Example #1
0
void init_ex10(py::module &m) {
    // Vectorize all arguments of a function (though non-vector arguments are also allowed)
    m.def("vectorized_func", py::vectorize(my_func));

    // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
    m.def("vectorized_func2",
        [](py::array_dtype<int> x, py::array_dtype<float> y, float z) {
            return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y);
        }
    );

    // Vectorize a complex-valued function
    m.def("vectorized_func3", py::vectorize(my_func3));
}
Example #2
0
void init_ex12(py::module &m) {
    /* Important: use the wrapper type as a template
       argument to class_<>, but use the original name
       to denote the type */
    py::class_<PyExample12>(m, "Example12")
        /* Declare that 'PyExample12' is really an alias for the original type 'Example12' */
        .alias<Example12>()
        .def(py::init<int>())
        /* Reference original class in function definitions */
        .def("run", &Example12::run)
        .def("pure_virtual", &Example12::pure_virtual);

    m.def("runExample12", &runExample12);
    m.def("runExample12Virtual", &runExample12Virtual);
}
Example #3
0
void define_target(py::module &m) {
    // Disambiguate some ambigious methods
    int (Target::*natural_vector_size_method)(const Type &t) const = &Target::natural_vector_size;
    bool (Target::*supports_type1_method)(const Type &t) const = &Target::supports_type;
    bool (Target::*supports_type2_method)(const Type &t, DeviceAPI device) const = &Target::supports_type;

    auto target_class =
        py::class_<Target>(m, "Target")
            .def(py::init<>())
            .def(py::init<const std::string &>())
            .def(py::init<Target::OS, Target::Arch, int>())
            .def(py::init<Target::OS, Target::Arch, int, std::vector<Target::Feature>>())

            .def("__eq__", [](const Target &value, Target *value2) { return value2 && value == *value2; })
            .def("__ne__", [](const Target &value, Target *value2) { return !value2 || value != *value2; })

            .def_readwrite("os", &Target::os)
            .def_readwrite("arch", &Target::arch)
            .def_readwrite("bits", &Target::bits)

            .def("__repr__", &target_repr)
            .def("__str__", &Target::to_string)
            .def("to_string", &Target::to_string)

            .def("has_feature", &Target::has_feature)
            .def("features_any_of", &Target::features_any_of, py::arg("features"))
            .def("features_all_of", &Target::features_all_of, py::arg("features"))

            .def("set_feature", &Target::set_feature, py::arg("f"), py::arg("value") = true)
            .def("set_features", &Target::set_features, py::arg("features"), py::arg("value") = true)
            .def("with_feature", &Target::with_feature, py::arg("feature"))
            .def("without_feature", &Target::without_feature, py::arg("feature"))
            .def("has_gpu_feature", &Target::has_gpu_feature)
            .def("supports_type", supports_type1_method, py::arg("type"))
            .def("supports_type", supports_type2_method, py::arg("type"), py::arg("device"))
            .def("supports_device_api", &Target::supports_device_api, py::arg("device"))
            .def("natural_vector_size", natural_vector_size_method, py::arg("type"))
            .def("has_large_buffers", &Target::has_large_buffers)
            .def("maximum_buffer_size", &Target::maximum_buffer_size)
            .def("supported", &Target::supported)
            .def_static("validate_target_string", &Target::validate_target_string, py::arg("name"));
        ;

    m.def("get_host_target", &get_host_target);
    m.def("get_target_from_environment", &get_target_from_environment);
    m.def("get_jit_target_from_environment", &get_jit_target_from_environment);
    m.def("target_feature_for_device_api", &target_feature_for_device_api);
}
Example #4
0
void wrap_messaging(py::module &m) {
  py::module mMessaging = m.def_submodule("messaging");

  mMessaging.def("init_transport", &xmessaging::init_transport);
  mMessaging.def("stop_transport", &xmessaging::stop_transport);
  mMessaging.def("alloc_read_buffer", []() {
    xmessaging::alloc_read_buffer(BUFFER_LEN);
  });
  mMessaging.def("dealloc_read_buffer", []() {
    xmessaging::dealloc_read_buffer();
  });
  
  // this will change to a buffer object
  mMessaging.def("send_bytes", [](py::buffer pb) {
        py::buffer_info req = pb.request();
        xmessaging::queue((const char*)req.ptr, req.size);
      });
  mMessaging.def("update", []() -> bool {
    bool message_read = false;
    char *buffer;
    size_t buffer_len;
    xmessaging::update(message_read, buffer, buffer_len);
    if (message_read)
    {
      simulation::process_step(buffer, buffer_len);
    }
    return message_read;
  });
}
Example #5
0
void define_module(py::module &m) {

    auto module_class = py::class_<Module>(m, "Module")
        .def(py::init<const std::string &, const Target &>(), py::arg("name"), py::arg("target"))

        .def("target", &Module::target)
        .def("name", &Module::name)
        .def("auto_schedule", &Module::auto_schedule)
        .def("buffers", &Module::buffers)
        .def("submodules", &Module::submodules)

        .def("append", (void (Module::*)(const Buffer<> &)) &Module::append, py::arg("buffer"))
        .def("append", (void (Module::*)(const Module &)) &Module::append, py::arg("module"))

        .def("compile", &Module::compile, py::arg("outputs"))

        .def("compile_to_buffer", &Module::compile_to_buffer)

        .def("resolve_submodules", &Module::resolve_submodules)

