void ModelObject::center_around_origin() { // calculate the displacements needed to // center this object around the origin BoundingBoxf3 bb; { TriangleMesh mesh; this->raw_mesh(&mesh); mesh.bounding_box(&bb); } // first align to origin on XYZ Vectorf3 vector(-bb.min.x, -bb.min.y, -bb.min.z); // then center it on XY Sizef3 size = bb.size(); vector.x -= size.x/2; vector.y -= size.y/2; this->translate(vector); this->origin_translation.translate(vector); if (!this->instances.empty()) { for (ModelInstancePtrs::const_iterator i = this->instances.begin(); i != this->instances.end(); ++i) { (*i)->offset.translate(-vector.x, -vector.y); } this->update_bounding_box(); } }
// this returns the bounding box of the *transformed* given instance BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx) const { TriangleMesh mesh = this->raw_mesh(); this->instances[instance_idx]->transform_mesh(&mesh); return mesh.bounding_box(); }
void ModelObject::update_bounding_box() { TriangleMesh mesh; this->mesh(&mesh); mesh.bounding_box(&this->_bounding_box); this->_bounding_box_valid = true; }
// this returns the bounding box of the *transformed* given instance void ModelObject::instance_bounding_box(size_t instance_idx, BoundingBoxf3* bb) const { TriangleMesh mesh; this->raw_mesh(&mesh); this->instances[instance_idx]->transform_mesh(&mesh); mesh.bounding_box(bb); }
int MeshObj::Create(WCHAR* szfn, ID3D11Device* pd3dDevice, ID3D11DeviceContext* pd3dContext) { Release(); TriangleMesh mesh; MeshObjReader::read(szfn, mesh); int N = mesh.num_vertices(); m_vertices.resize(N); for(int i = 0; i < N; ++i) { m_vertices[i].pos = mesh.vertices_[i]; m_vertices[i].norm = mesh.normals_[i]; } D3D11_BUFFER_DESC bdesc; bdesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; bdesc.ByteWidth = mesh.num_vertices() * sizeof(D3DXVECTOR3) * 2; bdesc.CPUAccessFlags = 0; bdesc.MiscFlags = 0; bdesc.StructureByteStride = sizeof(D3DXVECTOR3) * 2; bdesc.Usage = D3D11_USAGE_DEFAULT; D3D11_SUBRESOURCE_DATA srd; srd.pSysMem = &m_vertices[0]; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; pd3dDevice->CreateBuffer(&bdesc, &srd, &m_pVertexBuffer); bdesc.BindFlags = D3D11_BIND_INDEX_BUFFER; bdesc.ByteWidth = mesh.num_triangles() * sizeof(Tuple3ui); bdesc.CPUAccessFlags = 0; bdesc.MiscFlags = 0; bdesc.StructureByteStride = sizeof(unsigned); bdesc.Usage = D3D11_USAGE_DEFAULT; srd.pSysMem = &mesh.triangles_[0]; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; pd3dDevice->CreateBuffer(&bdesc, &srd, &m_pIndexBuffer); numVertices = mesh.num_vertices(); numIndices = mesh.num_triangles() * 3; D3DXVECTOR3 bblow, bbhigh; mesh.bounding_box(bblow, bbhigh); m_bbox_center = (bblow + bbhigh) * 0.5f; m_bbox_extent = (bbhigh - bblow) * 0.5f; return 0; }
void ModelObject::raw_bounding_box(BoundingBoxf3* bb) const { for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { if ((*v)->modifier) continue; TriangleMesh mesh = (*v)->mesh; if (this->instances.empty()) CONFESS("Can't call raw_bounding_box() with no instances"); this->instances.front()->transform_mesh(&mesh, true); BoundingBoxf3 mbb; mesh.bounding_box(&mbb); bb->merge(mbb); } }
void ModelObject::print_info() const { using namespace std; cout << fixed; cout << "[" << boost::filesystem::path(this->input_file).filename().string() << "]" << endl; TriangleMesh mesh = this->raw_mesh(); mesh.check_topology(); BoundingBoxf3 bb = mesh.bounding_box(); Sizef3 size = bb.size(); cout << "size_x = " << size.x << endl; cout << "size_y = " << size.y << endl; cout << "size_z = " << size.z << endl; cout << "min_x = " << bb.min.x << endl; cout << "min_y = " << bb.min.y << endl; cout << "min_z = " << bb.min.z << endl; cout << "max_x = " << bb.max.x << endl; cout << "max_y = " << bb.max.y << endl; cout << "max_z = " << bb.max.z << endl; cout << "number_of_facets = " << mesh.stl.stats.number_of_facets << endl; cout << "manifold = " << (mesh.is_manifold() ? "yes" : "no") << endl; mesh.repair(); // this calculates number_of_parts if (mesh.needed_repair()) { mesh.repair(); if (mesh.stl.stats.degenerate_facets > 0) cout << "degenerate_facets = " << mesh.stl.stats.degenerate_facets << endl; if (mesh.stl.stats.edges_fixed > 0) cout << "edges_fixed = " << mesh.stl.stats.edges_fixed << endl; if (mesh.stl.stats.facets_removed > 0) cout << "facets_removed = " << mesh.stl.stats.facets_removed << endl; if (mesh.stl.stats.facets_added > 0) cout << "facets_added = " << mesh.stl.stats.facets_added << endl; if (mesh.stl.stats.facets_reversed > 0) cout << "facets_reversed = " << mesh.stl.stats.facets_reversed << endl; if (mesh.stl.stats.backwards_edges > 0) cout << "backwards_edges = " << mesh.stl.stats.backwards_edges << endl; } cout << "number_of_parts = " << mesh.stl.stats.number_of_parts << endl; cout << "volume = " << mesh.volume() << endl; }
