コード例 #1
0
void PC_to_Mat(PointCloudT::Ptr &cloud, cv::Mat &result){

  if (cloud->isOrganized()) {
    std::cout << "PointCloud is organized..." << std::endl;

    result = cv::Mat(cloud->height, cloud->width, CV_8UC3);

    if (!cloud->empty()) {

      for (int h=0; h<result.rows; h++) {
        for (int w=0; w<result.cols; w++) {
            PointT point = cloud->at(w, h);

            Eigen::Vector3i rgb = point.getRGBVector3i();

            result.at<cv::Vec3b>(h,w)[0] = rgb[2];
            result.at<cv::Vec3b>(h,w)[1] = rgb[1];
            result.at<cv::Vec3b>(h,w)[2] = rgb[0];
        }
      }
    }
  }
}
コード例 #2
0
void filter_PC_from_BB(PointCloudT::Ptr &cloud, cv::Mat &result, int x, int y, int width, int height){

  const float bad_point = std::numeric_limits<float>::quiet_NaN();

  if (cloud->isOrganized()) {
    std::cout << "PointCloud is organized..." << std::endl;
    result = cv::Mat(cloud->height, cloud->width, CV_8UC3);

    if (!cloud->empty()) {

      for (int h=0; h<result.rows; h++) {
        for (int w=0; w<result.cols; w++) {
            
            // Check if in bounding window
            if ( (h>y && h<(y+height)) && ((w > x) && w < (x+width)) ){
            
              // do nothing

            } else {

              // remove point
              //PointT point = cloud->at(w, h);
              //cloud->at(w, h);
              cloud->at(w, h).x = bad_point;
              cloud->at(w, h).y = bad_point;
              cloud->at(w, h).z = bad_point;
              
              cloud->at(w, h).r = bad_point;
              cloud->at(w, h).g = bad_point;
              cloud->at(w, h).b = bad_point;
            }
        }
      }
    }
  }
}
コード例 #3
0
int
main (int argc, char ** argv)
{
  if (argc < 2)
  {
    pcl::console::print_info ("Syntax is: %s {-p <pcd-file> OR -r <rgb-file> -d <depth-file>} \n --NT  (disables use of single camera transform) \n -o <output-file> \n -O <refined-output-file> \n-l <output-label-file> \n -L <refined-output-label-file> \n-v <voxel resolution> \n-s <seed resolution> \n-c <color weight> \n-z <spatial weight> \n-n <normal_weight>] \n", argv[0]);
    return (1);
  }
  
  ///////////////////////////////  //////////////////////////////
  //////////////////////////////  //////////////////////////////
  ////// THIS IS ALL JUST INPUT HANDLING - Scroll down until 
  ////// pcl::SupervoxelClustering<pcl::PointXYZRGB> super
  //////////////////////////////  //////////////////////////////
  std::string rgb_path;
  bool rgb_file_specified = pcl::console::find_switch (argc, argv, "-r");
  if (rgb_file_specified)
    pcl::console::parse (argc, argv, "-r", rgb_path);
  
  std::string depth_path;
  bool depth_file_specified = pcl::console::find_switch (argc, argv, "-d");
  if (depth_file_specified)
    pcl::console::parse (argc, argv, "-d", depth_path);
  
  PointCloudT::Ptr cloud = boost::make_shared < PointCloudT >();
  NormalCloudT::Ptr input_normals = boost::make_shared < NormalCloudT > ();
  
  bool pcd_file_specified = pcl::console::find_switch (argc, argv, "-p");
  std::string pcd_path;
  if (!depth_file_specified || !rgb_file_specified)
  {
    std::cout << "Using point cloud\n";
    if (!pcd_file_specified)
    {
      std::cout << "No cloud specified!\n";
      return (1);
    }else
    {
      pcl::console::parse (argc,argv,"-p",pcd_path);
    }
  }
  
  bool disable_transform = pcl::console::find_switch (argc, argv, "--NT");
  bool ignore_provided_normals = pcl::console::find_switch (argc, argv, "--nonormals");
  bool has_normals = false;
  