        .def("remap_metadata_name", &Module::remap_metadata_name)
        .def("get_metadata_name_map", &Module::get_metadata_name_map)

        .def("set_auto_schedule", &Module::set_auto_schedule)

        // TODO: ExternalCode-related methods deliberately skipped for now.
        // .def("append", (void (Module::*)(const ExternalCode &)) &Module::append, py::arg("external_code"))
        // .def("external_code", &Module::external_code)

        // TODO: Internal::LoweredFunc-related methods deliberately skipped for now.
        // .def("functions", &Module::functions)
        // .def("get_function_by_name", &Module::get_function_by_name, py::arg("name"))
        // .def("append", (void (Module::*)(const Internal::LoweredFunc &)) &Module::append, py::arg("function"))

        .def("__repr__", [](const Module &m) -> std::string {
            std::ostringstream o;
            o << "<halide.Module '" << m.name() << "'>";
            return o.str();
        })
    ;

    m.def("link_modules", &link_modules, py::arg("name"), py::arg("modules"));
    m.def("compile_standalone_runtime", (void (*)(const std::string &, Target)) &compile_standalone_runtime, py::arg("filename"), py::arg("target"));
    m.def("compile_standalone_runtime", (Outputs (*)(const Outputs &, Target)) &compile_standalone_runtime, py::arg("outputs"), py::arg("target"));

    // TODO: compile_multitarget() deliberately skipped for now.
}
Example #6
0
void init_ex9(py::module &m) {
    py::module m_sub = m.def_submodule("submodule");
    m_sub.def("submodule_func", &submodule_func);

    py::class_<A>(m_sub, "A")
        .def(py::init<int>())
        .def("__repr__", &A::toString);

    py::class_<B>(m_sub, "B")
        .def(py::init<>())
        .def("get_a1", &B::get_a1, "Return the internal A 1", py::return_value_policy::reference_internal)
        .def("get_a2", &B::get_a2, "Return the internal A 2", py::return_value_policy::reference_internal)
        .def_readwrite("a1", &B::a1)  // def_readonly uses an internal reference return policy by default
        .def_readwrite("a2", &B::a2);

    m.attr("OD") = py::module::import("collections").attr("OrderedDict");
}
Example #7
0
void python_export_igl_tetgen(py::module &me) {

  py::module m = me.def_submodule(
    "tetgen", "Wrappers for libigl functions that use tetgen");

  #include "../../py_igl/copyleft/tetgen/py_tetrahedralize.cpp"

}
Example #8
0
void python_export_igl_png(py::module &me) {

  py::module m = me.def_submodule(
    "png", "Wrappers for libigl functions that use png");

  #include "../py_igl/png/py_readPNG.cpp"
  #include "../py_igl/png/py_writePNG.cpp"

}
Example #9
0
void python_export_igl_embree(py::module &me) {

  py::module m = me.def_submodule(
    "embree", "Wrappers for libigl functions that use embree");

  #include "../py_igl/embree/py_ambient_occlusion.cpp"
  #include "../py_igl/embree/py_reorient_facets_raycast.cpp"
  #include "../py_igl/embree/py_line_mesh_intersection.cpp"

}
Example #10
0
void define_lambda(py::module &m) {
    // TODO: 'lambda' is a reserved word in Python, so we
    // can't use it for a function. Using 'lambda_func' for now.
    m.def("lambda_func", [](py::args args) -> Func {
        auto vars = args_to_vector<Var>(args, 0, 1);
        Expr e = args[args.size() - 1].cast<Expr>();
        Func f("lambda" + Internal::unique_name('_'));
        f(vars) = e;
        return f;
    });
}
Example #11
0
void init_ex4(py::module &m) {
    m.def("test_function", &test_function1);
    m.def("test_function", &test_function2);
    m.def("test_function", &test_function3);
    m.attr("some_constant") = py::int_(14);

    py::enum_<EMyEnumeration>(m, "EMyEnumeration")
        .value("EFirstEntry", EFirstEntry)
        .value("ESecondEntry", ESecondEntry)
        .export_values();

    py::class_<Example4> ex4_class(m, "Example4");
    ex4_class.def_static("test_function", &Example4::test_function);
    py::enum_<Example4::EMode>(ex4_class, "EMode")
        .value("EFirstMode", Example4::EFirstMode)
        .value("ESecondMode", Example4::ESecondMode)
        .export_values();

    m.def("return_bytes", &return_bytes);
    m.def("print_bytes", &print_bytes);
}
Example #12
0
bool Context::import(py::module m)
{
	if (!m)
		return false;
	
	string name = PyModule_GetName(m.ptr());
	if (!name.empty())
	{
		py_global[name.c_str()] = m;
	}
	
	return true;
}
Example #13
0
void pyqpp_cell_export (py::module m) {

  py_cell_export<float>(m, "periodic_cell_f");
  qpp::gen_cell<float,  qpp::matrix3<float> >::py_export(
        m, "point_group_f");
  qpp::gen_cell<float,  qpp::rotrans<float,false> >::py_export(
        m, "crystal_group_f");
  qpp::gen_cell<float,  qpp::rotrans<float,true> >::py_export(
        m, "finite_crystal_group_f");
  qpp::array_group<qpp::matrix3<float> >::py_export(
        m, "array_point_group_f");
  qpp::array_group<qpp::rotrans<float,true> >::py_export(
        m, "array_fincryst_group_f");
  m.def("generator_form", py_generator_form<float,  qpp::matrix3<float>,
        qpp::array_group<qpp::matrix3<float> > > );
  m.def("generator_form", py_generator_form<float,  qpp::rotrans<float,true>,
        qpp::array_group<qpp::rotrans<float,true> > >);

