void PC_to_Mat(PointCloudT::Ptr &cloud, cv::Mat &result){ if (cloud->isOrganized()) { std::cout << "PointCloud is organized..." << std::endl; result = cv::Mat(cloud->height, cloud->width, CV_8UC3); if (!cloud->empty()) { for (int h=0; h<result.rows; h++) { for (int w=0; w<result.cols; w++) { PointT point = cloud->at(w, h); Eigen::Vector3i rgb = point.getRGBVector3i(); result.at<cv::Vec3b>(h,w)[0] = rgb[2]; result.at<cv::Vec3b>(h,w)[1] = rgb[1]; result.at<cv::Vec3b>(h,w)[2] = rgb[0]; } } } } }
void filter_PC_from_BB(PointCloudT::Ptr &cloud, cv::Mat &result, int x, int y, int width, int height){ const float bad_point = std::numeric_limits<float>::quiet_NaN(); if (cloud->isOrganized()) { std::cout << "PointCloud is organized..." << std::endl; result = cv::Mat(cloud->height, cloud->width, CV_8UC3); if (!cloud->empty()) { for (int h=0; h<result.rows; h++) { for (int w=0; w<result.cols; w++) { // Check if in bounding window if ( (h>y && h<(y+height)) && ((w > x) && w < (x+width)) ){ // do nothing } else { // remove point //PointT point = cloud->at(w, h); //cloud->at(w, h); cloud->at(w, h).x = bad_point; cloud->at(w, h).y = bad_point; cloud->at(w, h).z = bad_point; cloud->at(w, h).r = bad_point; cloud->at(w, h).g = bad_point; cloud->at(w, h).b = bad_point; } } } } } }
int main (int argc, char ** argv) { if (argc < 2) { pcl::console::print_info ("Syntax is: %s {-p <pcd-file> OR -r <rgb-file> -d <depth-file>} \n --NT (disables use of single camera transform) \n -o <output-file> \n -O <refined-output-file> \n-l <output-label-file> \n -L <refined-output-label-file> \n-v <voxel resolution> \n-s <seed resolution> \n-c <color weight> \n-z <spatial weight> \n-n <normal_weight>] \n", argv[0]); return (1); } /////////////////////////////// ////////////////////////////// ////////////////////////////// ////////////////////////////// ////// THIS IS ALL JUST INPUT HANDLING - Scroll down until ////// pcl::SupervoxelClustering<pcl::PointXYZRGB> super ////////////////////////////// ////////////////////////////// std::string rgb_path; bool rgb_file_specified = pcl::console::find_switch (argc, argv, "-r"); if (rgb_file_specified) pcl::console::parse (argc, argv, "-r", rgb_path); std::string depth_path; bool depth_file_specified = pcl::console::find_switch (argc, argv, "-d"); if (depth_file_specified) pcl::console::parse (argc, argv, "-d", depth_path); PointCloudT::Ptr cloud = boost::make_shared < PointCloudT >(); NormalCloudT::Ptr input_normals = boost::make_shared < NormalCloudT > (); bool pcd_file_specified = pcl::console::find_switch (argc, argv, "-p"); std::string pcd_path; if (!depth_file_specified || !rgb_file_specified) { std::cout << "Using point cloud\n"; if (!pcd_file_specified) { std::cout << "No cloud specified!\n"; return (1); }else { pcl::console::parse (argc,argv,"-p",pcd_path); } } bool disable_transform = pcl::console::find_switch (argc, argv, "--NT"); bool ignore_provided_normals = pcl::console::find_switch (argc, argv, "--nonormals"); bool has_normals = false; std::string out_path = "test_output.png";; pcl::console::parse (argc, argv, "-o", out_path); std::string out_label_path = "test_output_labels.png"; pcl::console::parse (argc, argv, "-l", out_label_path); std::string refined_out_path = "refined_test_output.png"; pcl::console::parse (argc, argv, "-O", refined_out_path); std::string refined_out_label_path = "refined_test_output_labels.png";; pcl::console::parse (argc, argv, "-L", refined_out_label_path); float voxel_resolution = 0.008f; pcl::console::parse (argc, argv, "-v", voxel_resolution); float seed_resolution = 0.08f; pcl::console::parse (argc, argv, "-s", seed_resolution); float color_importance = 0.2f; pcl::console::parse (argc, argv, "-c", color_importance); float