QString UnitsSchemaMKS::schemaTranslate(Base::Quantity quant,double &factor,QString &unitString)
{
    double UnitValue = std::abs(quant.getValue());
	Unit unit = quant.getUnit();

    // now do special treatment on all cases seams nececarry:
    if(unit == Unit::Length){  // Length handling ============================
        if(UnitValue < 0.000000001){// smaller then 0.001 nm -> scientific notation
            unitString = QString::fromLatin1("mm");
            factor = 1.0;
        }else if(UnitValue < 0.001){
            unitString = QString::fromLatin1("nm");
            factor = 0.000001;
        }else if(UnitValue < 0.1){
            unitString = QString::fromUtf8("\xC2\xB5m");
            factor = 0.001;
        }else if(UnitValue < 100.0){
            unitString = QString::fromLatin1("mm");
            factor = 1.0;
        }else if(UnitValue < 10000000.0){
            unitString = QString::fromLatin1("m");
            factor = 1000.0;
        }else if(UnitValue < 100000000000.0 ){
            unitString = QString::fromLatin1("km");
            factor = 1000000.0;
        }else{ // bigger then 1000 km -> scientific notation 
            unitString = QString::fromLatin1("mm");
            factor = 1.0;
        }
    }else if (unit == Unit::Area){
        // TODO Cascade for the Areas
        // default action for all cases without special treatment:
        unitString = quant.getUnit().getString();
        factor = 1.0;
    }else if (unit == Unit::Mass){
        // TODO Cascade for the wights
        // default action for all cases without special treatment:
        unitString = quant.getUnit().getString();
        factor = 1.0;
    }else if (unit == Unit::Pressure){
        if(UnitValue < 10.0){// Pa is the smallest
            unitString = QString::fromLatin1("Pa");
            factor = 0.001;
        }else if(UnitValue < 10000.0){
            unitString = QString::fromLatin1("kPa");
            factor = 1.0;
        }else if(UnitValue < 10000000.0){
            unitString = QString::fromLatin1("GPa");
            factor = 1000.0;
        }else{ // bigger then 1000 GPa -> scientific notation 
            unitString = QString::fromLatin1("Pa");
            factor = 1.0;
        }
    }else{
        // default action for all cases without special treatment:
        unitString = quant.getUnit().getString();
        factor = 1.0;
    }
	return QString::fromUtf8("%L1 %2").arg(quant.getValue() / factor).arg(unitString);
}
QString UnitsSchemaImperialDecimal::schemaTranslate(Base::Quantity quant,double &factor,QString &unitString)
{
    double UnitValue = std::abs(quant.getValue());
    Unit unit = quant.getUnit();
    // for imperial user/programmer mind; UnitValue is in internal system, that means
    // mm/kg/s. And all combined units have to be calculated from there!

    // now do special treatment on all cases seems necessary:
    if(unit == Unit::Length){  // Length handling ============================
        if(UnitValue < 0.00000254){// smaller then 0.001 thou -> inch and scientific notation
            unitString = QString::fromLatin1("in");
            factor = 25.4;
        //}else if(UnitValue < 2.54){ // smaller then 0.1 inch -> Thou (mil)
        //    unitString = QString::fromLatin1("thou");
        //    factor = 0.0254;
        }else{ // bigger then 1000 mi -> scientific notation
            unitString = QString::fromLatin1("in");
            factor = 25.4;
        }
    }else if (unit == Unit::Area){
        // TODO Cascade for the Areas
        // default action for all cases without special treatment:
        unitString = QString::fromLatin1("in^2");
        factor = 645.16;
    }else if (unit == Unit::Volume){
        // TODO Cascade for the Volume
        // default action for all cases without special treatment:
        unitString = QString::fromLatin1("in^3");
        factor = 16387.064;
    }else if (unit == Unit::Mass){
        // TODO Cascade for the wights
        // default action for all cases without special treatment:
        unitString = QString::fromLatin1("lb");
        factor = 0.45359237;
    }else if (unit == Unit::Pressure){
        if(UnitValue < 145.038){// psi is the smallest
            unitString = QString::fromLatin1("psi");
            factor = 0.145038;
        //}else if(UnitValue < 145038){
        //    unitString = QString::fromLatin1("ksi");
        //    factor = 145.038;
        }else{ // bigger then 1000 ksi -> psi + scientific notation
            unitString = QString::fromLatin1("psi");
            factor = 0.145038;
        }
    }else{
        // default action for all cases without special treatment:
        unitString = quant.getUnit().getString();
        factor = 1.0;
    }
    //return QString::fromLatin1("%L1 %2").arg(quant.getValue() / factor).arg(unitString);
    QLocale Lc = QLocale::system();
    Lc.setNumberOptions(Lc.OmitGroupSeparator | Lc.RejectGroupSeparator);
    QString Ln = Lc.toString((quant.getValue() / factor), 'f', Base::UnitsApi::getDecimals());
    return QString::fromUtf8("%1 %2").arg(Ln).arg(unitString);
}
/// sets the field with a quantity
void InputField::setValue(const Base::Quantity& quant)
{
    actQuantity = quant;
    if(!quant.getUnit().isEmpty())
        actUnit = quant.getUnit();

    double dFactor;
    setText(quant.getUserString(dFactor,actUnitStr));
    actUnitValue = quant.getValue()/dFactor;
}
void DlgExpressionInput::textChanged(const QString &text)
{
    try {
        //resize the input field according to text size
        QFontMetrics fm(ui->expression->font());
        int width = fm.width(text) + 15;
        if (width < minimumWidth)
            ui->expression->setMinimumWidth(minimumWidth);
        else
            ui->expression->setMinimumWidth(width);
        
        if(this->width() < ui->expression->minimumWidth())
            setMinimumWidth(ui->expression->minimumWidth());