#ifdef PYTHON_EXP_EXT
  py_cell_export<double>(m, "periodic_cell_d");
  qpp::gen_cell<double, qpp::matrix3<double> >::py_export(
        m, "point_group_d");
  qpp::gen_cell<double, qpp::rotrans<double,false> >::py_export(
        m, "crystal_group_d");
  qpp::gen_cell<double, qpp::rotrans<double,true> >::py_export(
        m, "finite_crystal_group_d");
  qpp::array_group<qpp::matrix3<double> >::py_export(
        m, "array_point_group_d");
  qpp::array_group<qpp::rotrans<double,true> >::py_export(
        m, "array_fincryst_group_d");
  m.def("generator_form", py_generator_form<double, qpp::matrix3<double>,
        qpp::array_group<qpp::matrix3<double> > >);
  m.def("generator_form", py_generator_form<double, qpp::rotrans<double,true>,
        qpp::array_group<qpp::rotrans<double,true> > >);
#endif

}
Example #14
0
// World map is generally a point of danger
// A global static contains all of the tiles
// Python accesses those by reference, and is not necessarily aware of mutations to the global static map of tiles
void wrap_world_map(py::module &m)
{
  py::module mMap = m.def_submodule("map");

  mMap.def("get_map", &world_map::get_map, py::return_value_policy::reference);
  mMap.def("get_tile", &world_map::get_tile, py::return_value_policy::reference);
  mMap.def("tile_owner", &world_map::tile_owner);
  mMap.def("get_map_size", &world_map::get_map_size);
  mMap.def("save_file_fb", &world_map::save_file_fb);

  mMap.def("for_each_tile", [](py::function func) { 
    auto fp = [&func](const sf::Vector3i& coord, const Tile& tile) { func(coord, tile); };
    world_map::for_each_tile(fp);
  });
}
Example #15
0
void init_ex11(py::module &m) {
    m.def("kw_func", &kw_func, py::arg("x"), py::arg("y"));
    m.def("kw_func2", &kw_func, py::arg("x") = 100, py::arg("y") = 200);
    m.def("kw_func3", [](const char *) { }, py::arg("data") = std::string("Hello world!"));

    /* A fancier default argument */
    std::vector<int> list;
    list.push_back(13);
    list.push_back(17);

    m.def("kw_func4", &kw_func4, py::arg("myList") = list);
    m.def("call_kw_func", &call_kw_func);

    m.def("args_function", &args_function);
    m.def("args_kwargs_function", &args_kwargs_function);

    using namespace py::literals;
    m.def("kw_func_udl", &kw_func, "x"_a, "y"_a=300);
    m.def("kw_func_udl_z", &kw_func, "x"_a, "y"_a=0);
}
Example #16
0
// ----------------------------------------------------------------------------------------
void bind_vector(py::module& m)
{
    {
    py::class_<cv, std::shared_ptr<cv>>(m, "vector", "This object represents the mathematical idea of a column vector.")
        .def(py::init())
        .def("set_size", &cv_set_size)
        .def("resize", &cv_set_size)
        .def(py::init(&cv_from_object))
        .def("__repr__", &cv__repr__)
        .def("__str__", &cv__str__)
        .def("__len__", &cv__len__)
        .def("__getitem__", &cv__getitem__)
        .def("__getitem__", &cv__getitem2__)
        .def("__setitem__", &cv__setitem__)
        .def_property_readonly("shape", &cv_get_matrix_size)
        .def(py::pickle(&getstate<cv>, &setstate<cv>));

    m.def("dot", &dotprod, "Compute the dot product between two dense column vectors.");
    }
    {
    typedef point type;
    py::class_<type>(m, "point", "This object represents a single point of integer coordinates that maps directly to a dlib::point.")
            .def(py::init<long,long>(), py::arg("x"), py::arg("y"))
            .def("__repr__", &point__repr__)
            .def("__str__", &point__str__)
            .def_property_readonly("x", &point_x, "The x-coordinate of the point.")
            .def_property_readonly("y", &point_y, "The y-coordinate of the point.")
            .def(py::pickle(&getstate<type>, &setstate<type>));
    }
    {
    typedef std::vector<point> type;
    py::bind_vector<type>(m, "points", "An array of point objects.")
        .def("clear", &type::clear)
        .def("resize", resize<type>)
        .def("extend", extend_vector_with_python_list<point>)
        .def(py::pickle(&getstate<type>, &setstate<type>));
    }
}
Example #17
0
void init_issues(py::module &m) {
    py::module m2 = m.def_submodule("issues");

#if !defined(_MSC_VER)
    // Visual Studio 2015 currently cannot compile this test
    // (see the comment in type_caster_base::make_copy_constructor)
    // #70 compilation issue if operator new is not public
    class NonConstructible { private: void *operator new(size_t bytes) throw(); };
    py::class_<NonConstructible>(m, "Foo");
    m2.def("getstmt", []() -> NonConstructible * { return nullptr; },
        py::return_value_policy::reference);
#endif

    // #137: const char* isn't handled properly
    m2.def("print_cchar", [](const char *string) { std::cout << string << std::endl; });

    // #150: char bindings broken
    m2.def("print_char", [](char c) { std::cout << c << std::endl; });