spatial_importance = 0.4f; pcl::console::parse (argc, argv, "-z", spatial_importance); float normal_importance = 1.0f; pcl::console::parse (argc, argv, "-n", normal_importance); if (!pcd_file_specified) { //Read the images vtkSmartPointer<vtkImageReader2Factory> reader_factory = vtkSmartPointer<vtkImageReader2Factory>::New (); vtkImageReader2* rgb_reader = reader_factory->CreateImageReader2 (rgb_path.c_str ()); //qDebug () << "RGB File="<< QString::fromStdString(rgb_path); if ( ! rgb_reader->CanReadFile (rgb_path.c_str ())) { std::cout << "Cannot read rgb image file!"; return (1); } rgb_reader->SetFileName (rgb_path.c_str ()); rgb_reader->Update (); //qDebug () << "Depth File="<<QString::fromStdString(depth_path); vtkImageReader2* depth_reader = reader_factory->CreateImageReader2 (depth_path.c_str ()); if ( ! depth_reader->CanReadFile (depth_path.c_str ())) { std::cout << "Cannot read depth image file!"; return (1); } depth_reader->SetFileName (depth_path.c_str ()); depth_reader->Update (); vtkSmartPointer<vtkImageFlip> flipXFilter = vtkSmartPointer<vtkImageFlip>::New(); flipXFilter->SetFilteredAxis(0); // flip x axis flipXFilter->SetInputConnection(rgb_reader->GetOutputPort()); flipXFilter->Update(); vtkSmartPointer<vtkImageFlip> flipXFilter2 = vtkSmartPointer<vtkImageFlip>::New(); flipXFilter2->SetFilteredAxis(0); // flip x axis flipXFilter2->SetInputConnection(depth_reader->GetOutputPort()); flipXFilter2->Update(); vtkSmartPointer<vtkImageData> rgb_image = flipXFilter->GetOutput (); int *rgb_dims = rgb_image->GetDimensions (); vtkSmartPointer<vtkImageData> depth_image = flipXFilter2->GetOutput (); int *depth_dims = depth_image->GetDimensions (); if (rgb_dims[0] != depth_dims[0] || rgb_dims[1] != depth_dims[1]) { std::cout << "Depth and RGB dimensions to not match!"; std::cout << "RGB Image is of size "<<rgb_dims[0] << " by "<<rgb_dims[1]; std::cout << "Depth Image is of size "<<depth_dims[0] << " by "<<depth_dims[1]; return (1); } cloud->points.reserve (depth_dims[0] * depth_dims[1]); cloud->width = depth_dims[0]; cloud->height = depth_dims[1]; cloud->is_dense = false; // Fill in image data int centerX = static_cast<int>(cloud->width / 2.0); int centerY = static_cast<int>(cloud->height / 2.0); unsigned short* depth_pixel; unsigned char* color_pixel; float scale = 1.0f/1000.0f; float focal_length = 525.0f; float fl_const = 1.0f / focal_length; depth_pixel = static_cast<unsigned short*>(depth_image->GetScalarPointer (depth_dims[0]-1,depth_dims[1]-1,0)); color_pixel = static_cast<unsigned char*> (rgb_image->GetScalarPointer (depth_dims[0]-1,depth_dims[1]-1,0)); for (size_t y=0; y<cloud->height; ++y) { for (size_t x=0; x<cloud->width; ++x, --depth_pixel, color_pixel-=3) { PointT new_point; // uint8_t* p_i = &(cloud_blob->data[y * cloud_blob->row_step + x * cloud_blob->point_step]); float depth = static_cast<float>(*depth_pixel) * scale; if (depth == 0.0f) { new_point.x = new_point.y = new_point.z = std::numeric_limits<float>::quiet_NaN (); } else { new_point.x = (static_cast<float> (x) - centerX) * depth * fl_const; new_point.y = (static_cast<float> (centerY) - y) * depth * fl_const; // vtk seems to start at the bottom left image corner new_point.z = depth; } uint32_t rgb = static_cast<uint32_t>(color_pixel[0]) << 16 | static_cast<uint32_t>(color_pixel[1]) << 8 | static_cast<uint32_t>(color_pixel[2]); new_point.rgb = *reinterpret_cast<float*> (&rgb); cloud->points.push_back (new_point); } } } else { /// check if the provided pcd file contains normals pcl::PCLPointCloud2 input_pointcloud2; if (pcl::io::loadPCDFile (pcd_path, input_pointcloud2)) { PCL_ERROR ("ERROR: Could not read input point cloud %s.