  std::string out_path = "test_output.png";;
  pcl::console::parse (argc, argv, "-o", out_path);
  
  std::string out_label_path = "test_output_labels.png";
  pcl::console::parse (argc, argv, "-l", out_label_path);
  
  std::string refined_out_path = "refined_test_output.png";
  pcl::console::parse (argc, argv, "-O", refined_out_path);
  
  std::string refined_out_label_path = "refined_test_output_labels.png";;
  pcl::console::parse (argc, argv, "-L", refined_out_label_path);

  float voxel_resolution = 0.008f;
  pcl::console::parse (argc, argv, "-v", voxel_resolution);
    
  float seed_resolution = 0.08f;
  pcl::console::parse (argc, argv, "-s", seed_resolution);
  
  float color_importance = 0.2f;
  pcl::console::parse (argc, argv, "-c", color_importance);
  
  float spatial_importance = 0.4f;
  pcl::console::parse (argc, argv, "-z", spatial_importance);
  
  float normal_importance = 1.0f;
  pcl::console::parse (argc, argv, "-n", normal_importance);
  
  if (!pcd_file_specified)
  {
    //Read the images
    vtkSmartPointer<vtkImageReader2Factory> reader_factory = vtkSmartPointer<vtkImageReader2Factory>::New ();
    vtkImageReader2* rgb_reader = reader_factory->CreateImageReader2 (rgb_path.c_str ());
    //qDebug () << "RGB File="<< QString::fromStdString(rgb_path);
    if ( ! rgb_reader->CanReadFile (rgb_path.c_str ()))
    {
      std::cout << "Cannot read rgb image file!";
      return (1);
    }
    rgb_reader->SetFileName (rgb_path.c_str ());
    rgb_reader->Update ();
    //qDebug () << "Depth File="<<QString::fromStdString(depth_path);
    vtkImageReader2* depth_reader = reader_factory->CreateImageReader2 (depth_path.c_str ());
    if ( ! depth_reader->CanReadFile (depth_path.c_str ()))
    {
      std::cout << "Cannot read depth image file!";
      return (1);
    }
    depth_reader->SetFileName (depth_path.c_str ());
    depth_reader->Update ();
    
    vtkSmartPointer<vtkImageFlip> flipXFilter = vtkSmartPointer<vtkImageFlip>::New();
    flipXFilter->SetFilteredAxis(0); // flip x axis
    flipXFilter->SetInputConnection(rgb_reader->GetOutputPort());
    flipXFilter->Update();
    
    vtkSmartPointer<vtkImageFlip> flipXFilter2 = vtkSmartPointer<vtkImageFlip>::New();
    flipXFilter2->SetFilteredAxis(0); // flip x axis
    flipXFilter2->SetInputConnection(depth_reader->GetOutputPort());
    flipXFilter2->Update();
    
    vtkSmartPointer<vtkImageData> rgb_image = flipXFilter->GetOutput ();
    int *rgb_dims = rgb_image->GetDimensions ();
    vtkSmartPointer<vtkImageData> depth_image = flipXFilter2->GetOutput ();
    int *depth_dims = depth_image->GetDimensions ();
    
    if (rgb_dims[0] != depth_dims[0] || rgb_dims[1] != depth_dims[1])
    {
      std::cout << "Depth and RGB dimensions to not match!";
      std::cout << "RGB Image is of size "<<rgb_dims[0] << " by "<<rgb_dims[1];
      std::cout << "Depth Image is of size "<<depth_dims[0] << " by "<<depth_dims[1];
      return (1);
    }
 
    cloud->points.reserve (depth_dims[0] * depth_dims[1]);
    cloud->width = depth_dims[0];
    cloud->height = depth_dims[1];
    cloud->is_dense = false;
    
