/**************************************************************************************************
 *  Procedure                                                                                     *
 *                                                                                                *
 *  Description: convertMatrixToParams                                                            *
 *  Class      : UnscentedExpectedImprovement                                                     *
 **************************************************************************************************/
void UnscentedExpectedImprovement::convertMatrixToParams(bopt_params& params, const matrixd px)
{
    if (px.size1() != px.size2()) return;

    size_t dim = px.size1();

    for (size_t row = 0; row < dim; ++row)
    {
        for (size_t col = 0; col < dim; ++col)
        {
            params.crit_params[4 + col + (row * dim)] = px(row, col);
            params.input.noise[0 + col + (row * dim)] = px(row, col);
        }
    }
}
/**************************************************************************************************
 *  Procedure                                                                                     *
 *                                                                                                *
 *  Description: getSigmaPoints                                                                   *
 *  Class      : UnscentedExpectedImprovement                                                     *
 **************************************************************************************************/
void UnscentedExpectedImprovement::getSigmaPoints(const vectord&          x             ,
                                                  const double            scale         ,
                                                  const int               dim           ,
                                                  const matrixd&          matrix_noise  ,
                                                  std::vector<vectord>&   xx            ,
                                                  std::vector<double>&    w             ,
                                                  const bool              matrix_convert)
{
    const size_t n = dim;

    assert(matrix_noise.size1() == n);
    assert(matrix_noise.size2() == n);
    assert(x.size()             == n);

    matrixd px;
    if (matrix_convert) px = UnscentedExpectedImprovement::convertMatrixNoise(matrix_noise, scale, dim);
    else                px = matrix_noise;

    // Output variable intialization
    xx = std::vector<vectord>();
    w  = std::vector<double>();
    xx.push_back(x);
    w .push_back(scale / (dim + scale));

    // Calculate query_i
    for (size_t col = 0; col < n; col += 1)
    {
        xx.push_back(x - boost::numeric::ublas::column(px, col));
        xx.push_back(x + boost::numeric::ublas::column(px, col));
        w .push_back(0.5 / (dim + scale));
        w .push_back(0.5 / (dim + scale));
    }
}
  double HierarchicalGaussianProcess::negativeTotalLogLikelihood()
  {
    /*This is the restricted version. For the unrestricted, make p=0
      and remove the last term of loglik*/

    const matrixd K = computeCorrMatrix();
    const size_t n = K.size1();
    const size_t p = mFeatM.size1(); 
    matrixd L(n,n);
    utils::cholesky_decompose(K,L);

    matrixd KF(ublas::trans(mFeatM));
    inplace_solve(L,KF,ublas::lower_tag());
    
    matrixd FKF = prod(ublas::trans(KF),KF);
    matrixd L2(p,p);
    utils::cholesky_decompose(FKF,L2);

    vectord Ky(mGPY);
    inplace_solve(L,Ky,ublas::lower_tag());

    vectord wML = prod(Ky,KF);
    utils::cholesky_solve(L2,wML,ublas::lower());

    vectord alpha = mGPY - prod(wML,mFeatM);
    inplace_solve(L,alpha,ublas::lower_tag());
    double sigma = ublas::inner_prod(alpha,alpha)/(n-p);

    double loglik = .5*(n-p)*log(ublas::inner_prod(alpha,alpha)) 
      + utils::log_trace(L) + utils::log_trace(L2);
    return loglik;
  }
Example #4
0
 inline void MeanModel::addNewPoint(const vectord &x)
 { 
   using boost::numeric::ublas::column;
   
   mFeatM.resize(mFeatM.size1(),mFeatM.size2()+1);  
   column(mFeatM,mFeatM.size2()-1) = mMean->getFeatures(x);
 }
Example #5
0
  void Dataset::setSamples(const matrixd &x)
  {
    for (size_t i=0; i<x.size1(); ++i)
      {
	mX.push_back(row(x,i));
      } 
  };
Example #6
0
  void Dataset::setSamples(const matrixd &x, const vectord &y)
  {
    // WARNING: It assumes mX is empty
    mY = y;
    for (size_t i=0; i<x.size1(); ++i)
      {
	mX.push_back(row(x,i));
	updateMinMax(i);
      } 
  };
/**************************************************************************************************
 *  Procedure                                                                                     *
 *                                                                                                *
 *  Description: isDiag                                                                           *
 *  Class      : UnscentedExpectedImprovement                                                     *
 **************************************************************************************************/
bool UnscentedExpectedImprovement::isDiag(matrixd matrix)
{
    if (matrix.size1() == matrix.size2())
    {
        for (size_t row = 0; row < matrix.size1(); ++row)
        {
            for (size_t col = 0; col < matrix.size2(); ++col)
            {
                if (row != col)
                {
                    if (std::abs(matrix(row, col)) > std::numeric_limits<double>::epsilon())
                    {
                        return false;
                    }
                }
            }
        }
        return true;
    }

    return false;
}
Example #8
0
  double GaussianProcess::negativeLogLikelihood()
  {
    const matrixd K = computeCorrMatrix();
    const size_t n = K.size1();
    matrixd L(n,n);
    utils::cholesky_decompose(K,L);

    vectord alpha(mData.mY-mMean.muTimesFeat());
    inplace_solve(L,alpha,ublas::lower_tag());
    double loglik = ublas::inner_prod(alpha,alpha)/(2*mSigma);
    loglik += utils::log_trace(L);
    return loglik;
  }
Example #9
0
  void KernelModel::computeCorrMatrix(const vecOfvec& XX, matrixd& corrMatrix, 
				     double nugget)
  {
    assert(corrMatrix.size1() == XX.size());
    assert(corrMatrix.size2() == XX.size());
    const size_t nSamples = XX.size();
  
    for (size_t ii=0; ii< nSamples; ++ii)
      {
	for (size_t jj=0; jj < ii; ++jj)
	  {
	    corrMatrix(ii,jj) = (*mKernel)(XX[ii], XX[jj]);
	    corrMatrix(jj,ii) = corrMatrix(ii,jj);
	  }
	corrMatrix(ii,ii) = (*mKernel)(XX[ii],XX[ii]) + nugget;
      }
  }
Example #10
0
  void KernelModel::computeDerivativeCorrMatrix(const vecOfvec& XX, 
					       matrixd& corrMatrix,
					       int dth_index)
  {
    assert(corrMatrix.size1() == XX.size());
    assert(corrMatrix.size2() == XX.size());
    const size_t nSamples = XX.size();
   
    for (size_t ii=0; ii< nSamples; ++ii)
      {
	for (size_t jj=0; jj < ii; ++jj)
	  {
	    corrMatrix(ii,jj) = mKernel->gradient(XX[ii],XX[jj], 
						  dth_index);
	    corrMatrix(jj,ii) = corrMatrix(ii,jj);
	  }
	corrMatrix(ii,ii) = mKernel->gradient(XX[ii],XX[ii],dth_index);
      }
  }