    // #159: virtual function dispatch has problems with similar-named functions
    struct Base { virtual void dispatch(void) const {
        /* for some reason MSVC2015 can't compile this if the function is pure virtual */
    }; };

    struct DispatchIssue : Base {
        virtual void dispatch(void) const {
            PYBIND11_OVERLOAD_PURE(void, Base, dispatch, /* no arguments */);
        }
    };

    py::class_<Base, std::unique_ptr<Base>, DispatchIssue>(m2, "DispatchIssue")
        .def(py::init<>())
        .def("dispatch", &Base::dispatch);

    m2.def("dispatch_issue_go", [](const Base * b) { b->dispatch(); });

    struct Placeholder { int i; Placeholder(int i) : i(i) { } };

    py::class_<Placeholder>(m2, "Placeholder")
        .def(py::init<int>())
        .def("__repr__", [](const Placeholder &p) { return "Placeholder[" + std::to_string(p.i) + "]"; });

    // #171: Can't return reference wrappers (or STL datastructures containing them)
    m2.def("return_vec_of_reference_wrapper", [](std::reference_wrapper<Placeholder> p4){
        Placeholder *p1 = new Placeholder{1};
        Placeholder *p2 = new Placeholder{2};
        Placeholder *p3 = new Placeholder{3};
        std::vector<std::reference_wrapper<Placeholder>> v;
        v.push_back(std::ref(*p1));
        v.push_back(std::ref(*p2));
        v.push_back(std::ref(*p3));
        v.push_back(p4);
        return v;
    });

    // #181: iterator passthrough did not compile
    m2.def("iterator_passthrough", [](py::iterator s) -> py::iterator {
        return py::make_iterator(std::begin(s), std::end(s));
    });

    // #187: issue involving std::shared_ptr<> return value policy & garbage collection
    struct ElementBase { virtual void foo() { } /* Force creation of virtual table */ };
    struct ElementA : ElementBase {
        ElementA(int v) : v(v) { }
        int value() { return v; }
        int v;
    };

    struct ElementList {
        void add(std::shared_ptr<ElementBase> e) { l.push_back(e); }
        std::vector<std::shared_ptr<ElementBase>> l;
    };

    py::class_<ElementBase, std::shared_ptr<ElementBase>> (m2, "ElementBase");

    py::class_<ElementA, std::shared_ptr<ElementA>>(m2, "ElementA", py::base<ElementBase>())
        .def(py::init<int>())
        .def("value", &ElementA::value);

    py::class_<ElementList, std::shared_ptr<ElementList>>(m2, "ElementList")
        .def(py::init<>())
        .def("add", &ElementList::add)
        .def("get", [](ElementList &el){
            py::list list;
            for (auto &e : el.l)
                list.append(py::cast(e));
            return list;
        });

    // (no id): should not be able to pass 'None' to a reference argument
    m2.def("print_element", [](ElementA &el) { std::cout << el.value() << std::endl; });

    // (no id): don't cast doubles to ints
    m2.def("expect_float", [](float f) { return f; });
    m2.def("expect_int", [](int i) { return i; });

    // (no id): don't invoke Python dispatch code when instantiating C++
    // classes that were not extended on the Python side
    struct A {
        virtual ~A() {}
        virtual void f() { std::cout << "A.f()" << std::endl; }
    };

    struct PyA : A {
        PyA() { std::cout << "PyA.PyA()" << std::endl; }

        void f() override {
            std::cout << "PyA.f()" << std::endl;
            PYBIND11_OVERLOAD(void, A, f);
        }
    };

    auto call_f = [](A *a) { a->f(); };

    pybind11::class_<A, std::unique_ptr<A>, PyA>(m2, "A")
        .def(py::init<>())
        .def("f", &A::f);

    m2.def("call_f", call_f);

    try {
        py::class_<Placeholder>(m2, "Placeholder");
        throw std::logic_error("Expected an exception!");
    } catch (std::runtime_error &) {
        /* All good */
    }

    // Issue #283: __str__ called on uninitialized instance when constructor arguments invalid
    class StrIssue {
    public:
        StrIssue(int i) : val{i} {}
        StrIssue() : StrIssue(-1) {}
        int value() const { return val; }
    private:
        int val;
    };
    py::class_<StrIssue> si(m2, "StrIssue");
    si  .def(py::init<int>())
        .def(py::init<>())
        .def("__str__", [](const StrIssue &si) {
                std::cout << "StrIssue.__str__ called" << std::endl;
                return "StrIssue[" + std::to_string(si.value()) + "]";
                })
        ;

}
Example #18
0
void init_ex18(py::module & m) {
    m.def("example18", &example18);
}
Example #19
0
void define_operators(py::module &m) {
    m.def("max", [](py::args args) -> Expr {
        if (args.size() < 2) {
            throw py::value_error("max() must have at least 2 arguments");
        }
        int pos = (int) args.size() - 1;
        Expr value = args[pos--].cast<Expr>();
        while (pos >= 0) {
            value = max(args[pos--].cast<Expr>(), value);
        }
        return value;
    });

    m.def("min", [](py::args args) -> Expr {
        if (args.size() < 2) {
            throw py::value_error("min() must have at least 2 arguments");
        }
        int pos = (int) args.size() - 1;
        Expr value = args[pos--].cast<Expr>();
        while (pos >= 0) {
            value = min(args[pos--].cast<Expr>(), value);
        }
        return value;
    });