    
    // Fill in image data
    int centerX = static_cast<int>(cloud->width / 2.0);
    int centerY = static_cast<int>(cloud->height / 2.0);
    unsigned short* depth_pixel;
    unsigned char* color_pixel;
    float scale = 1.0f/1000.0f;
    float focal_length = 525.0f;
    float fl_const = 1.0f / focal_length;
    depth_pixel = static_cast<unsigned short*>(depth_image->GetScalarPointer (depth_dims[0]-1,depth_dims[1]-1,0));
    color_pixel = static_cast<unsigned char*> (rgb_image->GetScalarPointer (depth_dims[0]-1,depth_dims[1]-1,0));
    
    for (size_t y=0; y<cloud->height; ++y)
    {
      for (size_t x=0; x<cloud->width; ++x, --depth_pixel, color_pixel-=3)
      {
        PointT new_point;
        //  uint8_t* p_i = &(cloud_blob->data[y * cloud_blob->row_step + x * cloud_blob->point_step]);
        float depth = static_cast<float>(*depth_pixel) * scale;
        if (depth == 0.0f)
        {
          new_point.x = new_point.y = new_point.z = std::numeric_limits<float>::quiet_NaN ();
        }
        else
        {
          new_point.x = (static_cast<float> (x) - centerX) * depth * fl_const;
          new_point.y = (static_cast<float> (centerY) - y) * depth * fl_const; // vtk seems to start at the bottom left image corner
          new_point.z = depth;
        }
        
        uint32_t rgb = static_cast<uint32_t>(color_pixel[0]) << 16 |  static_cast<uint32_t>(color_pixel[1]) << 8 |  static_cast<uint32_t>(color_pixel[2]);
        new_point.rgb = *reinterpret_cast<float*> (&rgb);
        cloud->points.push_back (new_point);
        
      }
    }
  }
  else
  {
    /// check if the provided pcd file contains normals
    pcl::PCLPointCloud2 input_pointcloud2;
    if (pcl::io::loadPCDFile (pcd_path, input_pointcloud2))
    {
      PCL_ERROR ("ERROR: Could not read input point cloud %s.\n", pcd_path.c_str ());
      return (3);
    }
    pcl::fromPCLPointCloud2 (input_pointcloud2, *cloud);
    if (!ignore_provided_normals)
    {
      if (hasField (input_pointcloud2,"normal_x"))
      {
        std::cout << "Using normals contained in file. Set --nonormals option to disable this.\n";
        pcl::fromPCLPointCloud2 (input_pointcloud2, *input_normals);
        has_normals = true;
      }
    }
  }
  std::cout << "Done making cloud!\n";

  ///////////////////////////////  //////////////////////////////
  //////////////////////////////  //////////////////////////////
  ////// This is how to use supervoxels
  //////////////////////////////  //////////////////////////////
  //////////////////////////////  //////////////////////////////
  
  // If we're using the single camera transform no negative z allowed since we use log(z)
  if (!disable_transform)
  {
    for (PointCloudT::iterator cloud_itr = cloud->begin (); cloud_itr != cloud->end (); ++cloud_itr)
      if (cloud_itr->z < 0)
      {
        PCL_ERROR ("Points found with negative Z values, this is not compatible with the single camera transform!\n");
        PCL_ERROR ("Set the --NT option to disable the single camera transform!\n");
        return 1;
      }
    std::cout <<"You have the single camera transform enabled - this should be used with point clouds captured from a single camera.\n";
    std::cout <<"You can disable the transform with the --NT flag\n";    
  }
  
  pcl::SupervoxelClustering<PointT> super (voxel_resolution, seed_resolution,!disable_transform);
  super.setInputCloud (cloud);
  if (has_normals)
    super.setNormalCloud (input_normals);
  super.setColorImportance (color_importance);
  super.setSpatialImportance (spatial_importance);
  super.setNormalImportance (normal_importance);
  std::map <uint32_t, pcl::Supervoxel<PointT>::Ptr > supervoxel_clusters;
 
  std::cout << "Extracting supervoxels!\n";
  super.extract (supervoxel_clusters);
  std::cout << "Found " << supervoxel_clusters.size () << " Supervoxels!\n";
  PointLCloudT::Ptr labeled_voxel_cloud = super.getLabeledVoxelCloud ();
  PointCloudT::Ptr voxel_centroid_cloud = super.getVoxelCentroidCloud ();
  PointNCloudT::Ptr sv_normal_cloud = super.makeSupervoxelNormalCloud (supervoxel_clusters);
  PointLCloudT::Ptr full_labeled_cloud = super.getLabeledCloud ();
  
  std::cout << "Getting supervoxel adjacency\n";
  std::multimap<uint32_t, uint32_t> label_adjacency;
  super.getSupervoxelAdjacency (label_adjacency);
   
  std::map <uint32_t, pcl::Supervoxel<PointT>::Ptr > refined_supervoxel_clusters;
  std::cout << "Refining supervoxels \n";
  super.refineSupervoxels (3, refined_supervoxel_clusters);

