int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); choice::MpiArgs args( argc, argv ); #else choice::Args args( argc, argv ); #endif int commRank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); // Required arguments double epsilon = args.Input<double>("--epsilon", "diffusion parameter"); int numRefs = args.Input<int>("--numRefs", "number of refinement steps"); bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation"); int norm = args.Input<int>("--norm", "0 = graph\n 1 = robust\n 2 = modified robust"); // Optional arguments (have defaults) bool zeroL2 = args.Input("--zeroL2", "take L2 term on v in robust norm to zero", false); args.Process(); //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr tau = varFactory.testVar("\\tau", HDIV); VarPtr v = varFactory.testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory.traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma = varFactory.fieldVar("sigma", VECTOR_L2); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // tau terms: bf->addTerm(sigma / epsilon, tau); bf->addTerm(u, tau->div()); bf->addTerm(-uhat, tau->dot_normal()); // v terms: bf->addTerm( sigma, v->grad() ); bf->addTerm( beta * u, - v->grad() ); bf->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// IPPtr ip = Teuchos::rcp(new IP); if (norm == 0) { ip = bf->graphNorm(); FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); ip->addZeroMeanTerm( h2_scaling*v ); } // Robust norm else if (norm == 1) { // robust test norm FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); if (!zeroL2) ip->addTerm( v ); ip->addTerm( sqrt(epsilon) * v->grad() ); // Weight these two terms for inflow ip->addTerm( beta * v->grad() ); ip->addTerm( tau->div() ); ip->addTerm( ip_scaling/sqrt(epsilon) * tau ); if (zeroL2) ip->addZeroMeanTerm( h2_scaling*v ); } // Modified robust norm else if (norm == 2) { // robust test norm FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); // FunctionPtr ip_weight = Teuchos::rcp( new IPWeight() ); if (!zeroL2) ip->addTerm( v ); ip->addTerm( sqrt(epsilon) * v->grad() ); ip->addTerm( beta * v->grad() ); ip->addTerm( tau->div() - beta*v->grad() ); ip->addTerm( ip_scaling/sqrt(epsilon) * tau ); if (zeroL2) ip->addZeroMeanTerm( h2_scaling*v ); } // // robust test norm // IPPtr robIP = Teuchos::rcp(new IP); // FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); // if (!enforceLocalConservation) // robIP->addTerm( ip_scaling * v ); // robIP->addTerm( sqrt(epsilon) * v->grad() ); // // Weight these two terms for inflow // FunctionPtr ip_weight = Teuchos::rcp( new IPWeight() ); // robIP->addTerm( ip_weight * beta * v->grad() ); // robIP->addTerm( ip_weight * tau->div() ); // robIP->addTerm( ip_scaling/sqrt(epsilon) * tau ); // if (enforceLocalConservation) // robIP->addZeroMeanTerm( v ); //////////////////// SPECIFY RHS /////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) ); rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints ); FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) ); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); SpatialFilterPtr lBoundary = Teuchos::rcp( new LeftBoundary ); SpatialFilterPtr tbBoundary = Teuchos::rcp( new TopBottomBoundary ); SpatialFilterPtr rBoundary = Teuchos::rcp( new RightBoundary ); // SpatialFilterPtr leftCircleBoundary = Teuchos::rcp( new LeftCircleBoundary ); // SpatialFilterPtr rightCircleBoundary = Teuchos::rcp( new RightCircleBoundary ); SpatialFilterPtr circleBoundary = Teuchos::rcp( new CircleBoundary ); bc->addDirichlet(beta_n_u_minus_sigma_n, lBoundary, zero); bc->addDirichlet(beta_n_u_minus_sigma_n, tbBoundary, zero); pc->addConstraint(beta*uhat->times_normal() - beta_n_u_minus_sigma_n == zero, rBoundary); // bc->addDirichlet(uhat, leftCircleBoundary, one); // bc->addDirichlet(beta_n_u_minus_sigma_n, rightCircleBoundary, beta*n*one); bc->addDirichlet(uhat, circleBoundary, one); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int H1Order = 3, pToAdd = 2; Teuchos::RCP<Mesh> mesh; mesh = MeshFactory::shiftedHemkerMesh(-3, 9, 6, 1, bf, H1Order, pToAdd); // mesh = BuildHemkerMesh(bf, nseg, circleMesh, triangulateMesh, H1Order, pToAdd); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); solution->setFilter(pc); if (enforceLocalConservation) { FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero); } double energyThreshold = 0.25; // for mesh refinements RefinementStrategy refinementStrategy( solution, energyThreshold ); Teuchos::RCP<RefinementHistory> refHistory = Teuchos::rcp( new RefinementHistory ); mesh->registerObserver(refHistory); #ifdef saveVTK VTKExporter exporter(solution, mesh, varFactory); #endif ofstream errOut; if (commRank == 0) errOut.open("hemker_err.txt"); for (int refIndex=0; refIndex<=numRefs; refIndex++) { solution->solve(false); double energy_error = solution->energyErrorTotal(); if (commRank==0) { stringstream outfile; outfile << "hemker_" << refIndex; #ifdef saveVTK exporter.exportSolution(outfile.str()); #endif // Check local conservation FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) ); FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh); cout << "Mass flux: Largest Local = " << fluxImbalances[0] << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl; errOut << mesh->numGlobalDofs() << " " << energy_error << " " << fluxImbalances[0] << " " << fluxImbalances[1] << " " << fluxImbalances[2] << endl; } if (refIndex < numRefs) refinementStrategy.refine(commRank==0); // print to console on commRank 0 } if (commRank == 0) errOut.close(); return 0; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); int rank=mpiSession.getRank(); int numProcs=mpiSession.getNProc(); #else int rank = 0; int numProcs = 1; #endif int polyOrder = 3; int pToAdd = 2; // for tests // define our manufactured solution or problem bilinear form: double epsilon = 1e-2; bool useTriangles = false; FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = 0.0; // x1 quadPoints(0,1) = 0.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = 0.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = 0.0; quadPoints(3,1) = 1.0; int H1Order = polyOrder + 1; int horizontalCells = 1, verticalCells = 1; double energyThreshold = 0.2; // for mesh refinements double nonlinearStepSize = 0.5; double nonlinearRelativeEnergyTolerance = 0.015; // used to determine convergence of the nonlinear solution //////////////////////////////////////////////////////////////////// // SET UP PROBLEM //////////////////////////////////////////////////////////////////// Teuchos::RCP<BurgersBilinearForm> oldBurgersBF = Teuchos::rcp(new BurgersBilinearForm(epsilon)); // new-style bilinear form definition VarFactory varFactory; VarPtr uhat = varFactory.traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_hat = varFactory.fluxVar("\\widehat{\\beta_n u - \\sigma_n}"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma1 = varFactory.fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory.fieldVar("\\sigma_2"); VarPtr tau = varFactory.testVar("\\tau",HDIV); VarPtr v = varFactory.testVar("v",HGRAD); BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(quadPoints, horizontalCells, verticalCells, bf, H1Order, H1Order+pToAdd, useTriangles); mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC"))); Teuchos::RCP<Solution> backgroundFlow = Teuchos::rcp(new