    m.def("clamp", &clamp);
    m.def("abs", &abs);
    m.def("absd", &absd);

    m.def("select", [](py::args args) -> Expr {
        if (args.size() < 3) {
            throw py::value_error("select() must have at least 3 arguments");
        }
        if ((args.size() % 2) == 0) {
            throw py::value_error("select() must have an odd number of arguments");
        }
        int pos = (int) args.size() - 1;
        Expr false_value = args[pos--].cast<Expr>();
        while (pos > 0) {
            Expr true_value = args[pos--].cast<Expr>();
            Expr condition = args[pos--].cast<Expr>();
            false_value = select(condition, true_value, false_value);
        }
        return false_value;
    });

    m.def("tuple_select", [](py::args args) -> py::tuple {
        _halide_user_assert(args.size() >= 3)
            << "tuple_select() must have at least 3 arguments";
        _halide_user_assert((args.size() % 2) != 0)
            << "tuple_select() must have an odd number of arguments";

        int pos = (int) args.size() - 1;
        Tuple false_value = args[pos--].cast<Tuple>();
        bool has_tuple_cond = false, has_expr_cond = false;
        while (pos > 0) {
            Tuple true_value = args[pos--].cast<Tuple>();;
            // Note that 'condition' can be either Expr or Tuple, but must be consistent across all
            py::object py_cond = args[pos--];
            Expr expr_cond;
            Tuple tuple_cond(expr_cond);
            try {
                tuple_cond = py_cond.cast<Tuple>();
                has_tuple_cond = true;
            } catch (...) {
                expr_cond = py_cond.cast<Expr>();
                has_expr_cond = true;
            }

            if (expr_cond.defined()) {
                false_value = tuple_select(expr_cond, true_value, false_value);
            } else {
                false_value = tuple_select(tuple_cond, true_value, false_value);
            }
        }
        _halide_user_assert(!(has_tuple_cond && has_expr_cond))
            <<"tuple_select() may not mix Expr and Tuple for the condition elements.";
        return to_python_tuple(false_value);
    });

    m.def("sin", &sin);
    m.def("asin", &asin);
    m.def("cos", &cos);
    m.def("acos", &acos);
    m.def("tan", &tan);
    m.def("atan", &atan);
    m.def("atan", &atan2);
    m.def("atan2", &atan2);
    m.def("sinh", &sinh);
    m.def("asinh", &asinh);
    m.def("cosh", &cosh);
    m.def("acosh", &acosh);
    m.def("tanh", &tanh);
    m.def("atanh", &atanh);
    m.def("sqrt", &sqrt);
    m.def("hypot", &hypot);
    m.def("exp", &exp);
    m.def("log", &log);
    m.def("pow", &pow);
    m.def("erf", &erf);
    m.def("fast_log", &fast_log);
    m.def("fast_exp", &fast_exp);
    m.def("fast_pow", &fast_pow);
    m.def("fast_inverse", &fast_inverse);
    m.def("fast_inverse_sqrt", &fast_inverse_sqrt);
    m.def("floor", &floor);
    m.def("ceil", &ceil);
    m.def("round", &round);
    m.def("trunc", &trunc);
    m.def("fract", &fract);
    m.def("is_nan", &is_nan);
    m.def("reinterpret", (Expr (*)(Type, Expr)) &reinterpret);
    m.def("cast", (Expr (*)(Type, Expr)) &cast);
    m.def("print", [](py::args args) -> Expr {
        return print(args_to_vector_for_print(args));
    });
    m.def("print_when", [](Expr condition, py::args args) -> Expr {
        return print_when(condition, args_to_vector_for_print(args));
    }, py::arg("condition"));
    m.def("require", [](Expr condition, Expr value, py::args args) -> Expr {
        auto v = args_to_vector<Expr>(args);
        v.insert(v.begin(), value);
        return require(condition, v);
    }, py::arg("condition"), py::arg("value"));
    m.def("lerp", &lerp);
    m.def("popcount", &popcount);
    m.def("count_leading_zeros", &count_leading_zeros);
    m.def("count_trailing_zeros", &count_trailing_zeros);
    m.def("div_round_to_zero", &div_round_to_zero);
    m.def("mod_round_to_zero", &mod_round_to_zero);
    m.def("random_float", (Expr (*)()) &random_float);
    m.def("random_uint", (Expr (*)()) &random_uint);
    m.def("random_int", (Expr (*)()) &random_int);
    m.def("random_float", (Expr (*)(Expr)) &random_float, py::arg("seed"));
    m.def("random_uint", (Expr (*)(Expr)) &random_uint, py::arg("seed"));
    m.def("random_int", (Expr (*)(Expr)) &random_int, py::arg("seed"));
    m.def("undef", (Expr (*)(Type)) &undef);
    m.def("memoize_tag", [](Expr result, py::args cache_key_values) -> Expr {
        return Internal::memoize_tag_helper(result, args_to_vector<Expr>(cache_key_values));
    }, py::arg("result"));
    m.def("likely", &likely);
    m.def("likely_if_innermost", &likely_if_innermost);
    m.def("saturating_cast", (Expr (*)(Type, Expr))&saturating_cast);
}
Example #20
0
void init_ResonancePdf(py::module &m) {
    auto m_ls = m.def_submodule("Resonances");

    py::class_<ResonancePdf, GooPdf>(m, "ResonancePdf").def_static("help", []() {
        return HelpPrinter(ResonancePdf_docs);
    });