  PointLCloudT::Ptr refined_labeled_voxel_cloud = super.getLabeledVoxelCloud ();
  PointNCloudT::Ptr refined_sv_normal_cloud = super.makeSupervoxelNormalCloud (refined_supervoxel_clusters);
  PointLCloudT::Ptr refined_full_labeled_cloud = super.getLabeledCloud ();
  
  // THESE ONLY MAKE SENSE FOR ORGANIZED CLOUDS
  if (cloud->isOrganized ())
  {
    pcl::io::savePNGFile (out_label_path, *full_labeled_cloud, "label");
    pcl::io::savePNGFile (refined_out_label_path, *refined_full_labeled_cloud, "label");
    //Save RGB from labels
    pcl::io::PointCloudImageExtractorFromLabelField<PointLT> pcie (pcie.io::PointCloudImageExtractorFromLabelField<PointLT>::COLORS_RGB_GLASBEY);
    //We need to set this to account for NAN points in the organized cloud
    pcie.setPaintNaNsWithBlack (true);
    pcl::PCLImage image;
    pcie.extract (*full_labeled_cloud, image);
    pcl::io::savePNGFile (out_path, image);
    pcie.extract (*refined_full_labeled_cloud, image);
    pcl::io::savePNGFile (refined_out_path, image);
  }
  
  std::cout << "Constructing Boost Graph Library Adjacency List...\n";
  typedef boost::adjacency_list<boost::setS, boost::setS, boost::undirectedS, uint32_t, float> VoxelAdjacencyList;
  typedef VoxelAdjacencyList::vertex_descriptor VoxelID;
  typedef VoxelAdjacencyList::edge_descriptor EdgeID;
  VoxelAdjacencyList supervoxel_adjacency_list;
  super.getSupervoxelAdjacencyList (supervoxel_adjacency_list);

  
  std::cout << "Loading visualization...\n";
  boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
  viewer->setBackgroundColor (0, 0, 0);
  viewer->registerKeyboardCallback(keyboard_callback, 0);

 
  bool refined_normal_shown = show_refined;
  bool refined_sv_normal_shown = show_refined;
  bool sv_added = false;
  bool normals_added = false;
  bool graph_added = false;
  std::vector<std::string> poly_names;
  std::cout << "Loading viewer...\n";
  while (!viewer->wasStopped ())
  {
    if (show_supervoxels)
    {
      if (!viewer->updatePointCloud ((show_refined)?refined_labeled_voxel_cloud:labeled_voxel_cloud, "colored voxels"))
      {
        viewer->addPointCloud ((show_refined)?refined_labeled_voxel_cloud:labeled_voxel_cloud, "colored voxels");
        viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE,3.0, "colored voxels");
      }
    }
    else
    {
      viewer->removePointCloud ("colored voxels");
    }
    
    if (show_voxel_centroids)
    {
      if (!viewer->updatePointCloud (voxel_centroid_cloud, "voxel centroids"))
      {
        viewer->addPointCloud (voxel_centroid_cloud, "voxel centroids");
        viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE,2.0, "voxel centroids");
      }
    }
    else
    {
      viewer->removePointCloud ("voxel centroids");
    }

    if (show_supervoxel_normals)
    {
      if (refined_sv_normal_shown != show_refined || !sv_added)
      {
        viewer->removePointCloud ("supervoxel_normals");
        viewer->addPointCloudNormals<PointNormal> ((show_refined)?refined_sv_normal_cloud:sv_normal_cloud,1,0.05f, "supervoxel_normals");
        sv_added = true;
      }
      refined_sv_normal_shown = show_refined;
    }
    else if (!show_supervoxel_normals)
    {
      viewer->removePointCloud ("supervoxel_normals");
    }
    