Solution(mesh, Teuchos::rcp((BC*)NULL) , Teuchos::rcp((RHS*)NULL), Teuchos::rcp((DPGInnerProduct*)NULL))); // create null solution oldBurgersBF->setBackgroundFlow(backgroundFlow); // tau parts: // 1/eps (sigma, tau)_K + (u, div tau)_K - (u_hat, tau_n)_dK bf->addTerm(sigma1 / epsilon, tau->x()); bf->addTerm(sigma2 / epsilon, tau->y()); bf->addTerm(u, tau->div()); bf->addTerm( - uhat, tau->dot_normal() ); vector<double> e1(2); // (1,0) e1[0] = 1; vector<double> e2(2); // (0,1) e2[1] = 1; FunctionPtr u_prev = Teuchos::rcp( new PreviousSolutionFunction(backgroundFlow, u) ); FunctionPtr beta = e1 * u_prev + Teuchos::rcp( new ConstantVectorFunction( e2 ) ); // v: // (sigma, grad v)_K - (sigma_hat_n, v)_dK - (u, beta dot grad v) + (u_hat * n dot beta, v)_dK bf->addTerm( sigma1, v->dx() ); bf->addTerm( sigma2, v->dy() ); bf->addTerm( -u, beta * v->grad()); bf->addTerm( beta_n_u_minus_sigma_hat, v); // ==================== SET INITIAL GUESS ========================== mesh->registerSolution(backgroundFlow); map<int, Teuchos::RCP<AbstractFunction> > functionMap; functionMap[BurgersBilinearForm::U] = Teuchos::rcp(new InitialGuess()); functionMap[BurgersBilinearForm::SIGMA_1] = Teuchos::rcp(new ZeroFunction()); functionMap[BurgersBilinearForm::SIGMA_2] = Teuchos::rcp(new ZeroFunction()); backgroundFlow->projectOntoMesh(functionMap); // ==================== END SET INITIAL GUESS ========================== // compare stiffness matrices for first linear step: int trialOrder = 1; pToAdd = 0; int testOrder = trialOrder + pToAdd; CellTopoPtr quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() )); DofOrderingFactory dofOrderingFactory(bf); DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(testOrder, *quadTopoPtr); DofOrderingPtr trialOrdering = dofOrderingFactory.trialOrdering(trialOrder, *quadTopoPtr); int numCells = 1; // just use testOrdering for both trial and test spaces (we only use to define BasisCache) ElementTypePtr elemType = Teuchos::rcp( new ElementType(trialOrdering, testOrdering, quadTopoPtr) ); BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType) ); quadPoints.resize(1,quadPoints.dimension(0),quadPoints.dimension(1)); basisCache->setPhysicalCellNodes(quadPoints,vector<int>(1),true); // true: do create side cache FieldContainer<double> cellSideParities(numCells,quadTopoPtr->getSideCount()); cellSideParities.initialize(1.0); // not worried here about neighbors actually having opposite parity -- just want the two BF implementations to agree... FieldContainer<double> expectedValues(numCells, testOrdering->totalDofs(), trialOrdering->totalDofs() ); FieldContainer<double> actualValues(numCells, testOrdering->totalDofs(), trialOrdering->totalDofs() ); oldBurgersBF->stiffnessMatrix(expectedValues, elemType, cellSideParities, basisCache); bf->stiffnessMatrix(actualValues, elemType, cellSideParities, basisCache); // compare beta's as well FieldContainer<double> expectedBeta = oldBurgersBF->getBeta(basisCache); Teuchos::Array<int> dim; expectedBeta.dimensions(dim); FieldContainer<double> actualBeta(dim); beta->values(actualBeta,basisCache); double tol = 1e-14; double maxDiff; if (rank == 0) { if ( ! TestSuite::fcsAgree(expectedBeta,actualBeta,tol,maxDiff) ) { cout << "Test failed: old Burgers beta differs from new; maxDiff " << maxDiff << ".\n"; cout << "Old beta: \n" << expectedBeta; cout << "New beta: \n" << actualBeta; } else { cout << "Old and new Burgers beta agree!!\n"; } if ( ! TestSuite::fcsAgree(expectedValues,actualValues,tol,maxDiff) ) { cout << "Test failed: old Burgers stiffness differs from new; maxDiff " << maxDiff << ".