    py::class_<Resonances::RBW, ResonancePdf>(m_ls, "RBW")
        .def(py::init<std::string, Variable, Variable, Variable, Variable, unsigned int, unsigned int, bool>(),
             "Constructor for regular BW",
             "name"_a,
             "ar"_a,
             "ai"_a,
             "mass"_a,
             "width"_a,
             "sp"_a,
             "cyc"_a,
             "sym"_a = false);

    py::class_<Resonances::GS, ResonancePdf>(m_ls, "GS")
        .def(py::init<std::string, Variable, Variable, Variable, Variable, unsigned int, unsigned int>(),
             "Constructor for regular Gounaris-Sakurai",
             "name"_a,
             "ar"_a,
             "ai"_a,
             "mass"_a,
             "width"_a,
             "sp"_a,
             "cyc"_a);

    py::class_<Resonances::LASS, ResonancePdf>(m_ls, "LASS")
        .def(py::init<std::string, Variable, Variable, Variable, Variable, unsigned int, unsigned int>(),
             "Constructor for LASS",
             "name"_a,
             "ar"_a,
             "ai"_a,
             "mass"_a,
             "width"_a,
             "sp"_a,
             "cyc"_a);

    py::class_<Resonances::NonRes, ResonancePdf>(m_ls, "NonRes")
        .def(py::init<std::string, Variable, Variable>(), "Constructor for NonResonant", "name"_a, "ar"_a, "ai"_a);

    py::class_<Resonances::Gauss, ResonancePdf>(m_ls, "Gauss")
        .def(py::init<std::string, Variable, Variable, Variable, Variable, unsigned int>(),
             "Constructor for regular GAUSS",
             "name"_a,
             "ar"_a,
             "ai"_a,
             "mean"_a,
             "sigma"_a,
             "cyc"_a);

    py::class_<Resonances::FLATTE, ResonancePdf>(m_ls, "FLATTE")
        .def(py::init<std::string, Variable, Variable, Variable, Variable, Variable, unsigned int, bool>(),
             "Constructor for regular FLATTE",
             "name"_a,
             "ar"_a,
             "ai"_a,
             "mean"_a,
             "g1"_a,
             "rg2og1"_a,
             "cyc"_a,
             "symmDP"_a);

    py::class_<Resonances::Spline, ResonancePdf>(m_ls, "Spline")
        .def(py::init<std::string,
                      Variable,
                      Variable,
                      std::vector<fptype> &,
                      std::vector<Variable> &,
                      std::vector<Variable> &,
                      unsigned int,
                      bool>(),
             "Constructor for regular cubic spline",
             "name"_a,
             "ar"_a,
             "ai"_a,
             "HH_bin_limits"_a,
             "pwa_coefs_reals"_a,
             "pwa_coefs_imags"_a,
             "cyc"_a,
             "symmDP"_a = false,
             py::keep_alive<1, 5>(),
             py::keep_alive<1, 6>(),
             py::keep_alive<1, 7>());
}
Example #21
0
void python_export_filesystem(py::module &m) {
    using namespace fs;

    py::module fs_module =
        m.def_submodule("filesystem", "Cross-platform filesystem support");

    py::class_<path> path_class(fs_module, "path");

    path_class
        .def(py::init<>())
        .def(py::init<const path &>())
        .def(py::init<const std::string &>())
        .def("__len__", &path::length)
        .def("file_size", &path::file_size)
        .def("empty", &path::empty)
        .def("is_absolute", &path::is_absolute)
        .def("make_absolute", &path::make_absolute)
        .def("exists", &path::exists)
        .def("is_directory", &path::is_directory)
        .def("is_file", &path::is_file)
        .def("extension", &path::extension)
        .def("parent_path", &path::parent_path)
        .def("remove_file", &path::remove_file)
        .def("resize_file", &path::resize_file)
        .def("str", [](const path &p) { return p.str(); })
        .def("str", [](const path &p, path::path_type t) { return p.str(t); })
        .def("set", [](path &p, const std::string &v, path::path_type t) { p.set(v, t); })
        .def("set", [](path &p, const std::string &v) { p.set(v); })
        .def(py::self / py::self)
        .def("__repr__", [](const path &p) { return p.str(); })
        .def_static("getcwd", &path::getcwd);

    py::enum_<path::path_type>(path_class, "path_type")
        .value("windows_path", path::windows_path)
        .value("posix_path", path::posix_path)
        .value("native_path", path::native_path)
        .export_values();

    py::class_<resolver>(fs_module, "resolver")
        .def(py::init<>())
        .def("__len__", &resolver::size)
        .def("append", &resolver::append)
        .def("prepend", &resolver::prepend)
        .def("resolve", &resolver::resolve)
        .def("__getitem__", [](const resolver &r, size_t i) {
             if (i >= r.size())
                 throw py::index_error();
             return r[i];
         })
        .def("__setitem__", [](resolver &r, size_t i, path &v) {
             if (i >= r.size())
                 throw py::index_error();
             r[i] = v;
         })
        .def("__delitem__", [](resolver &r, size_t i) {
             if (i >= r.size())
                 throw py::index_error();
             r.erase(r.begin() + i);
         })
        .def("__repr__", [](const resolver &r) {
            std::ostringstream oss;
            oss << r;
            return oss.str();
        });