    if (show_normals)
    {
      std::map <uint32_t, pcl::Supervoxel<PointT>::Ptr>::iterator sv_itr,sv_itr_end;
      sv_itr = ((show_refined)?refined_supervoxel_clusters.begin ():supervoxel_clusters.begin ());
      sv_itr_end = ((show_refined)?refined_supervoxel_clusters.end ():supervoxel_clusters.end ());
      for (; sv_itr != sv_itr_end; ++sv_itr)
      {
        std::stringstream ss;
        ss << sv_itr->first <<"_normal";
        if (refined_normal_shown != show_refined || !normals_added)
        {
          viewer->removePointCloud (ss.str ());
          viewer->addPointCloudNormals<PointT,Normal> ((sv_itr->second)->voxels_,(sv_itr->second)->normals_,10,0.02f,ss.str ());
        //  std::cout << (sv_itr->second)->normals_->points[0]<<"\n";
          
        }
          
      }
      normals_added = true;
      refined_normal_shown = show_refined;
    }
    else if (!show_normals)
    {
      std::map <uint32_t, pcl::Supervoxel<PointT>::Ptr>::iterator sv_itr,sv_itr_end;
      sv_itr = ((show_refined)?refined_supervoxel_clusters.begin ():supervoxel_clusters.begin ());
      sv_itr_end = ((show_refined)?refined_supervoxel_clusters.end ():supervoxel_clusters.end ());
      for (; sv_itr != sv_itr_end; ++sv_itr)
      {
        std::stringstream ss;
        ss << sv_itr->first << "_normal";
        viewer->removePointCloud (ss.str ());
      }
    }
    
    if (show_graph && !graph_added)
    {
      poly_names.clear ();
      std::multimap<uint32_t,uint32_t>::iterator label_itr = label_adjacency.begin ();
      for ( ; label_itr != label_adjacency.end (); )
      {
        //First get the label 
        uint32_t supervoxel_label = label_itr->first;
         //Now get the supervoxel corresponding to the label
        pcl::Supervoxel<PointT>::Ptr supervoxel = supervoxel_clusters.at (supervoxel_label);
        //Now we need to iterate through the adjacent supervoxels and make a point cloud of them
        PointCloudT adjacent_supervoxel_centers;
        std::multimap<uint32_t,uint32_t>::iterator adjacent_itr = label_adjacency.equal_range (supervoxel_label).first;
        for ( ; adjacent_itr!=label_adjacency.equal_range (supervoxel_label).second; ++adjacent_itr)
        {     
          pcl::Supervoxel<PointT>::Ptr neighbor_supervoxel = supervoxel_clusters.at (adjacent_itr->second);
          adjacent_supervoxel_centers.push_back (neighbor_supervoxel->centroid_);
        }
        //Now we make a name for this polygon
        std::stringstream ss;
        ss << "supervoxel_" << supervoxel_label;
        poly_names.push_back (ss.str ());
        addSupervoxelConnectionsToViewer (supervoxel->centroid_, adjacent_supervoxel_centers, ss.str (), viewer);  
        //Move iterator forward to next label
        label_itr = label_adjacency.upper_bound (supervoxel_label);
      }
        
      graph_added = true;
    }
    else if (!show_graph && graph_added)
    {
      for (std::vector<std::string>::iterator name_itr = poly_names.begin (); name_itr != poly_names.end (); ++name_itr)
      {
        viewer->removeShape (*name_itr);
      }
      graph_added = false;
    }
    
    if (show_help)
    {
      viewer->removeShape ("help_text");
      printText (viewer);
    }
    else
    {
      removeText (viewer);
      if (!viewer->updateText("Press h to show help", 5, 10, 12, 1.0, 1.0, 1.0,"help_text") )
        viewer->addText("Press h to show help", 5, 10, 12, 1.0, 1.0, 1.0,"help_text");
    }
      
    
    viewer->spinOnce (100);
    boost::this_thread::sleep (boost::posix_time::microseconds (100000));
    