\n", pcd_path.c_str ()); return (3); } pcl::fromPCLPointCloud2 (input_pointcloud2, *cloud); if (!ignore_provided_normals) { if (hasField (input_pointcloud2,"normal_x")) { std::cout << "Using normals contained in file. Set --nonormals option to disable this.\n"; pcl::fromPCLPointCloud2 (input_pointcloud2, *input_normals); has_normals = true; } } } std::cout << "Done making cloud!\n"; /////////////////////////////// ////////////////////////////// ////////////////////////////// ////////////////////////////// ////// This is how to use supervoxels ////////////////////////////// ////////////////////////////// ////////////////////////////// ////////////////////////////// // If we're using the single camera transform no negative z allowed since we use log(z) if (!disable_transform) { for (PointCloudT::iterator cloud_itr = cloud->begin (); cloud_itr != cloud->end (); ++cloud_itr) if (cloud_itr->z < 0) { PCL_ERROR ("Points found with negative Z values, this is not compatible with the single camera transform!\n"); PCL_ERROR ("Set the --NT option to disable the single camera transform!\n"); return 1; } std::cout <<"You have the single camera transform enabled - this should be used with point clouds captured from a single camera.\n"; std::cout <<"You can disable the transform with the --NT flag\n"; } pcl::SupervoxelClustering<PointT> super (voxel_resolution, seed_resolution,!disable_transform); super.setInputCloud (cloud); if (has_normals) super.setNormalCloud (input_normals); super.setColorImportance (color_importance); super.setSpatialImportance (spatial_importance); super.setNormalImportance (normal_importance); std::map <uint32_t, pcl::Supervoxel<PointT>::Ptr > supervoxel_clusters; std::cout << "Extracting supervoxels!\n"; super.extract (supervoxel_clusters); std::cout << "Found " << supervoxel_clusters.size () << " Supervoxels!\n"; PointLCloudT::Ptr labeled_voxel_cloud = super.getLabeledVoxelCloud (); PointCloudT::Ptr voxel_centroid_cloud = super.getVoxelCentroidCloud (); PointNCloudT::Ptr sv_normal_cloud = super.makeSupervoxelNormalCloud (supervoxel_clusters); PointLCloudT::Ptr full_labeled_cloud = super.getLabeledCloud (); std::cout << "Getting supervoxel adjacency\n"; std::multimap<uint32_t, uint32_t> label_adjacency; super.getSupervoxelAdjacency (label_adjacency); std::map <uint32_t, pcl::Supervoxel<PointT>::Ptr > refined_supervoxel_clusters; std::cout << "Refining supervoxels \n"; super.refineSupervoxels (3, refined_supervoxel_clusters); PointLCloudT::Ptr refined_labeled_voxel_cloud = super.getLabeledVoxelCloud (); PointNCloudT::Ptr refined_sv_normal_cloud = super.makeSupervoxelNormalCloud (refined_supervoxel_clusters); PointLCloudT::Ptr refined_full_labeled_cloud = super.getLabeledCloud (); // THESE ONLY MAKE SENSE FOR ORGANIZED CLOUDS if (cloud->isOrganized ()) { pcl::io::savePNGFile (out_label_path, *full_labeled_cloud, "label"); pcl::io::savePNGFile (refined_out_label_path, *refined_full_labeled_cloud, "label"); //Save RGB from labels pcl::io::PointCloudImageExtractorFromLabelField<PointLT> pcie (pcie.io::PointCloudImageExtractorFromLabelField<PointLT>::COLORS_RGB_GLASBEY); //We need to set this to account for NAN points in the organized cloud pcie.setPaintNaNsWithBlack (true); pcl::PCLImage image; pcie.extract (*full_labeled_cloud, image); pcl::io::savePNGFile (out_path, image); pcie.extract (*refined_full_labeled_cloud, image); pcl::io::savePNGFile (refined_out_path, image); } std::cout << "Constructing Boost Graph Library Adjacency List...\n"; typedef boost::adjacency_list<boost::setS, boost::setS, boost::undirectedS, uint32_t, float> VoxelAdjacencyList; typedef VoxelAdjacencyList::vertex_descriptor VoxelID; typedef VoxelAdjacencyList::edge_descriptor EdgeID; VoxelAdjacencyList supervoxel_adjacency_list; super.getSupervoxelAdjacencyList (supervoxel_adjacency_list); std::cout << "Loading visualization...