    py::class_<MemoryMappedFile>(fs_module, "MemoryMappedFile")
        .def(py::init<fs::path, size_t>())
        .def(py::init<fs::path, bool>())
        .def(py::init<fs::path>())
        .def("resize", &MemoryMappedFile::resize)
        .def("__repr__", &MemoryMappedFile::toString)
        .def("size", &MemoryMappedFile::size)
        .def("filename", &MemoryMappedFile::filename)
        .def("readOnly", &MemoryMappedFile::readOnly)
        .def_static("createTemporary", &MemoryMappedFile::createTemporary)
        .def_buffer([](MemoryMappedFile &m) -> py::buffer_info {
            return py::buffer_info(
                m.data(),
                sizeof(uint8_t),
                py::format_descriptor<uint8_t>::format(),
                1,
                { (size_t) m.size() },
                { sizeof(uint8_t) }
            );
        });

    py::implicitly_convertible<std::string, path>();
}
Example #22
0
void init_eigen(py::module &m) {
    typedef Eigen::Matrix<float, 5, 6, Eigen::RowMajor> FixedMatrixR;
    typedef Eigen::Matrix<float, 5, 6> FixedMatrixC;
    typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> DenseMatrixR;
    typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> DenseMatrixC;
    typedef Eigen::SparseMatrix<float, Eigen::RowMajor> SparseMatrixR;
    typedef Eigen::SparseMatrix<float> SparseMatrixC;

    // Non-symmetric matrix with zero elements
    Eigen::MatrixXf mat(5, 6);
    mat << 0, 3, 0, 0, 0, 11, 22, 0, 0, 0, 17, 11, 7, 5, 0, 1, 0, 11, 0,
        0, 0, 0, 0, 11, 0, 0, 14, 0, 8, 11;

    m.def("fixed_r", [mat]() -> FixedMatrixR { 
        return FixedMatrixR(mat);
    });

    m.def("fixed_c", [mat]() -> FixedMatrixC { 
        return FixedMatrixC(mat);
    });

    m.def("fixed_passthrough_r", [](const FixedMatrixR &m) -> FixedMatrixR { 
        return m;
    });

    m.def("fixed_passthrough_c", [](const FixedMatrixC &m) -> FixedMatrixC { 
        return m;
    });

    m.def("dense_r", [mat]() -> DenseMatrixR { 
        return DenseMatrixR(mat);
    });

    m.def("dense_c", [mat]() -> DenseMatrixC { 
        return DenseMatrixC(mat);
    });

    m.def("dense_passthrough_r", [](const DenseMatrixR &m) -> DenseMatrixR { 
        return m;
    });

    m.def("dense_passthrough_c", [](const DenseMatrixC &m) -> DenseMatrixC { 
        return m;
    });

    m.def("sparse_r", [mat]() -> SparseMatrixR { 
        return Eigen::SparseView<Eigen::MatrixXf>(mat);
    });

    m.def("sparse_c", [mat]() -> SparseMatrixC { 
        return Eigen::SparseView<Eigen::MatrixXf>(mat);
    });

    m.def("sparse_passthrough_r", [](const SparseMatrixR &m) -> SparseMatrixR { 
        return m;
    });

    m.def("sparse_passthrough_c", [](const SparseMatrixC &m) -> SparseMatrixC { 
        return m;
    });
}
Example #23
0
void python_export_spline(py::module &m) {
    /* spline.h bindings */
    py::module spline = m.def_submodule(
        "spline", "Functions for evaluating and sampling Catmull-Rom splines");

    spline.def("evalSpline",   evalSpline<Float>, D(spline, evalSpline));
    spline.def("evalSplineD", evalSplineD<Float>, D(spline, evalSplineD));
    spline.def("evalSplineI", evalSplineI<Float>, D(spline, evalSplineI));

    spline.def("eval1D", [](Float min, Float max, const VectorX &values,
                            Float x, bool extrapolate) {
        return eval1D(min, max, values.data(), values.size(), x, extrapolate);
    }, D(spline, eval1D));

    spline.def("eval1D", [](Float min, Float max, const VectorX &values,
                            const MatrixX &x, bool extrapolate) -> MatrixX {
        MatrixX result(x.rows(), x.cols());
        for (int i=0; i<x.rows(); ++i)
            for (int j=0; j<x.cols(); ++j)
                result(i, j) = eval1D(min, max, values.data(), values.size(), x(i, j), extrapolate);
        return result;
    }, D(spline, eval1D));

    spline.def("eval1D", [](VectorX &nodes, const VectorX &values,
                            Float x, bool extrapolate) {
        if (nodes.size() != values.size())
            throw std::runtime_error("'nodes' and 'values' must have a matching size!");
        return eval1D(nodes.data(), values.data(), nodes.size(), x, extrapolate);
    }, D(spline, eval1D, 2));

    spline.def("eval1D", [](VectorX &nodes, const VectorX &values,
                            const MatrixX &x, bool extrapolate) -> MatrixX {
        if (nodes.size() != values.size())
            throw std::runtime_error("'nodes' and 'values' must have a matching size!");
        MatrixX result(x.rows(), x.cols());
        for (int i=0; i<x.rows(); ++i)
            for (int j=0; j<x.cols(); ++j)
                result(i, j) = eval1D(nodes.data(), values.data(), nodes.size(), x(i, j), extrapolate);
        return result;
    }, D(spline, eval1D, 2));

    spline.def("invert1D", [](Float min, Float max, const VectorX &values,
                              Float y) {
        return invert1D(min, max, values.data(), values.size(), y);
    }, D(spline, invert1D));