  }
  return (0);
}
コード例 #4
0
int main (int argc, char** argv)
{
  ros::init(argc, argv, "cv_proj");
  //std::string input_file = "/home/igor/pcds/assembly_objs/ardrone_02_indoor.pcd";
  //std::string input_file = "/home/igor/pcds/assembly_objs/ardrone_03_outdoor.pcd";
  /*
  std::string input_file = "/home/igor/pcds/cluttered/3_objs_ardrone_indoor.pcd";
  std::string output_file = "/home/igor/pcds/cv_proj_out/out_cluttered_indoor_01.pcd";
  std::string template_file = "/home/igor/pcds/templates/indoor_template.pcd";
  std::string out_rgb = "/home/igor/pcds/cv_proj_out/out_result_05.jpg";
  */
  std::string input_file, out_pcd, template_file, out_rgb, out_transf_pcd;

  ros::param::param<std::string>("/cv_proj/input_file", input_file, "/home/igor/pcds/cluttered/3_objs_ardrone_indoor.pcd");
  //ros::param::param<std::string>("/cv_proj/out_pcd", out_pcd, "/home/igor/pcds/cv_proj_out/out_cluttered_indoor_01.pcd");
  ros::param::param<std::string>("/cv_proj/template_file", template_file, "/home/igor/pcds/templates/indoor_template.pcd");
  //ros::param::param<std::string>("/cv_proj/out_rgb", out_rgb, "/home/igor/pcds/cv_proj_out/out_result_05.jpg");
  


  boost::filesystem::path filepath(input_file);
  boost::filesystem::path filename = filepath.filename();
  filename = filename.stem(); // Get rid of the extension
  boost::filesystem::path dir = filepath.parent_path();

  std::string opencv_out_ext = "_filtered.png";
  std::string pcl_out_ext = "_filtered.pcd";
  std::string output_folder = "/output_cv_proj/";
  std::string output_stem;
  output_stem = dir.string() + output_folder + filename.string();

  out_rgb = output_stem + opencv_out_ext;
  out_pcd = output_stem + pcl_out_ext;
  out_transf_pcd = output_stem + "_templ" + pcl_out_ext;

  std::cout << out_rgb << std::endl;
  std::cout << out_pcd << std::endl;

  // Read in the cloud data
  pcl::PCDReader reader;
  PointCloudT::Ptr cloud (new PointCloudT), cloud_f (new PointCloudT);
  reader.read (input_file, *cloud);
  std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //*

  if (cloud->isOrganized()) {
    std::cout << "-- PointCloud cloud is organized" << std::endl;
    std::cout << "-- PointCloud cloud width: " << cloud->width << std::endl;
    std::cout << "-- PointCloud cloud height: " << cloud->height << std::endl;
  }

  /*
  // Create the filtering object: downsample the dataset using a leaf size of 1cm
  pcl::VoxelGrid<PointT> vg;
  PointCloudT::Ptr cloud_filtered (new PointCloudT);
  vg.setInputCloud (cloud);
  //vg.setLeafSize (0.01f, 0.01f, 0.01f);
  vg.setLeafSize (0.001f, 0.001f, 0.001f);
  //
  vg.filter (*cloud_filtered);
  std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size ()  << " data points." << std::endl; //*
  */
  /**/
  PointCloudT::Ptr cloud_filtered (new PointCloudT);
  *cloud_filtered = *cloud;



  // Create the segmentation object for the planar model and set all the parameters
  pcl::SACSegmentation<PointT> seg;
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
  PointCloudT::Ptr cloud_plane (new PointCloudT ());
  pcl::PCDWriter writer;
  seg.setOptimizeCoefficients (true);
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setMaxIterations (100);
  seg.setDistanceThreshold (0.02);

  int i=0, nr_points = (int) cloud_filtered->points.size ();
  while (cloud_filtered->points.size () > 0.3 * nr_points)
  {
    // Segment the largest planar component from the remaining cloud
    seg.setInputCloud (cloud_filtered);
    seg.segment (*inliers, *coefficients);
    if (inliers->indices.size () == 0)
    {
      std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
      break;
    }