        //now handle expression
        boost::shared_ptr<Expression> expr(ExpressionParser::parse(path.getDocumentObject(), text.toUtf8().constData()));

        if (expr) {
            std::string error = path.getDocumentObject()->ExpressionEngine.validateExpression(path, expr);

            if (error.size() > 0)
                throw Base::Exception(error.c_str());

            std::unique_ptr<Expression> result(expr->eval());

            expression = expr;
            ui->okBtn->setEnabled(true);
            ui->msg->clear();

            NumberExpression * n = Base::freecad_dynamic_cast<NumberExpression>(result.get());
            if (n) {
                Base::Quantity value = n->getQuantity();

                if (!value.getUnit().isEmpty() && value.getUnit() != impliedUnit)
                    throw Base::Exception("Unit mismatch between result and required unit");

                value.setUnit(impliedUnit);

                ui->msg->setText(value.getUserString());
            }
            else
                ui->msg->setText(Base::Tools::fromStdString(result->toString()));

            //set default palette as we may have read text right now
            ui->msg->setPalette(ui->okBtn->palette());
        }
    }
    catch (Base::Exception & e) {
        ui->msg->setText(QString::fromUtf8(e.what()));
        QPalette p(ui->msg->palette());
        p.setColor(QPalette::WindowText, Qt::red);
        ui->msg->setPalette(p);
        ui->okBtn->setDisabled(true);
    }
}
QString UnitsSchemaInternal::schemaTranslate(Base::Quantity quant)
{
    double UnitValue = quant.getValue();
	Unit unit = quant.getUnit();

	return QString::fromAscii("%1 %2").arg(UnitValue).arg(QString::fromAscii(unit.getString().c_str()));
}
void QuantitySpinBox::setValue(const Base::Quantity& value)
{
    Q_D(QuantitySpinBox);
    d->quantity = value;
    // check limits
    if (d->quantity.getValue() > d->maximum)
        d->quantity.setValue(d->maximum);
    if (d->quantity.getValue() < d->minimum)
        d->quantity.setValue(d->minimum);

    d->unit = value.getUnit();

    updateText(value);
}
PyObject* SketchObjectPy::setDatum(PyObject *args)
{
    double Datum;
    int    Index;
    PyObject* object;
    Base::Quantity Quantity;
    if (PyArg_ParseTuple(args,"iO!", &Index, &(Base::QuantityPy::Type), &object)) {
        Quantity = *(static_cast<Base::QuantityPy*>(object)->getQuantityPtr());
        if (Quantity.getUnit() == Base::Unit::Angle)
            //Datum = Quantity.getValueAs(Base::Quantity::Radian);
            Datum = Base::toRadians<double>(Quantity.getValue());
        else
            Datum = Quantity.getValue();
    }
    else {
        PyErr_Clear();
        if (!PyArg_ParseTuple(args, "id", &Index, &Datum))
            return 0;
        Quantity.setValue(Datum);
    }

    int err=this->getSketchObjectPtr()->setDatum(Index, Datum);
    if (err) {
        std::stringstream str;
        if (err == -1)
            str << "Invalid constraint index: " << Index;
        else if (err == -3)
            str << "Cannot set the datum because the sketch contains conflicting constraints";
        else if (err == -2)
            str << "Datum " << (const char*)Quantity.getUserString().toUtf8() << " for the constraint with index " << Index << " is invalid";
        else if (err == -4)
            str << "Negative datum values are not valid for the constraint with index " << Index;
        else if (err == -5)
            str << "Zero is not a valid datum for the constraint with index " << Index;
        else
            str << "Unexpected problem at setting datum " << (const char*)Quantity.getUserString().toUtf8() << " for the constraint with index " << Index;
        PyErr_SetString(PyExc_ValueError, str.str().c_str());
        return 0;
    }

    Py_Return;
}
PyObject* SketchObjectPy::setDatum(PyObject *args)
{
    double Datum;
    int    Index;
    PyObject* object;
    Base::Quantity Quantity;

    do {
        // handle (int,Quantity)
        if (PyArg_ParseTuple(args,"iO!", &Index, &(Base::QuantityPy::Type), &object)) {
            Quantity = *(static_cast<Base::QuantityPy*>(object)->getQuantityPtr());
            if (Quantity.getUnit() == Base::Unit::Angle) {
                Datum = Base::toRadians<double>(Quantity.getValue());
                break;
            }
            else {
                Datum = Quantity.getValue();
                break;
            }
        }

        // handle (int,double)
        PyErr_Clear();
        if (PyArg_ParseTuple(args, "id", &Index, &Datum)) {
            Quantity.setValue(Datum);
            break;
        }

        // handle (string,Quantity)
        char* constrName;
        PyErr_Clear();
        if (PyArg_ParseTuple(args,"sO!", &constrName, &(Base::QuantityPy::Type), &object)) {
            Quantity = *(static_cast<Base::QuantityPy*>(object)->getQuantityPtr());
            if (Quantity.getUnit() == Base::Unit::Angle) {
                Datum = Base::toRadians<double>(Quantity.getValue());
            }
            else {
                Datum = Quantity.getValue();
            }

            int i = 0;
            Index = -1;
            const std::vector<Constraint*>& vals = this->getSketchObjectPtr()->Constraints.getValues();
            for (std::vector<Constraint*>::const_iterator it = vals.begin(); it != vals.end(); ++it, ++i) {
                if ((*it)->Name == constrName) {
                    Index = i;
                    break;
                }
            }

            if (Index >= 0) {
                break;
            }
            else {
                std::stringstream str;
                str << "Invalid constraint name: '" << constrName << "'";
                PyErr_SetString(PyExc_ValueError, str.str().c_str());
                return 0;
            }
        }