\n"; cout << "Old: \n" << expectedValues; cout << "New: \n" << actualValues; cout << "TrialDofOrdering: \n" << *trialOrdering; cout << "TestDofOrdering:\n" << *testOrdering; } else { cout << "Old and new Burgers stiffness agree!!\n"; } } // define our inner product: // Teuchos::RCP<BurgersInnerProduct> ip = Teuchos::rcp( new BurgersInnerProduct( bf, mesh ) ); // function to scale the squared guy by epsilon/h FunctionPtr epsilonOverHScaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); IPPtr ip = Teuchos::rcp( new IP ); ip->addTerm(tau); ip->addTerm(tau->div()); ip->addTerm( epsilonOverHScaling * v ); ip->addTerm( sqrt(sqrt(epsilon)) * v->grad() ); ip->addTerm( beta * v->grad() ); // use old IP instead, for now... Teuchos::RCP<BurgersInnerProduct> oldIP = Teuchos::rcp( new BurgersInnerProduct( oldBurgersBF, mesh ) ); expectedValues.resize(numCells, testOrdering->totalDofs(), testOrdering->totalDofs() ); actualValues.resize (numCells, testOrdering->totalDofs(), testOrdering->totalDofs() ); BasisCachePtr ipBasisCache = Teuchos::rcp( new BasisCache(elemType, true) ); // true: test vs. test ipBasisCache->setPhysicalCellNodes(quadPoints,vector<int>(1),false); // false: don't create side cache oldIP->computeInnerProductMatrix(expectedValues,testOrdering,ipBasisCache); ip->computeInnerProductMatrix(actualValues,testOrdering,ipBasisCache); tol = 1e-14; maxDiff = 0.0; if (rank==0) { if ( ! TestSuite::fcsAgree(expectedValues,actualValues,tol,maxDiff) ) { cout << "Test failed: old inner product differs from new IP; maxDiff " << maxDiff << ".\n"; cout << "Old: \n" << expectedValues; cout << "New IP: \n" << actualValues; cout << "testOrdering: \n" << *testOrdering; } else { cout << "Old inner product and new IP agree!!\n"; } } Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); // the RHS as implemented by BurgersProblem divides the first component of beta by 2.0 // so we follow that. I've not done the math; just imitating the code... Teuchos::RCP<RHSEasy> otherRHS = Teuchos::rcp( new RHSEasy ); vector<double> e1_div2 = e1; e1_div2[0] /= 2.0; FunctionPtr rhsBeta = (e1_div2 * beta * e1 + Teuchos::rcp( new ConstantVectorFunction( e2 ) )) * u_prev; otherRHS->addTerm( rhsBeta * v->grad() - u_prev * tau->div() ); Teuchos::RCP<BurgersProblem> problem = Teuchos::rcp( new BurgersProblem(oldBurgersBF) ); expectedValues.resize(numCells, testOrdering->totalDofs() ); actualValues.resize (numCells, testOrdering->totalDofs() ); problem->integrateAgainstStandardBasis(expectedValues,testOrdering,basisCache); otherRHS->integrateAgainstStandardBasis(actualValues,testOrdering,basisCache); tol = 1e-14; maxDiff = 0.0; if (rank==0) { if ( ! TestSuite::fcsAgree(expectedValues,actualValues,tol,maxDiff) ) { cout << "Test failed: old RHS differs from new (\"otherRHS\"); maxDiff " << maxDiff << ".\n"; cout << "Old: \n" << expectedValues; cout << "New: \n" << actualValues; cout << "testOrdering: \n" << *testOrdering; } else { cout << "Old and new RHS (\"otherRHS\") agree!!\n"; } } FunctionPtr u_prev_squared_div2 = 0.5 * u_prev * u_prev; rhs->addTerm( (e1 * u_prev_squared_div2 + e2 * u_prev) * v->grad() - u_prev * tau->div()); if (! functionsAgree(e2 * u_prev, Teuchos::rcp( new ConstantVectorFunction( e2 ) ) * u_prev, basisCache) ) { cout << "two like functions differ...\n"; } FunctionPtr e1_f = Teuchos::rcp( new ConstantVectorFunction( e1 ) ); FunctionPtr e2_f = Teuchos::rcp( new ConstantVectorFunction( e2 ) ); FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction( 1.0 ) ); if (! functionsAgree( Teuchos::rcp( new ProductFunction(e1_f, (e1_f + e2_f)) ), // e1_f * (e1_f + e2_f) one, basisCache) ) { cout << "two like functions differ...