Example #1
0
 inline void MeanModel::addNewPoint(const vectord &x)
 { 
   using boost::numeric::ublas::column;
   
   mFeatM.resize(mFeatM.size1(),mFeatM.size2()+1);  
   column(mFeatM,mFeatM.size2()-1) = mMean->getFeatures(x);
 }
/**************************************************************************************************
 *  Procedure                                                                                     *
 *                                                                                                *
 *  Description: getSigmaPoints                                                                   *
 *  Class      : UnscentedExpectedImprovement                                                     *
 **************************************************************************************************/
void UnscentedExpectedImprovement::getSigmaPoints(const vectord&          x             ,
                                                  const double            scale         ,
                                                  const int               dim           ,
                                                  const matrixd&          matrix_noise  ,
                                                  std::vector<vectord>&   xx            ,
                                                  std::vector<double>&    w             ,
                                                  const bool              matrix_convert)
{
    const size_t n = dim;

    assert(matrix_noise.size1() == n);
    assert(matrix_noise.size2() == n);
    assert(x.size()             == n);

    matrixd px;
    if (matrix_convert) px = UnscentedExpectedImprovement::convertMatrixNoise(matrix_noise, scale, dim);
    else                px = matrix_noise;

    // Output variable intialization
    xx = std::vector<vectord>();
    w  = std::vector<double>();
    xx.push_back(x);
    w .push_back(scale / (dim + scale));

    // Calculate query_i
    for (size_t col = 0; col < n; col += 1)
    {
        xx.push_back(x - boost::numeric::ublas::column(px, col));
        xx.push_back(x + boost::numeric::ublas::column(px, col));
        w .push_back(0.5 / (dim + scale));
        w .push_back(0.5 / (dim + scale));
    }
}
/**************************************************************************************************
 *  Procedure                                                                                     *
 *                                                                                                *
 *  Description: isDiag                                                                           *
 *  Class      : UnscentedExpectedImprovement                                                     *
 **************************************************************************************************/
bool UnscentedExpectedImprovement::isDiag(matrixd matrix)
{
    if (matrix.size1() == matrix.size2())
    {
        for (size_t row = 0; row < matrix.size1(); ++row)
        {
            for (size_t col = 0; col < matrix.size2(); ++col)
            {
                if (row != col)
                {
                    if (std::abs(matrix(row, col)) > std::numeric_limits<double>::epsilon())
                    {
                        return false;
                    }
                }
            }
        }
        return true;
    }

    return false;
}
/**************************************************************************************************
 *  Procedure                                                                                     *
 *                                                                                                *
 *  Description: convertMatrixToParams                                                            *
 *  Class      : UnscentedExpectedImprovement                                                     *
 **************************************************************************************************/
void UnscentedExpectedImprovement::convertMatrixToParams(bopt_params& params, const matrixd px)
{
    if (px.size1() != px.size2()) return;

    size_t dim = px.size1();

    for (size_t row = 0; row < dim; ++row)
    {
        for (size_t col = 0; col < dim; ++col)
        {
            params.crit_params[4 + col + (row * dim)] = px(row, col);
            params.input.noise[0 + col + (row * dim)] = px(row, col);
        }
    }
}
Example #5
0
  void KernelModel::computeCorrMatrix(const vecOfvec& XX, matrixd& corrMatrix, 
				     double nugget)
  {
    assert(corrMatrix.size1() == XX.size());
    assert(corrMatrix.size2() == XX.size());
    const size_t nSamples = XX.size();
  
    for (size_t ii=0; ii< nSamples; ++ii)
      {
	for (size_t jj=0; jj < ii; ++jj)
	  {
	    corrMatrix(ii,jj) = (*mKernel)(XX[ii], XX[jj]);
	    corrMatrix(jj,ii) = corrMatrix(ii,jj);
	  }
	corrMatrix(ii,ii) = (*mKernel)(XX[ii],XX[ii]) + nugget;
      }
  }
Example #6
0
  void KernelModel::computeDerivativeCorrMatrix(const vecOfvec& XX, 
					       matrixd& corrMatrix,
					       int dth_index)
  {
    assert(corrMatrix.size1() == XX.size());
    assert(corrMatrix.size2() == XX.size());
    const size_t nSamples = XX.size();
   
    for (size_t ii=0; ii< nSamples; ++ii)
      {
	for (size_t jj=0; jj < ii; ++jj)
	  {
	    corrMatrix(ii,jj) = mKernel->gradient(XX[ii],XX[jj], 
						  dth_index);
	    corrMatrix(jj,ii) = corrMatrix(ii,jj);
	  }
	corrMatrix(ii,ii) = mKernel->gradient(XX[ii],XX[ii],dth_index);
      }
  }