        // handle (string,double)
        PyErr_Clear();
        if (PyArg_ParseTuple(args, "sd", &constrName, &Datum)) {
            Quantity.setValue(Datum);
            int i = 0;
            Index = -1;
            const std::vector<Constraint*>& vals = this->getSketchObjectPtr()->Constraints.getValues();
            for (std::vector<Constraint*>::const_iterator it = vals.begin(); it != vals.end(); ++it, ++i) {
                if ((*it)->Name == constrName) {
                    Index = i;
                    break;
                }
            }

            if (Index >= 0) {
                break;
            }
            else {
                std::stringstream str;
                str << "Invalid constraint name: '" << constrName << "'";
                PyErr_SetString(PyExc_ValueError, str.str().c_str());
                return 0;
            }
        }

        // error handling
        PyErr_SetString(PyExc_TypeError, "Wrong arguments");
        return 0;
    }
    while (false);

    int err=this->getSketchObjectPtr()->setDatum(Index, Datum);
    if (err) {
        std::stringstream str;
        if (err == -1)
            str << "Invalid constraint index: " << Index;
        else if (err == -3)
            str << "Cannot set the datum because the sketch contains conflicting constraints";
        else if (err == -2)
            str << "Datum " << (const char*)Quantity.getUserString().toUtf8() << " for the constraint with index " << Index << " is invalid";
        else if (err == -4)
            str << "Negative datum values are not valid for the constraint with index " << Index;
        else if (err == -5)
            str << "Zero is not a valid datum for the constraint with index " << Index;
        else if (err == -6)
            str << "Cannot set the datum because of invalid geometry";
        else
            str << "Unexpected problem at setting datum " << (const char*)Quantity.getUserString().toUtf8() << " for the constraint with index " << Index;
        PyErr_SetString(PyExc_ValueError, str.str().c_str());
        return 0;
    }

    Py_Return;
}
Example #9
0
// constructor method
int ConstraintPy::PyInit(PyObject* args, PyObject* /*kwd*/)
{
    if (PyArg_ParseTuple(args, "")) {
        return 0;
    }

    PyErr_Clear();

    char *ConstraintType;
    int  FirstIndex = Constraint::GeoUndef;
    int  FirstPos   = none;
    int  SecondIndex= Constraint::GeoUndef;
    int  SecondPos  = none;
    int  ThirdIndex = Constraint::GeoUndef;
    int  ThirdPos   = none;
    double Value    = 0;
    int intArg1, intArg2, intArg3, intArg4, intArg5;
    // Note: In Python 2.x PyArg_ParseTuple prints a warning if a float is given but an integer is expected.
    // This means we must use a PyObject and check afterwards if it's a float or integer.
    PyObject* index_or_value;
    PyObject* oNumArg4;
    PyObject* oNumArg5;
    int any_index;

    // ConstraintType, GeoIndex
    if (PyArg_ParseTuple(args, "si", &ConstraintType, &FirstIndex)) {
        if (strcmp("Horizontal",ConstraintType) == 0) {
            this->getConstraintPtr()->Type = Horizontal;
            this->getConstraintPtr()->First = FirstIndex;
            return 0;
        }
        else if (strcmp("Vertical",ConstraintType) == 0) {
            this->getConstraintPtr()->Type = Vertical;
            this->getConstraintPtr()->First = FirstIndex;
            return 0;
        }
    }
    PyErr_Clear();

    if (PyArg_ParseTuple(args, "siO", &ConstraintType, &FirstIndex, &index_or_value)) {
        // ConstraintType, GeoIndex1, GeoIndex2
        if (PyInt_Check(index_or_value)) {
            SecondIndex = PyInt_AsLong(index_or_value);
            bool valid = false;
            if (strcmp("Tangent",ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Tangent;
                valid = true;
            }
            else if (strcmp("Parallel",ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Parallel;
                valid = true;
            }
            else if (strcmp("Perpendicular",ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Perpendicular;
                valid = true;
            }
            else if (strcmp("Equal",ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Equal;
                valid = true;
            }
            else if (strstr(ConstraintType,"InternalAlignment") != NULL) {
                this->getConstraintPtr()->Type = InternalAlignment;
                
                valid = true;
                if(strstr(ConstraintType,"EllipseMajorDiameter") != NULL)
                    this->getConstraintPtr()->AlignmentType=EllipseMajorDiameter;
                else if(strstr(ConstraintType,"EllipseMinorDiameter") != NULL)
                    this->getConstraintPtr()->AlignmentType=EllipseMinorDiameter;                    
                else {
                    this->getConstraintPtr()->AlignmentType=Undef;
                    valid = false;
                }
            }
            
            if (valid) {
                this->getConstraintPtr()->First = FirstIndex;
                this->getConstraintPtr()->Second = SecondIndex;
                return 0;
            }
        }
        // ConstraintType, GeoIndex, Value
        if (PyNumber_Check(index_or_value)) { // can be float or int
            Value = PyFloat_AsDouble(index_or_value);
            bool valid = false;
            if (strcmp("Distance",ConstraintType) == 0 ) {
                this->getConstraintPtr()->Type = Distance;
                valid = true;
            }
            else if (strcmp("Angle",ConstraintType) == 0 ) {
                if (PyObject_TypeCheck(index_or_value, &(Base::QuantityPy::Type))) {
                    Base::Quantity q = *(static_cast<Base::QuantityPy*>(index_or_value)->getQuantityPtr());
                    if (q.getUnit() == Base::Unit::Angle)
                        Value = q.getValueAs(Base::Quantity::Radian);
                }
                this->getConstraintPtr()->Type = Angle;
                valid = true;
            }
            else if (strcmp("DistanceX",ConstraintType) == 0) {
                this->getConstraintPtr()->Type = DistanceX;
                valid = true;
            }
            else if (strcmp("DistanceY",ConstraintType) == 0) {
                this->getConstraintPtr()->Type = DistanceY;
                valid = true;
            }
            else if (strcmp("Radius",ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Radius;
                // set a value that is out of range of result of atan2
                // this value is handled in ViewProviderSketch
                this->getConstraintPtr()->LabelPosition = 10;
                valid = true;
            }
            if (valid) {
                this->getConstraintPtr()->First    = FirstIndex;
                this->getConstraintPtr()->setValue(Value);
                return 0;
            }
        }
    }
    PyErr_Clear();