\n"; } if (! functionsAgree(u_prev_squared_div2, (e1_div2 * beta) * u_prev, basisCache) ) { cout << "two like functions differ...\n"; } if (! functionsAgree(e1 * u_prev_squared_div2, (e1_div2 * beta * e1) * u_prev, basisCache) ) { cout << "two like functions differ...\n"; } if (! functionsAgree(e1 * u_prev_squared_div2 + e2 * u_prev, (e1_div2 * beta * e1 + Teuchos::rcp( new ConstantVectorFunction( e2 ) )) * u_prev, basisCache) ) { cout << "two like functions differ...\n"; } problem->integrateAgainstStandardBasis(expectedValues,testOrdering,basisCache); rhs->integrateAgainstStandardBasis(actualValues,testOrdering,basisCache); tol = 1e-14; maxDiff = 0.0; if (rank==0) { if ( ! TestSuite::fcsAgree(expectedValues,actualValues,tol,maxDiff) ) { cout << "Test failed: old RHS differs from new (\"rhs\"); maxDiff " << maxDiff << ".\n"; cout << "Old: \n" << expectedValues; cout << "New: \n" << actualValues; cout << "testOrdering: \n" << *testOrdering; } else { cout << "Old and new RHS (\"rhs\") agree!!\n"; } } SpatialFilterPtr outflowBoundary = Teuchos::rcp( new TopBoundary ); SpatialFilterPtr inflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(outflowBoundary) ); Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp(new PenaltyConstraints); LinearTermPtr sigma_hat = beta * uhat->times_normal() - beta_n_u_minus_sigma_hat; FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); pc->addConstraint(sigma_hat==zero,outflowBoundary); FunctionPtr u0 = Teuchos::rcp( new U0 ); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); Teuchos::RCP<BCEasy> inflowBC = Teuchos::rcp( new BCEasy ); FunctionPtr u0_squared_div_2 = 0.5 * u0 * u0; inflowBC->addDirichlet(beta_n_u_minus_sigma_hat,inflowBoundary, ( e1 * u0_squared_div_2 + e2 * u0) * n ); // create a solution object Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip)); mesh->registerSolution(solution); solution->setFilter(pc); // old penalty filter: Teuchos::RCP<LocalStiffnessMatrixFilter> penaltyBC = Teuchos::rcp(new PenaltyMethodFilter(problem)); // solution->setFilter(penaltyBC); // compare old and new filters elemType = mesh->getElement(0)->elementType(); trialOrdering = elemType->trialOrderPtr; testOrdering = elemType->testOrderPtr; // stiffness expectedValues.resize(numCells, trialOrdering->totalDofs(), trialOrdering->totalDofs() ); actualValues.resize (numCells, trialOrdering->totalDofs(), trialOrdering->totalDofs() ); expectedValues.initialize(0.0); actualValues.initialize(0.0); // load FieldContainer<double> expectedLoad(numCells, trialOrdering->totalDofs() ); FieldContainer<double> actualLoad(numCells, trialOrdering->totalDofs() ); penaltyBC->filter(expectedValues,expectedLoad,basisCache,mesh,problem); pc->filter(actualValues,actualLoad,basisCache,mesh,problem); maxDiff = 0.0; if (rank==0) { if ( ! TestSuite::fcsAgree(expectedValues,actualValues,tol,maxDiff) ) { cout << "Test failed: old penalty stiffness differs from new; maxDiff " << maxDiff << ".\n"; cout << "Old: \n" << expectedValues; cout << "New: \n" << actualValues; cout << "trialOrdering: \n" << *trialOrdering; } else { cout << "Old and new penalty stiffness agree!!\n"; } } if (rank==0) { if ( ! TestSuite::fcsAgree(expectedLoad,actualLoad,tol,maxDiff) ) { cout << "Test failed: old penalty load differs from new; maxDiff " << maxDiff << ".\n"; cout << "Old: \n" << expectedValues; cout << "New: \n" << actualValues; cout << "trialOrdering: \n" << *trialOrdering; } else { cout << "Old and new penalty load agree!!