void SLAPrint::slice() { TriangleMesh mesh = this->model->mesh(); mesh.repair(); // align to origin taking raft into account this->bb = mesh.bounding_box(); if (this->config.raft_layers > 0) { this->bb.min.x -= this->config.raft_offset.value; this->bb.min.y -= this->config.raft_offset.value; this->bb.max.x += this->config.raft_offset.value; this->bb.max.y += this->config.raft_offset.value; } mesh.translate(0, 0, -bb.min.z); this->bb.translate(0, 0, -bb.min.z); // if we are generating a raft, first_layer_height will not affect mesh slicing const float lh = this->config.layer_height.value; const float first_lh = this->config.first_layer_height.value; // generate the list of Z coordinates for mesh slicing // (we slice each layer at half of its thickness) this->layers.clear(); { const float first_slice_lh = (this->config.raft_layers > 0) ? lh : first_lh; this->layers.push_back(Layer(first_slice_lh/2, first_slice_lh)); } while (this->layers.back().print_z + lh/2 <= mesh.stl.stats.max.z) { this->layers.push_back(Layer(this->layers.back().print_z + lh/2, this->layers.back().print_z + lh)); } // perform slicing and generate layers { std::vector<float> slice_z; for (size_t i = 0; i < this->layers.size(); ++i) slice_z.push_back(this->layers[i].slice_z); std::vector<ExPolygons> slices; TriangleMeshSlicer(&mesh).slice(slice_z, &slices); for (size_t i = 0; i < slices.size(); ++i) this->layers[i].slices.expolygons = slices[i]; } // generate infill if (this->config.fill_density < 100) { std::auto_ptr<Fill> fill(Fill::new_from_type(this->config.fill_pattern.value)); fill->bounding_box.merge(Point::new_scale(bb.min.x, bb.min.y)); fill->bounding_box.merge(Point::new_scale(bb.max.x, bb.max.y)); fill->spacing = this->config.get_abs_value("infill_extrusion_width", this->config.layer_height.value); fill->angle = Geometry::deg2rad(this->config.fill_angle.value); fill->density = this->config.fill_density.value/100; parallelize<size_t>( 0, this->layers.size()-1, boost::bind(&SLAPrint::_infill_layer, this, _1, fill.get()), this->config.threads.value ); } // generate support material this->sm_pillars.clear(); ExPolygons overhangs; if (this->config.support_material) { // flatten and merge all the overhangs { Polygons pp; for (std::vector<Layer>::const_iterator it = this->layers.begin()+1; it != this->layers.end(); ++it) pp += diff(it->slices, (it - 1)->slices); overhangs = union_ex(pp); } // generate points following the shape of each island Points pillars_pos; const coordf_t spacing = scale_(this->config.support_material_spacing); const coordf_t radius = scale_(this->sm_pillars_radius()); for (ExPolygons::const_iterator it = overhangs.begin(); it != overhangs.end(); ++it) { // leave a radius/2 gap between pillars and contour to prevent lateral adhesion for (float inset = radius * 1.5;; inset += spacing) { // inset according to the configured spacing Polygons curr = offset(*it, -inset); if (curr.empty()) break; // generate points along the contours for (Polygons::const_iterator pg = curr.begin(); pg != curr.end(); ++pg) { Points pp = pg->equally_spaced_points(spacing); for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p) pillars_pos.push_back(*p); } } } // for each pillar, check which layers it applies to for (Points::const_iterator p = pillars_pos.begin(); p != pillars_pos.end(); ++p) { SupportPillar pillar(*p); bool object_hit = false; // check layers top-down for (int i = this->layers.size()-1; i >= 0; --i) { // check whether point is void in this layer if (!this->layers[i].slices.contains(*p)) { // no slice contains the point, so it's in the void if (pillar.top_layer > 0) { // we have a pillar, so extend it pillar.bottom_layer = i + this->config.raft_layers; } else if (object_hit) { // we don't have a pillar and we're below the object, so create one pillar.top_layer = i + this->config.raft_layers; } } else { if (pillar.top_layer > 0) { // we have a pillar which is not needed anymore, so store it and initialize a new potential pillar this->sm_pillars.push_back(pillar); pillar = SupportPillar(*p); } object_hit = true; } } if (pillar.top_layer > 0) this->sm_pillars.push_back(pillar); } } // generate a solid raft if requested // (do this after support material because we take support material shape into account) if (this->config.raft_layers > 0) { ExPolygons raft = this->layers.front().slices + overhangs; // take support material into account raft = offset_ex(raft, scale_(this->config.raft_offset)); for (int i = this->config.raft_layers; i >= 1; --i) { this->layers.insert(this->layers.begin(), Layer(0, first_lh + lh * (i-1))); this->layers.front().slices = raft; } // prepend total raft height to all sliced layers for (size_t i = this->config.raft_layers; i < this->layers.size(); ++i) this->layers[i].print_z += first_lh + lh * (this->config.raft_layers-1); } }