    if (PyArg_ParseTuple(args, "siiO", &ConstraintType, &FirstIndex, &any_index, &index_or_value)) {
        // ConstraintType, GeoIndex1, PosIndex1, GeoIndex2
        if (PyInt_Check(index_or_value)) {
            FirstPos = any_index;
            SecondIndex = PyInt_AsLong(index_or_value);
            bool valid = false;
            if (strcmp("Perpendicular", ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Perpendicular;
                valid = true;
            }
            else if (strcmp("Tangent", ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Tangent;
                valid = true;
            }
            else if (strcmp("PointOnObject", ConstraintType) == 0) {
                this->getConstraintPtr()->Type = PointOnObject;
                valid = true;
            }
            else if (strstr(ConstraintType,"InternalAlignment") != NULL) {
                this->getConstraintPtr()->Type = InternalAlignment;
                
                valid = true;
                   
                if(strstr(ConstraintType,"EllipseFocus1") != NULL)
                    this->getConstraintPtr()->AlignmentType=EllipseFocus1; 
                else if(strstr(ConstraintType,"EllipseFocus2") != NULL)
                    this->getConstraintPtr()->AlignmentType=EllipseFocus2;
                else {
                    this->getConstraintPtr()->AlignmentType=Undef;
                    valid = false;
                }
            }
            if (valid) {
                this->getConstraintPtr()->First    = FirstIndex;
                this->getConstraintPtr()->FirstPos = (Sketcher::PointPos) FirstPos;
                this->getConstraintPtr()->Second   = SecondIndex;
                return 0;
            }
        }
        // ConstraintType, GeoIndex1, GeoIndex2, Value
        // ConstraintType, GeoIndex, PosIndex, Value
        if (PyNumber_Check(index_or_value)) { // can be float or int
            SecondIndex = any_index;
            Value = PyFloat_AsDouble(index_or_value);
            //if (strcmp("Distance",ConstraintType) == 0) {
            //    this->getConstraintPtr()->Type   = Distance;
            //    this->getConstraintPtr()->First  = FirstIndex;
            //    this->getConstraintPtr()->Second = SecondIndex;
            //    this->getConstraintPtr()->Value  = Value;
            //    return 0;
            //}
            //else
            if (strcmp("Angle",ConstraintType) == 0) {
                if (PyObject_TypeCheck(index_or_value, &(Base::QuantityPy::Type))) {
                    Base::Quantity q = *(static_cast<Base::QuantityPy*>(index_or_value)->getQuantityPtr());
                    if (q.getUnit() == Base::Unit::Angle)
                        Value = q.getValueAs(Base::Quantity::Radian);
                }
                this->getConstraintPtr()->Type   = Angle;
                this->getConstraintPtr()->First  = FirstIndex;
                this->getConstraintPtr()->Second = SecondIndex;
                this->getConstraintPtr()->setValue(Value);
                return 0;
            }
            else if (strcmp("DistanceX",ConstraintType) == 0) {
                FirstPos = SecondIndex;
                SecondIndex = -1;
                this->getConstraintPtr()->Type = DistanceX;
                this->getConstraintPtr()->First    = FirstIndex;
                this->getConstraintPtr()->FirstPos = (Sketcher::PointPos) FirstPos;
                this->getConstraintPtr()->setValue(Value);
                return 0;
            }
            else if (strcmp("DistanceY",ConstraintType) == 0) {
                FirstPos = SecondIndex;
                SecondIndex = -1;
                this->getConstraintPtr()->Type = DistanceY;
                this->getConstraintPtr()->First    = FirstIndex;
                this->getConstraintPtr()->FirstPos = (Sketcher::PointPos) FirstPos;
                this->getConstraintPtr()->setValue(Value);
                return 0;
            }
        }
    }
    PyErr_Clear();

    if (PyArg_ParseTuple(args, "siiiO", &ConstraintType, &intArg1, &intArg2, &intArg3, &oNumArg4)) {
        // Value, ConstraintType, GeoIndex1, PosIndex1, GeoIndex2, PosIndex2
        if (PyInt_Check(oNumArg4)) {
            intArg4 = PyInt_AsLong(oNumArg4);
            bool valid = false;
            if (strcmp("Coincident", ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Coincident;
                valid = true;
            }
            else if (strcmp("Horizontal", ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Horizontal;
                valid = true;
            }
            else if (strcmp("Vertical", ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Vertical;
                valid = true;
            }
            else if (strcmp("Perpendicular", ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Perpendicular;
                valid = true;
            }
            else if (strcmp("Tangent", ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Tangent;
                valid = true;
            }
            else if (strcmp("TangentViaPoint", ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Tangent;
                //valid = true;//non-standard assignment
                this->getConstraintPtr()->First     = intArg1;
                this->getConstraintPtr()->FirstPos  = Sketcher::none;
                this->getConstraintPtr()->Second    = intArg2;
                this->getConstraintPtr()->SecondPos = Sketcher::none;
                this->getConstraintPtr()->Third     = intArg3;
                this->getConstraintPtr()->ThirdPos  = (Sketcher::PointPos) intArg4;
                return 0;
            }
            else if (strcmp("PerpendicularViaPoint", ConstraintType) == 0) {
                this->getConstraintPtr()->Type = Perpendicular;
                //valid = true;//non-standard assignment
                this->getConstraintPtr()->First     = intArg1;
                this->getConstraintPtr()->FirstPos  = Sketcher::none;
                this->getConstraintPtr()->Second    = intArg2;
                this->getConstraintPtr()->SecondPos = Sketcher::none;
                this->getConstraintPtr()->Third     = intArg3;
                this->getConstraintPtr()->ThirdPos  = (Sketcher::PointPos) intArg4;
                return 0;
            }
            if (valid) {
                this->getConstraintPtr()->First     = intArg1;
                this->getConstraintPtr()->FirstPos  = (Sketcher::PointPos) intArg2;
                this->getConstraintPtr()->Second    = intArg3;
                this->getConstraintPtr()->SecondPos = (Sketcher::PointPos) intArg4;
                return 0;
            }
        }
        // ConstraintType, GeoIndex1, PosIndex1, GeoIndex2, Value
        if (PyNumber_Check(oNumArg4)) { // can be float or int
            Value = PyFloat_AsDouble(oNumArg4);
            if (strcmp("Distance",ConstraintType) == 0 ) {
                this->getConstraintPtr()->Type = Distance;
                this->getConstraintPtr()->First    = intArg1;
                this->getConstraintPtr()->FirstPos = (Sketcher::PointPos) intArg2;
                this->getConstraintPtr()->Second   = intArg3;
                this->getConstraintPtr()->setValue(Value);
                return 0;
            }
        }
    }
    PyErr_Clear();