    // Extract the planar inliers from the input cloud
    pcl::ExtractIndices<PointT> extract;

    extract.setInputCloud (cloud_filtered);
    extract.setIndices (inliers);
    extract.setNegative (false);

    //extract.setUserFilterValue(999);
    extract.setKeepOrganized(true); 

    // Get the points associated with the planar surface
    extract.filter (*cloud_plane);
    //extract.filterDirectly(cloud_plane);
    std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;

    // To keep point cloud organized
    
    //extract.setKeepOrganized(true); 

    // Remove the planar inliers, extract the rest
    extract.setNegative (true);
    extract.filter (*cloud_f);
    //extract.filterDirectly(cloud_f);
    *cloud_filtered = *cloud_f;

    
  }

  cv::Mat result; 

  PC_to_Mat(cloud_filtered,result);

  imwrite( out_rgb, result );

  int rgb_x, rgb_y, rgb_width, rgb_height;

  rgb_x = 240;
  rgb_y = 150;
  rgb_width = 200;
  rgb_height = 200;

  filter_PC_from_BB ( cloud_filtered, result, rgb_x, rgb_y, rgb_width, rgb_height);

  // For templates
  /*
  // Box filter
  pcl::PassThrough<PointT> pass_x;
  pass_x.setInputCloud (cloud_filtered);
  pass_x.setFilterFieldName ("x");
  pass_x.setFilterLimits (-0.2, 0.4);
  //pass.setFilterLimitsNegative (true);
  pass_x.filter (*cloud_filtered);

  pcl::PassThrough<PointT> pass_y;
  pass_y.setInputCloud (cloud_filtered);
  pass_y.setFilterFieldName ("y");
  pass_y.setFilterLimits (-0.2, 0.4);
  //pass.setFilterLimitsNegative (true);
  pass_y.filter (*cloud_filtered);
  */

  // Save file
  pcl::io::savePCDFileASCII (out_pcd, *cloud_filtered);
  std::cerr << "Saved " << (*cloud_filtered).points.size () << " data points to PCD file." << std::endl;

  // Read in template file
  PointCloudT::Ptr cloud_template (new PointCloudT);
  reader.read (template_file, *cloud_template);

  pcl::VoxelGrid<PointT> vg_in;
  PointCloudT::Ptr cloud_filtered_vg (new PointCloudT);
  vg_in.setInputCloud (cloud_filtered);
  vg_in.setLeafSize (0.001f, 0.001f, 0.001f);  //vg.setLeafSize (0.01f, 0.01f, 0.01f);
  vg_in.filter (*cloud_filtered_vg);

  pcl::VoxelGrid<PointT> vg_temp;
  PointCloudT::Ptr cloud_template_vg (new PointCloudT);
  vg_temp.setInputCloud (cloud_template);
  vg_temp.setLeafSize (0.001f, 0.001f, 0.001f);  //vg.setLeafSize (0.01f, 0.01f, 0.01f);
  vg_temp.filter (*cloud_template_vg);

  // ICP
  
  PointCloudT::Ptr cloud_in (new PointCloudT), cloud_out (new PointCloudT);
  
  *cloud_in = *cloud_template_vg;
  *cloud_out = *cloud_filtered_vg;

  pcl::IterativeClosestPoint<PointT, PointT> icp;
  icp.setInputCloud(cloud_in);
  icp.setInputTarget(cloud_out);
  PointCloudT Final;
  icp.align(Final);
  std::cout << "has converged:" << icp.hasConverged() << " score: " <<
  icp.getFitnessScore() << std::endl;
  
  Eigen::Matrix4f transform = icp.getFinalTransformation ();
  std::cout << transform << std::endl;

  // Transform template to original frame
  PointCloudT::Ptr cloud_out2 (new PointCloudT);
  
  pcl::transformPointCloud(*cloud_in,*cloud_out2,transform);
  pcl::io::savePCDFileASCII (out_transf_pcd, *cloud_out2);
  std::cerr << "Saved " << (*cloud_out2).points.size () << " data points to PCD file." << std::endl;
  

  return (0);
}