2 vs 1)\n";

            TSS.Reset();         // use TSS to get slope and intercept of q-q fit to line
            for(i=0; i<int(data.size()); i++) TSS.Add(xdata[i],data[i]);
            for(i=0; i<int(data.size()); i++)
                *pout << xdata[i] << " " << data[i]
                      << " " << TSS.Intercept() + TSS.Slope()*xdata[i]
                      << endl;

            if(pout != &cout) ((ofstream *)pout)->close();

            cout << "Q-Q data fit to line yields y-intercept (mean) "
                 << setprecision(3) << TSS.Intercept()
                 << " and slope (std.dev.) " << TSS.Slope() << endl
                 << " try `plot qplot.out -x 1 -y 2,data -y 3,line,lines"
                 << " -xl quantile -yl data -t \"Quantile plot\"`"
                 << endl;
        }

        // finish up - compute and print run time --------------------------------
        totaltime = clock()-totaltime;
        if(brief==0) cout << "rstats timing: " << fixed << setprecision(3)
                              << double(totaltime)/double(CLOCKS_PER_SEC) << " seconds." << endl;

        return 0;
    }
    catch(Exception& e) {
        cout << "GPSTk Exception : " << e.what();
    }
    catch(std::exception& e) {
        cout << "standard exception : " << e.what();
    }
    catch (...) {
        cout << "Unknown error." << endl;
    }
    return -1;
}   // end main()