コード例 #1
0
ファイル: kde_rules_impl.hpp プロジェクト: dasayan05/mlpack
inline double KDERules<MetricType, KernelType, TreeType>::
Score(const size_t queryIndex, TreeType& referenceNode)
{
  double score, maxKernel, minKernel, bound;
  const arma::vec& queryPoint = querySet.unsafe_col(queryIndex);
  const double minDistance = referenceNode.MinDistance(queryPoint);
  bool newCalculations = true;

  if (tree::TreeTraits<TreeType>::FirstPointIsCentroid &&
      lastQueryIndex == queryIndex &&
      traversalInfo.LastReferenceNode() != NULL &&
      traversalInfo.LastReferenceNode()->Point(0) == referenceNode.Point(0))
  {
    // Don't duplicate calculations.
    newCalculations = false;
    lastQueryIndex = queryIndex;
    lastReferenceIndex = referenceNode.Point(0);
  }
  else
  {
    // Calculations are new.
    maxKernel = kernel.Evaluate(minDistance);
    minKernel = kernel.Evaluate(referenceNode.MaxDistance(queryPoint));
    bound = maxKernel - minKernel;
  }

  if (newCalculations &&
      bound <= (absError + relError * minKernel) / referenceSet.n_cols)
  {
    // Estimate values.
    double kernelValue;

    // Calculate kernel value based on reference node centroid.
    if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
    {
      kernelValue = EvaluateKernel(queryIndex, referenceNode.Point(0));
    }
    else
    {
      kde::KDEStat& referenceStat = referenceNode.Stat();
      kernelValue = EvaluateKernel(queryPoint, referenceStat.Centroid());
    }

    densities(queryIndex) += referenceNode.NumDescendants() * kernelValue;

    // Don't explore this tree branch.
    score = DBL_MAX;
  }
  else
  {
    score = minDistance;
  }

  ++scores;
  traversalInfo.LastReferenceNode() = &referenceNode;
  traversalInfo.LastScore() = score;
  return score;
}
コード例 #2
0
ファイル: kde_rules_impl.hpp プロジェクト: dasayan05/mlpack
inline double KDERules<MetricType, KernelType, TreeType>::
Score(TreeType& queryNode, TreeType& referenceNode)
{
  double score, maxKernel, minKernel, bound;
  const double minDistance = queryNode.MinDistance(referenceNode);
  // Calculations are not duplicated.
  bool newCalculations = true;

  if (tree::TreeTraits<TreeType>::FirstPointIsCentroid &&
      (traversalInfo.LastQueryNode() != NULL) &&
      (traversalInfo.LastReferenceNode() != NULL) &&
      (traversalInfo.LastQueryNode()->Point(0) == queryNode.Point(0)) &&
      (traversalInfo.LastReferenceNode()->Point(0) == referenceNode.Point(0)))
  {
    // Don't duplicate calculations.
    newCalculations = false;
    lastQueryIndex = queryNode.Point(0);
    lastReferenceIndex = referenceNode.Point(0);
  }
  else
  {
    // Calculations are new.
    maxKernel = kernel.Evaluate(minDistance);
    minKernel = kernel.Evaluate(queryNode.MaxDistance(referenceNode));
    bound = maxKernel - minKernel;
  }

  // If possible, avoid some calculations because of the error tolerance.
  if (newCalculations &&
      bound <= (absError + relError * minKernel) / referenceSet.n_cols)
  {
    // Auxiliary variables.
    double kernelValue;
    kde::KDEStat& referenceStat = referenceNode.Stat();
    kde::KDEStat& queryStat = queryNode.Stat();

    // If calculating a center is not required.
    if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
    {
      kernelValue = EvaluateKernel(queryNode.Point(0), referenceNode.Point(0));
    }
    // Sadly, we have no choice but to calculate the center.
    else
    {
      kernelValue = EvaluateKernel(queryStat.Centroid(),
                                   referenceStat.Centroid());
    }

    // Sum up estimations.
    for (size_t i = 0; i < queryNode.NumDescendants(); ++i)
    {
      densities(queryNode.Descendant(i)) +=
          referenceNode.NumDescendants() * kernelValue;
    }
    score = DBL_MAX;
  }
  else
  {
    score = minDistance;
  }

  ++scores;
  traversalInfo.LastQueryNode() = &queryNode;
  traversalInfo.LastReferenceNode() = &referenceNode;
  traversalInfo.LastScore() = score;
  return score;
}