Example #1
0
//--------------------------------------------------------------------------------
void Cone3f::SampleNormal( Vector3f& normal, float theta, float height ) const
{
	// Define the axis of the cylinder, and find its length.

	Vector3f v = P1 - P2;
	Vector3f vnorm = Vector3f::Normalize( v );
	float l = v.Magnitude();

	Vector3f up = Vector3f( 0.0f, 1.0f, 0.0f );

	// Find the unit vector perpendicular to the axis, that is pointing closest to the (0,1,0) direction.
	// If the axis points in the (0,1,0) direction, then use (1,0,0) as the unit vector.

	Vector3f unit;
	if ( vnorm == up || vnorm == -up ) {
		unit = Vector3f( 1.0f, 0.0f, 0.0f );
	} else {
		Vector3f temp = Vector3f::Cross( vnorm, up );
		unit = Vector3f::Cross( temp, vnorm );
		unit.Normalize();
	}

	float slope = ( R2 - R1 ) / l;
	float radius = R2 + slope * height * l;

	// Calculate the position, which is a combination of an offset to the p2 endpoint,
	// shifted along the axis of the cylinder, and a rotated and scaled radius component.
	Matrix3f r;
	r.RotationEuler( vnorm, theta );

	// Calculate the normal vector, which is dependent on the delta in radii at each
	// end of the cylinder.
	normal = r * unit * radius + vnorm * slope * radius;
	normal.Normalize();
}
Example #2
0
		const Vector3f GravitationalForce::CalculateForce( const Body &a, const Body &b ) const {
			const Vector3f vDiff = b.Position - a.Position;

			const float numerator = Constant * ( a.Mass * b.Mass );
			const float denominator = std::pow( vDiff.Magnitude(), 2 );

			return vDiff.Normalised() * ( numerator / denominator );
		}
Example #3
0
void Camera::LookAt(const Vector3f &point, Vector3f up)
{
	m_look=m_position-point;
	if(up.Magnitude()!=0.0f)
	{
		m_up=up;
	}
	m_right=m_up.Cross(m_look);
}
Example #4
0
bool Intersect::BoundsSphere (const Bounds& bounds, const Vector3f& pos, float radius)
{
	const Vector3f& center = bounds.GetCenter();
	Vector3f dir (center - pos);
	float mag = dir.Magnitude();

	if (mag > radius)
	{
		dir /= mag;
		dir *= radius;
		return bounds.Contains(pos + dir);
	}
	return true;
}
void Arcball::Drag(const Point3f* _point, Quaternion* qNewRotation)
{
	MapToSphere(_point, &endVector);

	if(qNewRotation)
	{
		Vector3f vPerpendicular;

		//compute the vector perpendicular to the begin and end vectors
		vPerpendicular = Vector3f::Cross(&startVector, &endVector); 

		//compute the length of the perpendicular vecotr
		if(vPerpendicular.Magnitude() > 0)
		{
			//return the perpendicular vector as the transform
			*qNewRotation = Quaternion(vPerpendicular.X(), vPerpendicular.Y(), vPerpendicular.Z(), Vector3f::Dot(&startVector, &endVector));
		}
		else
		{
			//the begin and end vectors coincide, so return an identity transform
			*qNewRotation = Quaternion(0, 0, 0, 0);
		}
	}
}