    if (PyArg_ParseTuple(args, "siiiiO", &ConstraintType, &intArg1, &intArg2, &intArg3, &intArg4, &oNumArg5)) {
        // ConstraintType, GeoIndex1, PosIndex1, GeoIndex2, PosIndex2, GeoIndex3
        if (PyInt_Check(oNumArg5)) {
            intArg5 = PyInt_AsLong(oNumArg5);
            if (strcmp("Symmetric",ConstraintType) == 0 ) {
                this->getConstraintPtr()->Type = Symmetric;
                this->getConstraintPtr()->First     = intArg1;
                this->getConstraintPtr()->FirstPos  = (Sketcher::PointPos) intArg2;
                this->getConstraintPtr()->Second    = intArg3;
                this->getConstraintPtr()->SecondPos = (Sketcher::PointPos) intArg4;
                this->getConstraintPtr()->Third     = intArg5;
                return 0;
            }
        }
        // ConstraintType, GeoIndex1, PosIndex1, GeoIndex2, PosIndex2, Value
        if (PyNumber_Check(oNumArg5)) { // can be float or int
            Value = PyFloat_AsDouble(oNumArg5);
            bool valid=false;
            if (strcmp("Distance",ConstraintType) == 0 ) {
                this->getConstraintPtr()->Type = Distance;
                valid = true;
            }
            else if (strcmp("DistanceX",ConstraintType) == 0) {
                this->getConstraintPtr()->Type = DistanceX;
                valid = true;
            }
            else if (strcmp("DistanceY",ConstraintType) == 0) {
                this->getConstraintPtr()->Type = DistanceY;
                valid = true;
            }
            else if (strcmp("Angle",ConstraintType) == 0 ) {
                if (PyObject_TypeCheck(oNumArg5, &(Base::QuantityPy::Type))) {
                    Base::Quantity q = *(static_cast<Base::QuantityPy*>(oNumArg5)->getQuantityPtr());
                    if (q.getUnit() == Base::Unit::Angle)
                        Value = q.getValueAs(Base::Quantity::Radian);
                }
                this->getConstraintPtr()->Type = Angle;
                valid = true;
            }
            else if (strcmp("AngleViaPoint",ConstraintType) == 0 ) {
                if (PyObject_TypeCheck(oNumArg5, &(Base::QuantityPy::Type))) {
                    Base::Quantity q = *(static_cast<Base::QuantityPy*>(oNumArg5)->getQuantityPtr());
                    if (q.getUnit() == Base::Unit::Angle)
                        Value = q.getValueAs(Base::Quantity::Radian);
                }
                this->getConstraintPtr()->Type = Angle;
                //valid = true;//non-standard assignment
                this->getConstraintPtr()->First     = intArg1;
                this->getConstraintPtr()->FirstPos  = Sketcher::none;
                this->getConstraintPtr()->Second    = intArg2; //let's goof up all the terminology =)
                this->getConstraintPtr()->SecondPos = Sketcher::none;
                this->getConstraintPtr()->Third     = intArg3;
                this->getConstraintPtr()->ThirdPos  = (Sketcher::PointPos) intArg4;
                this->getConstraintPtr()->setValue(Value);
                return 0;
            }
            if (valid) {
                this->getConstraintPtr()->First     = intArg1;
                this->getConstraintPtr()->FirstPos  = (Sketcher::PointPos) intArg2;
                this->getConstraintPtr()->Second    = intArg3;
                this->getConstraintPtr()->SecondPos = (Sketcher::PointPos) intArg4;
                this->getConstraintPtr()->setValue(Value);
                return 0;
            }
        }
    }
    PyErr_Clear();

    if (PyArg_ParseTuple(args, "siiiiiO", &ConstraintType, &FirstIndex, &FirstPos, &SecondIndex, &SecondPos, &ThirdIndex, &index_or_value)) {
        if (PyInt_Check(index_or_value)) {
            ThirdPos = PyInt_AsLong(index_or_value);
            // ConstraintType, GeoIndex1, PosIndex1, GeoIndex2, PosIndex2, GeoIndex3, PosIndex3
            if (strcmp("Symmetric",ConstraintType) == 0 ) {
                this->getConstraintPtr()->Type = Symmetric;
                this->getConstraintPtr()->First     = FirstIndex;
                this->getConstraintPtr()->FirstPos  = (Sketcher::PointPos) FirstPos;
                this->getConstraintPtr()->Second    = SecondIndex;
                this->getConstraintPtr()->SecondPos = (Sketcher::PointPos) SecondPos;
                this->getConstraintPtr()->Third     = ThirdIndex;
                this->getConstraintPtr()->ThirdPos  = (Sketcher::PointPos) ThirdPos;
                return 0;
            }
        }
        if (PyNumber_Check(index_or_value)) { // can be float or int
            Value = PyFloat_AsDouble(index_or_value);
            if (strcmp("SnellsLaw",ConstraintType) == 0 ) {
                this->getConstraintPtr()->Type = SnellsLaw;
                this->getConstraintPtr()->First     = FirstIndex;
                this->getConstraintPtr()->FirstPos  = (Sketcher::PointPos) FirstPos;
                this->getConstraintPtr()->Second    = SecondIndex;
                this->getConstraintPtr()->SecondPos = (Sketcher::PointPos) SecondPos;
                this->getConstraintPtr()->Third     = ThirdIndex;
                this->getConstraintPtr()->ThirdPos  = none;
                this->getConstraintPtr()->setValue(Value);
                return 0;
            }
        }
    }