\n"; boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer")); viewer->setBackgroundColor (0, 0, 0); viewer->registerKeyboardCallback(keyboard_callback, 0); bool refined_normal_shown = show_refined; bool refined_sv_normal_shown = show_refined; bool sv_added = false; bool normals_added = false; bool graph_added = false; std::vector<std::string> poly_names; std::cout << "Loading viewer...\n"; while (!viewer->wasStopped ()) { if (show_supervoxels) { if (!viewer->updatePointCloud ((show_refined)?refined_labeled_voxel_cloud:labeled_voxel_cloud, "colored voxels")) { viewer->addPointCloud ((show_refined)?refined_labeled_voxel_cloud:labeled_voxel_cloud, "colored voxels"); viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE,3.0, "colored voxels"); } } else { viewer->removePointCloud ("colored voxels"); } if (show_voxel_centroids) { if (!viewer->updatePointCloud (voxel_centroid_cloud, "voxel centroids")) { viewer->addPointCloud (voxel_centroid_cloud, "voxel centroids"); viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE,2.0, "voxel centroids"); } } else { viewer->removePointCloud ("voxel centroids"); } if (show_supervoxel_normals) { if (refined_sv_normal_shown != show_refined || !sv_added) { viewer->removePointCloud ("supervoxel_normals"); viewer->addPointCloudNormals<PointNormal> ((show_refined)?refined_sv_normal_cloud:sv_normal_cloud,1,0.05f, "supervoxel_normals"); sv_added = true; } refined_sv_normal_shown = show_refined; } else if (!show_supervoxel_normals) { viewer->removePointCloud ("supervoxel_normals"); } if (show_normals) { std::map <uint32_t, pcl::Supervoxel<PointT>::Ptr>::iterator sv_itr,sv_itr_end; sv_itr = ((show_refined)?refined_supervoxel_clusters.begin ():supervoxel_clusters.begin ()); sv_itr_end = ((show_refined)?refined_supervoxel_clusters.end ():supervoxel_clusters.end ()); for (; sv_itr != sv_itr_end; ++sv_itr) { std::stringstream ss; ss << sv_itr->first <<"_normal"; if (refined_normal_shown != show_refined || !normals_added) { viewer->removePointCloud (ss.str ()); viewer->addPointCloudNormals<PointT,Normal> ((sv_itr->second)->voxels_,(sv_itr->second)->normals_,10,0.02f,ss.str ()); // std::cout << (sv_itr->second)->normals_->points[0]<<"\n"; } } normals_added = true; refined_normal_shown = show_refined; } else if (!show_normals) { std::map <uint32_t, pcl::Supervoxel<PointT>::Ptr>::iterator sv_itr,sv_itr_end; sv_itr = ((show_refined)?refined_supervoxel_clusters.begin ():supervoxel_clusters.begin ()); sv_itr_end = ((show_refined)?refined_supervoxel_clusters.end ():supervoxel_clusters.end ()); for (; sv_itr != sv_itr_end; ++sv_itr) { std::stringstream ss; ss << sv_itr->first << "_normal"; viewer->removePointCloud (ss.str ()); } } if (show_graph && !graph_added) { poly_names.clear (); std::multimap<uint32_t,uint32_t>::iterator label_itr = label_adjacency.begin (); for ( ; label_itr != label_adjacency.end (); ) { //First get the label uint32_t supervoxel_label = label_itr->first; //Now get the supervoxel corresponding to the label pcl::Supervoxel<PointT>::Ptr supervoxel = supervoxel_clusters.at (supervoxel_label); //Now we need to iterate through the adjacent supervoxels and make a point cloud of them PointCloudT adjacent_supervoxel_centers; std::multimap<uint32_t,uint32_t>::iterator adjacent_itr = label_adjacency.equal_range (supervoxel_label).first; for ( ; adjacent_itr!