\n"; } } // define refinement strategy: Teuchos::RCP<RefinementStrategy> refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold)); // =================== END INITIALIZATION CODE ========================== // refine the spectral mesh, for comparability with the original Burgers' driver mesh->hRefine(vector<int>(1),RefinementPattern::regularRefinementPatternQuad()); int numRefs = 5; Teuchos::RCP<NonlinearStepSize> stepSize = Teuchos::rcp(new NonlinearStepSize(nonlinearStepSize)); Teuchos::RCP<NonlinearSolveStrategy> solveStrategy = Teuchos::rcp( new NonlinearSolveStrategy(backgroundFlow, solution, stepSize, nonlinearRelativeEnergyTolerance) ); for (int refIndex=0; refIndex<numRefs; refIndex++) { solveStrategy->solve(rank==0); refinementStrategy->refine(rank==0); // print to console on rank 0 } // one more nonlinear solve on refined mesh int numNRSteps = 5; for (int i=0; i<numNRSteps; i++) { solution->solve(false); backgroundFlow->addSolution(solution,1.0); } if (rank==0) { backgroundFlow->writeFieldsToFile(BurgersBilinearForm::U, "u_ref.m"); backgroundFlow->writeFieldsToFile(BurgersBilinearForm::SIGMA_1, "sigmax.m"); backgroundFlow->writeFieldsToFile(BurgersBilinearForm::SIGMA_2, "sigmay.m"); solution->writeFluxesToFile(BurgersBilinearForm::U_HAT, "du_hat_ref.dat"); } return 0; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); choice::MpiArgs args( argc, argv ); #else choice::Args args( argc, argv ); #endif int commRank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); // Required arguments double epsilon = args.Input<double>("--epsilon", "diffusion parameter"); int numRefs = args.Input<int>("--numRefs", "number of refinement steps"); bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation"); int norm = args.Input<int>("--norm", "0 = graph\n 1 = robust\n 2 = modified robust"); // Optional arguments (have defaults) halfwidth = args.Input("--halfwidth", "half the width of the wedge", 0.5); bool allQuads = args.Input("--allQuads", "use only quads in mesh", false); bool zeroL2 = args.Input("--zeroL2", "take L2 term on v in robust norm to zero", enforceLocalConservation); args.Process(); //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr tau = varFactory.testVar("tau", HDIV); VarPtr v = varFactory.testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory.traceVar("uhat"); VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("fhat"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma = varFactory.fieldVar("sigma", VECTOR_L2); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // tau terms: bf->addTerm(sigma / epsilon, tau); bf->addTerm(u, tau->div()); bf->addTerm(-uhat, tau->dot_normal()); // v terms: bf->addTerm( sigma, v->grad() ); bf->addTerm( beta * u, - v->grad() ); bf->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// IPPtr ip = Teuchos::rcp(new IP); // Graph norm if (norm == 0) { ip = bf->graphNorm(); FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); ip->addZeroMeanTerm( h2_scaling*v ); } // Robust norm else if (norm == 1) { // robust test norm FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); if (!zeroL2) ip->addTerm( v ); ip->addTerm( sqrt(epsilon) * v->grad() ); // Weight these two terms for inflow ip->addTerm( beta * v->grad() ); ip->addTerm( tau->div() ); ip->addTerm( ip_scaling/sqrt(epsilon) * tau ); if (zeroL2) ip->addZeroMeanTerm( h2_scaling*v ); } // Modified robust norm else if (norm == 2) { // robust test norm FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); if (!zeroL2) ip->addTerm( v ); ip->addTerm( sqrt(epsilon) * v->grad() ); ip->addTerm( tau->div() - beta*v->grad() ); ip->addTerm( ip_scaling/sqrt(epsilon) * tau ); if (zeroL2) ip->addZeroMeanTerm( h2_scaling*v ); } //////////////////// SPECIFY RHS /////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) ); rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints ); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); SpatialFilterPtr inflow = Teuchos::rcp( new Inflow ); FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); bc->addDirichlet(beta_n_u_minus_sigma_n, inflow, zero); SpatialFilterPtr leadingWedge = Teuchos::rcp( new LeadingWedge ); FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) ); bc->addDirichlet(uhat, leadingWedge, one); SpatialFilterPtr trailingWedge = Teuchos::rcp( new TrailingWedge ); bc->addDirichlet(beta_n_u_minus_sigma_n, trailingWedge, beta*n*one); // bc->addDirichlet(uhat, trailingWedge, one); SpatialFilterPtr top = Teuchos::rcp( new Top ); bc->addDirichlet(uhat, top, zero); // bc->addDirichlet(beta_n_u_minus_sigma_n, top, zero); SpatialFilterPtr outflow = Teuchos::rcp( new Outflow ); pc->addConstraint(beta*uhat->times_normal() - beta_n_u_minus_sigma_n == zero, outflow); //////////////////// BUILD MESH /////////////////////// int H1Order = 3, pToAdd = 2; // define nodes for mesh vector< FieldContainer<double> > vertices; FieldContainer<double> pt(2); vector< vector<int> > elementIndices; vector<int> q(4); vector<int> t(3); if (allQuads) { pt(0) = -halfwidth; pt(1) = -1; vertices.push_back(pt); pt(0) = 0; pt(1) = 0; vertices.push_back(pt); pt(0) = halfwidth; pt(1) = -1; vertices.push_back(pt); pt(0) = halfwidth; pt(1) = halfwidth; vertices.push_back(pt); pt(0) = 0; pt(1) = halfwidth; vertices.push_back(pt); pt(0) = -halfwidth; pt(1) = halfwidth; vertices.push_back(pt); q[0] = 0; q[1] = 1; q[2] = 4; q[3] = 5; elementIndices.push_back(q); q[0] = 1; q[1] = 2; q[2] = 3; q[3] = 4; elementIndices.push_back(q); } else { pt(0) = -halfwidth; pt(1) = -1; vertices.push_back(pt); pt(0) = 0; pt(1) = 0; vertices.push_back(pt); pt(0) = halfwidth; pt(1) = -1; vertices.push_back(pt); pt(0) = halfwidth; pt(1) = 0; vertices.push_back(pt); pt(0) = halfwidth; pt(1) = halfwidth; vertices.push_back(pt); pt(0) = 0; pt(1) = halfwidth; vertices.push_back(pt); pt(0) = -halfwidth; pt(1) = halfwidth; vertices.push_back(pt); pt(0) = -halfwidth; pt(1) = 0; vertices.push_back(pt); t[0] = 0; t[1] = 1; t[2] = 7; elementIndices.push_back(t); t[0] = 1; t[1] = 2; t[2] = 3; elementIndices.push_back(t); q[0] = 1; q[1] = 3; q[2] = 4; q[3] = 5; elementIndices.push_back(q); q[0] = 7; q[1] = 1; q[2] = 5; q[3] = 6; elementIndices.push_back(q); } Teuchos::RCP<Mesh> mesh = Teuchos::rcp( new Mesh(vertices, elementIndices, bf, H1Order, pToAdd) ); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); solution->setFilter(pc); if (enforceLocalConservation) { FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero); } double energyThreshold = 0.2; // for mesh refinements RefinementStrategy refinementStrategy( solution, energyThreshold ); VTKExporter exporter(solution, mesh, varFactory); ofstream errOut; if (commRank == 0) errOut.open("singularwedge_err.txt"); for (int refIndex=0; refIndex<=numRefs; refIndex++){ solution->solve(false); double energy_error = solution->energyErrorTotal(); if (commRank==0){ stringstream outfile; outfile << "singularwedge_" << refIndex; exporter.exportSolution(outfile.str()); // Check local conservation FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) ); FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh); cout << "Mass flux: Largest Local = " << fluxImbalances[0] << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl; errOut << mesh->numGlobalDofs() << " " << energy_error << " " << fluxImbalances[0] << " " << fluxImbalances[1] << " " << fluxImbalances[2] << endl; } if (refIndex < numRefs) refinementStrategy.refine(commRank==0); // print to console on commRank 0 } if (commRank == 0) errOut.close(); return 0; }