    std::stringstream str;
    str << "Invalid parameters: ";
    Py::Tuple tuple(args);
    str << tuple.as_string() << std::endl;
    str << "Constraint constructor accepts:" << std::endl
        << "-- empty parameter list" << std::endl
        << "-- Constraint type and index" << std::endl;

    PyErr_SetString(PyExc_TypeError, str.str().c_str());
    return -1;
}
QString UnitsSchemaImperialBuilding::schemaTranslate(Base::Quantity quant,double &factor,QString &unitString)
{
    // this schema expresses distances in feet + inches + fractions
    // ex: 3'- 4 1/4"
    Unit unit = quant.getUnit();
    if(unit == Unit::Length){
        unitString = QString::fromLatin1("in");
        factor = 25.4;
        double inchValue = std::abs(quant.getValue())/25.4;
        int feet = inchValue/12;
        double inchPart = inchValue - (double)feet*12;
        int inches = (int)inchPart;
        double fraction = inchPart - (int)inchPart;
        if (fraction > 0.9375) {
            inches++;
            fraction = 0.0;
        }
        // if the quantity is too small it is rounded to zero
        if (std::abs(quant.getValue()) <= 1.5875)
            return QString::fromLatin1("0");
        // build representation
        std::stringstream output;
        if (quant.getValue() < 0)
            output << "-";
        // feet
        if (feet > 0) {
            output << feet << "'";
            if ( (inches > 0) || (fraction > 0.0625) )
                output << " ";
        }
        // inches
        if (inches > 0) {
            output << inches;
            if (fraction > 0.0625)
                output << "+";
            else
                output << "\"";
        }
        // fraction
        if (fraction <= 0.0625) {}
        else if (fraction > 0.8125)
            output << "7/8\"";
        else if (fraction > 0.6875)
            output << "3/4\"";
        else if (fraction > 0.5625)
            output << "5/8\"";
        else if (fraction > 0.4375)
            output << "1/2\"";
        else if (fraction > 0.3125)
            output << "3/8\"";
        else if (fraction > 0.1875)
            output << "1/4\"";
        else
            output << "1/8\"";
        return QString::fromLatin1(output.str().c_str());
    }else if (unit == Unit::Area){
        unitString = QString::fromLatin1("sqft");
        factor = 92903.04;
    }else if (unit == Unit::Volume){
        unitString = QString::fromLatin1("cuft");
        factor = 28316846.592;
    }else{
        unitString = quant.getUnit().getString();
        factor = 1.0;
    }
    QLocale Lc = QLocale::system();
    Lc.setNumberOptions(Lc.OmitGroupSeparator | Lc.RejectGroupSeparator);
    QString Ln = Lc.toString((quant.getValue() / factor), 'f', Base::UnitsApi::getDecimals());
    return QString::fromUtf8("%1 %2").arg(Ln).arg(unitString);
}
void EditDatumDialog::exec(bool atCursor)
{
    // Return if constraint doesn't have editable value
    if (Constr->Type == Sketcher::Distance ||
        Constr->Type == Sketcher::DistanceX || Constr->Type == Sketcher::DistanceY ||
        Constr->Type == Sketcher::Radius || Constr->Type == Sketcher::Angle) {

        if (sketch->hasConflicts()) {
            QMessageBox::critical(qApp->activeWindow(), QObject::tr("Distance constraint"),
                                  QObject::tr("Not allowed to edit the datum because the sketch contains conflicting constraints"));
            return;
        }

        Gui::MDIView *mdi = Gui::Application::Instance->activeDocument()->getActiveView();
        Gui::View3DInventorViewer *viewer = static_cast<Gui::View3DInventor *>(mdi)->getViewer();

        QDialog dlg(viewer->getGLWidget());

        Ui::InsertDatum ui_ins_datum;
        ui_ins_datum.setupUi(&dlg);
        double datum = Constr->Value;
        Base::Quantity init_val;

        if (Constr->Type == Sketcher::Angle) {
            datum = Base::toDegrees<double>(datum);
            dlg.setWindowTitle(tr("Insert angle"));
            init_val.setUnit(Base::Unit::Angle);
            ui_ins_datum.label->setText(tr("Angle:"));
            ui_ins_datum.labelEdit->setParamGrpPath(QByteArray("User parameter:BaseApp/History/SketcherAngle"));
        }
        else if (Constr->Type == Sketcher::Radius) {
            dlg.setWindowTitle(tr("Insert radius"));
            init_val.setUnit(Base::Unit::Length);
            ui_ins_datum.label->setText(tr("Radius:"));
            ui_ins_datum.labelEdit->setParamGrpPath(QByteArray("User parameter:BaseApp/History/SketcherLength"));
        }
        else {
            dlg.setWindowTitle(tr("Insert length"));
            init_val.setUnit(Base::Unit::Length);
            ui_ins_datum.label->setText(tr("Length:"));
            ui_ins_datum.labelEdit->setParamGrpPath(QByteArray("User parameter:BaseApp/History/SketcherLength"));
        }