=label_adjacency.equal_range (supervoxel_label).second; ++adjacent_itr) { pcl::Supervoxel<PointT>::Ptr neighbor_supervoxel = supervoxel_clusters.at (adjacent_itr->second); adjacent_supervoxel_centers.push_back (neighbor_supervoxel->centroid_); } //Now we make a name for this polygon std::stringstream ss; ss << "supervoxel_" << supervoxel_label; poly_names.push_back (ss.str ()); addSupervoxelConnectionsToViewer (supervoxel->centroid_, adjacent_supervoxel_centers, ss.str (), viewer); //Move iterator forward to next label label_itr = label_adjacency.upper_bound (supervoxel_label); } graph_added = true; } else if (!show_graph && graph_added) { for (std::vector<std::string>::iterator name_itr = poly_names.begin (); name_itr != poly_names.end (); ++name_itr) { viewer->removeShape (*name_itr); } graph_added = false; } if (show_help) { viewer->removeShape ("help_text"); printText (viewer); } else { removeText (viewer); if (!viewer->updateText("Press h to show help", 5, 10, 12, 1.0, 1.0, 1.0,"help_text") ) viewer->addText("Press h to show help", 5, 10, 12, 1.0, 1.0, 1.0,"help_text"); } viewer->spinOnce (100); boost::this_thread::sleep (boost::posix_time::microseconds (100000)); } return (0); }
int main (int argc, char** argv) { ros::init(argc, argv, "cv_proj"); //std::string input_file = "/home/igor/pcds/assembly_objs/ardrone_02_indoor.pcd"; //std::string input_file = "/home/igor/pcds/assembly_objs/ardrone_03_outdoor.pcd"; /* std::string input_file = "/home/igor/pcds/cluttered/3_objs_ardrone_indoor.pcd"; std::string output_file = "/home/igor/pcds/cv_proj_out/out_cluttered_indoor_01.pcd"; std::string template_file = "/home/igor/pcds/templates/indoor_template.pcd"; std::string out_rgb = "/home/igor/pcds/cv_proj_out/out_result_05.jpg"; */ std::string input_file, out_pcd, template_file, out_rgb, out_transf_pcd; ros::param::param<std::string>("/cv_proj/input_file", input_file, "/home/igor/pcds/cluttered/3_objs_ardrone_indoor.pcd"); //ros::param::param<std::string>("/cv_proj/out_pcd", out_pcd, "/home/igor/pcds/cv_proj_out/out_cluttered_indoor_01.pcd"); ros::param::param<std::string>("/cv_proj/template_file", template_file, "/home/igor/pcds/templates/indoor_template.pcd"); //ros::param::param<std::string>("/cv_proj/out_rgb", out_rgb, "/home/igor/pcds/cv_proj_out/out_result_05.jpg"); boost::filesystem::path filepath(input_file); boost::filesystem::path filename = filepath.filename(); filename = filename.stem(); // Get rid of the extension boost::filesystem::path dir = filepath.parent_path(); std::string opencv_out_ext = "_filtered.png"; std::string pcl_out_ext = "_filtered.pcd"; std::string output_folder = "/output_cv_proj/"; std::string output_stem; output_stem = dir.string() + output_folder + filename.string(); out_rgb = output_stem + opencv_out_ext; out_pcd = output_stem + pcl_out_ext; out_transf_pcd = output_stem + "_templ" + pcl_out_ext; std::cout << out_rgb << std::endl; std::cout << out_pcd << std::endl; // Read in the cloud data pcl::PCDReader reader; PointCloudT::Ptr cloud (new PointCloudT), cloud_f (new PointCloudT); reader.read (input_file, *cloud); std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //* if (cloud->isOrganized()) { std::cout << "-- PointCloud cloud is organized" << std::endl; std::cout << "-- PointCloud cloud width: " << cloud->width << std::endl; std::cout << "-- PointCloud cloud height: " << cloud->height << std::endl; } /* // Create the filtering object: downsample the dataset using a leaf size of 1cm pcl::VoxelGrid<PointT> vg; PointCloudT::Ptr cloud_filtered (new PointCloudT); vg.setInputCloud (cloud); //vg.setLeafSize (0.01f, 0.01f, 0.01f); vg.setLeafSize (0.001f, 0.001f, 0.001f); // vg.filter (*cloud_filtered); std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl; //* */ /**/ PointCloudT::Ptr cloud_filtered (new PointCloudT); *cloud_filtered = *cloud; // Create the segmentation object for the planar model and set all the parameters pcl::SACSegmentation<PointT> seg; pcl::PointIndices::Ptr