inline double KDERules<MetricType, KernelType, TreeType>:: Score(const size_t queryIndex, TreeType& referenceNode) { double score, maxKernel, minKernel, bound; const arma::vec& queryPoint = querySet.unsafe_col(queryIndex); const double minDistance = referenceNode.MinDistance(queryPoint); bool newCalculations = true; if (tree::TreeTraits<TreeType>::FirstPointIsCentroid && lastQueryIndex == queryIndex && traversalInfo.LastReferenceNode() != NULL && traversalInfo.LastReferenceNode()->Point(0) == referenceNode.Point(0)) { // Don't duplicate calculations. newCalculations = false; lastQueryIndex = queryIndex; lastReferenceIndex = referenceNode.Point(0); } else { // Calculations are new. maxKernel = kernel.Evaluate(minDistance); minKernel = kernel.Evaluate(referenceNode.MaxDistance(queryPoint)); bound = maxKernel - minKernel; } if (newCalculations && bound <= (absError + relError * minKernel) / referenceSet.n_cols) { // Estimate values. double kernelValue; // Calculate kernel value based on reference node centroid. if (tree::TreeTraits<TreeType>::FirstPointIsCentroid) { kernelValue = EvaluateKernel(queryIndex, referenceNode.Point(0)); } else { kde::KDEStat& referenceStat = referenceNode.Stat(); kernelValue = EvaluateKernel(queryPoint, referenceStat.Centroid()); } densities(queryIndex) += referenceNode.NumDescendants() * kernelValue; // Don't explore this tree branch. score = DBL_MAX; } else { score = minDistance; } ++scores; traversalInfo.LastReferenceNode() = &referenceNode; traversalInfo.LastScore() = score; return score; }
inline double KDERules<MetricType, KernelType, TreeType>:: Score(TreeType& queryNode, TreeType& referenceNode) { double score, maxKernel, minKernel, bound; const double minDistance = queryNode.MinDistance(referenceNode); // Calculations are not duplicated. bool newCalculations = true; if (tree::TreeTraits<TreeType>::FirstPointIsCentroid && (traversalInfo.LastQueryNode() != NULL) && (traversalInfo.LastReferenceNode() != NULL) && (traversalInfo.LastQueryNode()->Point(0) == queryNode.Point(0)) && (traversalInfo.LastReferenceNode()->Point(0) == referenceNode.Point(0))) { // Don't duplicate calculations. newCalculations = false; lastQueryIndex = queryNode.Point(0); lastReferenceIndex = referenceNode.Point(0); } else { // Calculations are new. maxKernel = kernel.Evaluate(minDistance); minKernel = kernel.Evaluate(queryNode.MaxDistance(referenceNode)); bound = maxKernel - minKernel; } // If possible, avoid some calculations because of the error tolerance. if (newCalculations && bound <= (absError + relError * minKernel) / referenceSet.n_cols) { // Auxiliary variables. double kernelValue; kde::KDEStat& referenceStat = referenceNode.Stat(); kde::KDEStat& queryStat = queryNode.Stat(); // If calculating a center is not required. if (tree::TreeTraits<TreeType>::FirstPointIsCentroid) { kernelValue = EvaluateKernel(queryNode.Point(0), referenceNode.Point(0)); } // Sadly, we have no choice but to calculate the center. else { kernelValue = EvaluateKernel(queryStat.Centroid(), referenceStat.Centroid()); } // Sum up estimations. for (size_t i = 0; i < queryNode.NumDescendants(); ++i) { densities(queryNode.Descendant(i)) += referenceNode.NumDescendants() * kernelValue; } score = DBL_MAX; } else { score = minDistance; } ++scores; traversalInfo.LastQueryNode() = &queryNode; traversalInfo.LastReferenceNode() = &referenceNode; traversalInfo.LastScore() = score; return score; }