        //ui_ins_datum.lineEdit->setParamGrpPath("User parameter:History/Sketcher/SetDatum");

        if (Constr->Type == Sketcher::Angle ||
            ((Constr->Type == Sketcher::DistanceX || Constr->Type == Sketcher::DistanceY) &&
             Constr->FirstPos == Sketcher::none || Constr->Second != Sketcher::Constraint::GeoUndef))
            // hide negative sign
            init_val.setValue(std::abs(datum));

        else // show negative sign
            init_val.setValue(datum);

        ui_ins_datum.labelEdit->setValue(init_val);
        ui_ins_datum.labelEdit->selectNumber();

        if (atCursor)
            dlg.setGeometry(QCursor::pos().x() - dlg.geometry().width() / 2, QCursor::pos().y(), dlg.geometry().width(), dlg.geometry().height());

        if (dlg.exec()) {
            Base::Quantity newQuant = ui_ins_datum.labelEdit->getQuantity();
            if (newQuant.isQuantity()) {
                // save the value for the history 
                ui_ins_datum.labelEdit->pushToHistory();

                double newDatum = newQuant.getValue();
                if (Constr->Type == Sketcher::Angle ||
                    ((Constr->Type == Sketcher::DistanceX || Constr->Type == Sketcher::DistanceY) &&
                     Constr->FirstPos == Sketcher::none || Constr->Second != Sketcher::Constraint::GeoUndef)) {
                    // Permit negative values to flip the sign of the constraint
                    if (newDatum >= 0) // keep the old sign
                        newDatum = ((datum >= 0) ? 1 : -1) * std::abs(newDatum);
                    else // flip sign
                        newDatum = ((datum >= 0) ? -1 : 1) * std::abs(newDatum);
                }

                try {
                    Gui::Command::openCommand("Modify sketch constraints");
                    Gui::Command::doCommand(Gui::Command::Doc,"App.ActiveDocument.%s.setDatum(%i,App.Units.Quantity('%f %s'))",
                                sketch->getNameInDocument(),
                                ConstrNbr, newDatum, (const char*)newQuant.getUnit().getString().toUtf8());
                    Gui::Command::commitCommand();
                    Gui::Command::updateActive();
                }
                catch (const Base::Exception& e) {
                    QMessageBox::critical(qApp->activeWindow(), QObject::tr("Dimensional constraint"), QString::fromUtf8(e.what()));
                    Gui::Command::abortCommand();
                }
            }
        }
    }
}
    Base::Quantity validateAndInterpret(QString& input, int& pos, QValidator::State& state) const
    {
        Base::Quantity res;
        const double max = this->maximum;
        const double min = this->minimum;

        QString copy = input;

        int len = copy.size();

        const bool plus = max >= 0;
        const bool minus = min <= 0;

        switch (len) {
        case 0:
            state = max != min ? QValidator::Intermediate : QValidator::Invalid;
            goto end;
        case 1:
            if (copy.at(0) == locale.decimalPoint()) {
                state = QValidator::Intermediate;
                copy.prepend(QLatin1Char('0'));
                pos++;
                len++;
                goto end;
            }
            else if (copy.at(0) == QLatin1Char('+')) {
                // the quantity parser doesn't allow numbers of the form '+1.0'
                state = QValidator::Invalid;
                goto end;
            }
            else if (copy.at(0) == QLatin1Char('-')) {
                if (minus)
                    state = QValidator::Intermediate;
                else
                    state = QValidator::Invalid;
                goto end;
            }
            break;
        case 2:
            if (copy.at(1) == locale.decimalPoint()
                    && (plus && copy.at(0) == QLatin1Char('+'))) {
                state = QValidator::Intermediate;
                goto end;
            }
            if (copy.at(1) == locale.decimalPoint()
                    && (minus && copy.at(0) == QLatin1Char('-'))) {
                state = QValidator::Intermediate;
                copy.insert(1, QLatin1Char('0'));
                pos++;
                len++;
                goto end;
            }
            break;
        default:
            break;
        }

        {
            if (copy.at(0) == locale.groupSeparator()) {
                state = QValidator::Invalid;
                goto end;
            }
            else if (len > 1) {
                const int dec = copy.indexOf(locale.decimalPoint());
                if (dec != -1) {
                    if (dec + 1 < copy.size() && copy.at(dec + 1) == locale.decimalPoint() && pos == dec + 1) {
                        copy.remove(dec + 1, 1);
                    }
                    else if (copy.indexOf(locale.decimalPoint(), dec + 1) != -1) {
                        // trying to add a second decimal point is not allowed
                        state = QValidator::Invalid;
                        goto end;
                    }
                    for (int i=dec + 1; i<copy.size(); ++i) {
                        // a group separator after the decimal point is not allowed
                        if (copy.at(i) == locale.groupSeparator()) {
                            state = QValidator::Invalid;
                            goto end;
                        }
                    }
                }
            }

            bool ok = false;
            double value = min;

            if (locale.negativeSign() != QLatin1Char('-'))
                copy.replace(locale.negativeSign(), QLatin1Char('-'));
            if (locale.positiveSign() != QLatin1Char('+'))
                copy.replace(locale.positiveSign(), QLatin1Char('+'));

            try {
                QString copy2 = copy;
                copy2.remove(locale.groupSeparator());

                res = Base::Quantity::parse(copy2);
                value = res.getValue();
                ok = true;
            }
            catch (Base::Exception&) {
            }