inliers (new pcl::PointIndices); pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients); PointCloudT::Ptr cloud_plane (new PointCloudT ()); pcl::PCDWriter writer; seg.setOptimizeCoefficients (true); seg.setModelType (pcl::SACMODEL_PLANE); seg.setMethodType (pcl::SAC_RANSAC); seg.setMaxIterations (100); seg.setDistanceThreshold (0.02); int i=0, nr_points = (int) cloud_filtered->points.size (); while (cloud_filtered->points.size () > 0.3 * nr_points) { // Segment the largest planar component from the remaining cloud seg.setInputCloud (cloud_filtered); seg.segment (*inliers, *coefficients); if (inliers->indices.size () == 0) { std::cout << "Could not estimate a planar model for the given dataset." << std::endl; break; } // Extract the planar inliers from the input cloud pcl::ExtractIndices<PointT> extract; extract.setInputCloud (cloud_filtered); extract.setIndices (inliers); extract.setNegative (false); //extract.setUserFilterValue(999); extract.setKeepOrganized(true); // Get the points associated with the planar surface extract.filter (*cloud_plane); //extract.filterDirectly(cloud_plane); std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl; // To keep point cloud organized //extract.setKeepOrganized(true); // Remove the planar inliers, extract the rest extract.setNegative (true); extract.filter (*cloud_f); //extract.filterDirectly(cloud_f); *cloud_filtered = *cloud_f; } cv::Mat result; PC_to_Mat(cloud_filtered,result); imwrite( out_rgb, result ); int rgb_x, rgb_y, rgb_width, rgb_height; rgb_x = 240; rgb_y = 150; rgb_width = 200; rgb_height = 200; filter_PC_from_BB ( cloud_filtered, result, rgb_x, rgb_y, rgb_width, rgb_height); // For templates /* // Box filter pcl::PassThrough<PointT> pass_x; pass_x.setInputCloud (cloud_filtered); pass_x.setFilterFieldName ("x"); pass_x.setFilterLimits (-0.2, 0.4); //pass.setFilterLimitsNegative (true); pass_x.filter (*cloud_filtered); pcl::PassThrough<PointT> pass_y; pass_y.setInputCloud (cloud_filtered); pass_y.setFilterFieldName ("y"); pass_y.setFilterLimits (-0.2, 0.4); //pass.setFilterLimitsNegative (true); pass_y.filter (*cloud_filtered); */ // Save file pcl::io::savePCDFileASCII (out_pcd, *cloud_filtered); std::cerr << "Saved " << (*cloud_filtered).points.size () << " data points to PCD file." << std::endl; // Read in template file PointCloudT::Ptr cloud_template (new PointCloudT); reader.read (template_file, *cloud_template); pcl::VoxelGrid<PointT> vg_in; PointCloudT::Ptr cloud_filtered_vg (new PointCloudT); vg_in.setInputCloud (cloud_filtered); vg_in.setLeafSize (0.001f, 0.001f, 0.001f); //vg.setLeafSize (0.01f, 0.01f, 0.01f); vg_in.filter (*cloud_filtered_vg); pcl::VoxelGrid<PointT> vg_temp; PointCloudT::Ptr cloud_template_vg (new PointCloudT); vg_temp.setInputCloud (cloud_template); vg_temp.setLeafSize (0.001f, 0.001f, 0.001f); //vg.setLeafSize (0.01f, 0.01f, 0.01f); vg_temp.filter (*cloud_template_vg); // ICP PointCloudT::Ptr cloud_in (new PointCloudT), cloud_out (new PointCloudT); *cloud_in = *cloud_template_vg; *cloud_out = *cloud_filtered_vg; pcl::IterativeClosestPoint<PointT, PointT> icp; icp.setInputCloud(cloud_in); icp.setInputTarget(cloud_out); PointCloudT Final; icp.align(Final); std::cout << "has converged:" << icp.hasConverged() << " score: " << icp.getFitnessScore() << std::endl; Eigen::Matrix4f transform = icp.getFinalTransformation (); std::cout << transform << std::endl; // Transform template to original frame PointCloudT::Ptr cloud_out2 (new PointCloudT); pcl::transformPointCloud(*cloud_in,*cloud_out2,transform); pcl::io::savePCDFileASCII (out_transf_pcd, *cloud_out2); std::cerr << "Saved " << (*cloud_out2).points.size () << " data points to PCD file." << std::endl; return (0); }