            if (!ok) {
                // input may not be finished
                state = QValidator::Intermediate;
            }
            else if (value >= min && value <= max) {
                if (copy.endsWith(locale.decimalPoint())) {
                    // input shouldn't end with a decimal point
                    state = QValidator::Intermediate;
                }
                else if (res.getUnit().isEmpty() && !this->unit.isEmpty()) {
                    // if not dimensionless the input should have a dimension
                    state = QValidator::Intermediate;
                }
                else if (res.getUnit() != this->unit) {
                    state = QValidator::Invalid;
                }
                else {
                    state = QValidator::Acceptable;
                }
            }
            else if (max == min) { // when max and min is the same the only non-Invalid input is max (or min)
                state = QValidator::Invalid;
            }
            else {
                if ((value >= 0 && value > max) || (value < 0 && value < min)) {
                    state = QValidator::Invalid;
                }
                else {
                    state = QValidator::Intermediate;
                }
            }
        }
end:
        if (state != QValidator::Acceptable) {
            res.setValue(max > 0 ? min : max);
        }

        input = copy;
        return res;
    }
void QuantitySpinBox::setUnitText(const QString& str)
{
    Base::Quantity quant = Base::Quantity::parse(str);
    setUnit(quant.getUnit());
}
QString UnitsSchemaImperialDecimal::schemaTranslate(const Base::Quantity& quant, double &factor, QString &unitString)
{
    double UnitValue = std::abs(quant.getValue());
    Unit unit = quant.getUnit();
    // for imperial user/programmer mind; UnitValue is in internal system, that means
    // mm/kg/s. And all combined units have to be calculated from there!

    // now do special treatment on all cases seems necessary:
    if (unit == Unit::Length) {  // Length handling ============================
        if (UnitValue < 0.00000254) {// smaller then 0.001 thou -> inch and scientific notation
            unitString = QString::fromLatin1("in");
            factor = 25.4;
        //}else if(UnitValue < 2.54){ // smaller then 0.1 inch -> Thou (mil)
        //    unitString = QString::fromLatin1("thou");
        //    factor = 0.0254;
        }
        else { // bigger then 1000 mi -> scientific notation
            unitString = QString::fromLatin1("in");
            factor = 25.4;
        }
    }
    else if (unit == Unit::Area) {
        // TODO Cascade for the Areas
        // default action for all cases without special treatment:
        unitString = QString::fromLatin1("in^2");
        factor = 645.16;
    }
    else if (unit == Unit::Volume) {
        // TODO Cascade for the Volume
        // default action for all cases without special treatment:
        unitString = QString::fromLatin1("in^3");
        factor = 16387.064;
    }
    else if (unit == Unit::Mass) {
        // TODO Cascade for the weights
        // default action for all cases without special treatment:
        unitString = QString::fromLatin1("lb");
        factor = 0.45359237;
    }
    else if (unit == Unit::Pressure) {
        if (UnitValue < 6894.744) {// psi is the smallest
            unitString = QString::fromLatin1("psi");
            factor = 6.894744825494;
        }
        else { // bigger then 1000 ksi -> psi + scientific notation
            unitString = QString::fromLatin1("psi");
            factor = 6.894744825494;
        }
    }
    else if (unit == Unit::Velocity) {
        unitString = QString::fromLatin1("in/min");
        factor = 25.4/60;
    }
    else {
        // default action for all cases without special treatment:
        unitString = quant.getUnit().getString();
        factor = 1.0;
    }

    return toLocale(quant, factor, unitString);
}
QString UnitsSchemaImperial1::schemaTranslate(Base::Quantity quant,double &factor,QString &unitString)
{
    double UnitValue = std::abs(quant.getValue());
    Unit unit = quant.getUnit();
    // for imperial user/programmer mind; UnitValue is in internal system, that means
    // mm/kg/s. And all combined units have to be calculated from there! 

    // now do special treatment on all cases seems necessary:
    if(unit == Unit::Length){  // Length handling ============================
        if(UnitValue < 0.00000254){// smaller then 0.001 thou -> inch and scientific notation
            unitString = QString::fromLatin1("in");
            factor = 25.4;
        }else if(UnitValue < 2.54){ // smaller then 0.1 inch -> Thou (mil)
            unitString = QString::fromLatin1("thou");
            factor = 0.0254;
        }else if(UnitValue < 304.8){ 
            unitString = QString::fromLatin1("\"");
            factor = 25.4;
        }else if(UnitValue < 914.4){
            unitString = QString::fromLatin1("\'");
            factor = 304.8;
        }else if(UnitValue < 1609344.0){
            unitString = QString::fromLatin1("yd");
            factor = 914.4;
        }else if(UnitValue < 1609344000.0 ){
            unitString = QString::fromLatin1("mi");
            factor = 1609344.0;
        }else{ // bigger then 1000 mi -> scientific notation 
            unitString = QString::fromLatin1("in");
            factor = 25.4;
        }
    }else if (unit == Unit::Area){
        // TODO Cascade for the Areas
        // default action for all cases without special treatment:
        unitString = QString::fromLatin1("in^2");
        factor = 645.16;
    }else if (unit == Unit::Volume){
        // TODO Cascade for the Volume
        // default action for all cases without special treatment:
        unitString = QString::fromLatin1("in^3");
        factor = 16387.064;
    }else if (unit == Unit::Mass){
        // TODO Cascade for the wights
        // default action for all cases without special treatment:
        unitString = QString::fromLatin1("lb");
        factor = 0.45359237;
    }else if (unit == Unit::Pressure){
        if(UnitValue < 145.038){// psi is the smallest
            unitString = QString::fromLatin1("psi");
            factor = 0.145038;
        }else if(UnitValue < 145038){
            unitString = QString::fromLatin1("ksi");
            factor = 145.038;
        }else{ // bigger then 1000 ksi -> psi + scientific notation 
            unitString = QString::fromLatin1("psi");
            factor = 0.145038;
        }
    }else{
        // default action for all cases without special treatment:
        unitString = quant.getUnit().getString();
        factor = 1.0;
    }
    return QString::fromLatin1("%L1 %2").arg(quant.getValue() / factor).arg(unitString);
}