    spline.def("invert1D", [](const VectorX &nodes, const VectorX &values,
                              Float y) {
        if (nodes.size() != values.size())
            throw std::runtime_error("'nodes' and 'values' must have a matching size!");
        return invert1D(nodes.data(), values.data(), values.size(), y);
    }, D(spline, invert1D, 2));

    spline.def("integrate1D", [](Float min, Float max, const VectorX &values) {
        VectorX result(values.size());
        integrate1D(min, max, values.data(), values.size(), result.data());
        return result;
    }, D(spline, integrate1D));

    spline.def("integrate1D", [](const VectorX &nodes, const VectorX &values) {
        if (nodes.size() != values.size())
            throw std::runtime_error("'nodes' and 'values' must have a matching size!");
        std::vector<Float> result(values.size());
        integrate1D(nodes.data(), values.data(), values.size(), result.data());
        return result;
    }, D(spline, integrate1D, 2));

    spline.def("sample1D", [](Float min, Float max, const VectorX &values,
                              const VectorX &cdf, Float sample) {
        if (values.size() != cdf.size())
            throw std::runtime_error("'values' and 'cdf' must have a matching size!");
        Float pos, fval, pdf;
        pos = sample1D(min, max, values.data(), cdf.data(), values.size(),
                       sample, &fval, &pdf);
        return std::make_tuple(pos, fval, pdf);
    }, D(spline, sample1D));

    spline.def("sample1D", [](const VectorX &nodes, const VectorX &values,
                              const VectorX &cdf, Float sample) {
        if (nodes.size() != values.size() || nodes.size() != cdf.size())
            throw std::runtime_error("'nodes', 'values', and 'cdf' must have a matching size!");
        Float pos, fval, pdf;
        pos = sample1D(nodes.data(), values.data(), cdf.data(), nodes.size(), sample, &fval, &pdf);
        return std::make_tuple(pos, fval, pdf);
    }, D(spline, sample1D, 2));

    spline.def("evalSplineWeights", [](Float min, Float max, size_t size, Float x, bool extrapolate) {
        Float weights[4] = { 0, 0, 0, 0 };
        ssize_t offset = 0;
        bool success = evalSplineWeights(min, max, size, x, offset, weights, extrapolate);
        return std::make_tuple(
            success, offset, std::make_tuple(weights[0], weights[1], weights[2], weights[3])
        );
    }, D(spline, evalSplineWeights));

    spline.def("evalSplineWeights", [](const VectorX &nodes, Float x, bool extrapolate) {
        Float weights[4] = { 0, 0, 0, 0};
        ssize_t offset = 0;
        bool success = evalSplineWeights(nodes.data(), nodes.size(), x, offset, weights, extrapolate);
        return std::make_tuple(
            success, offset, std::make_tuple(weights[0], weights[1], weights[2], weights[3])
        );
    }, D(spline, evalSplineWeights, 2));

    spline.def("eval2D", [](const VectorX &nodes1, const VectorX &nodes2,
                            const MatrixX &values, Float x, Float y,
                            bool extrapolate) {
        if (values.rows() != nodes1.size() || values.cols() != nodes2.size())
            throw std::runtime_error("'nodes' and 'values' must have a matching size!");

        return eval2D(nodes1.data(), nodes1.size(), nodes2.data(), nodes2.size(), values.data(), y, x, extrapolate);
    }, D(spline, eval2D));

    spline.def("eval2D", [](const VectorX &nodes1, const VectorX &nodes2,
                            const MatrixX &values, const MatrixX &x, const MatrixX &y,
                            bool extrapolate) {
        if (values.rows() != nodes1.size() || values.cols() != nodes2.size())
            throw std::runtime_error("'nodes' and 'values' must have a matching size!");
        if (x.rows() != nodes1.size() || x.cols() != y.size())
            throw std::runtime_error("'x' and 'y' must have a matching size!");

        MatrixX result(x.rows(), x.cols());
        for (int i=0; i<x.rows(); ++i)
            for (int j=0; j<x.cols(); ++j)
                result(i, j) = eval2D(
                    nodes1.data(), nodes1.size(), nodes2.data(), nodes2.size(),
                    values.data(), y(i, j), x(i, j), extrapolate);
        return result;

    }, D(spline, eval2D));
}
Example #24
0
void NGS_DLL_HEADER ExportNgsolve(py::module &m ) {

    m.def ("Tcl_Eval", &Ng_TclCmd);

    m.def ("_Redraw",
           ([](bool blocking, double fr)
             {
               static auto last_time = std::chrono::system_clock::now()-std::chrono::seconds(10);
               auto now = std::chrono::system_clock::now();
               double elapsed = std::chrono::duration<double>(now-last_time).count();
               if (elapsed * fr > 1)
                 {
                   Ng_Redraw(blocking);
                   last_time = std::chrono::system_clock::now();
                 }
             }),
           py::arg("blocking")=false, py::arg("fr") = 25
             );


    m.def ("Draw",[](shared_ptr<MeshAccess> mesh) 
                                     {
                                       mesh->SelectMesh();
                                       Ng_TclCmd ("set ::selectvisual mesh;\n");
                                     }
             );


    m.def("SetVisualization",
            [](py::object deformation, py::object min, py::object max,
                /* py::object clippnt, */ py::object clipnormal, py::object clipping)
             {
               bool need_redraw = false;
               if (py::extract<bool>(deformation).check())
                 {
                   bool def = py::extract<bool>(deformation)();
                   Ng_TclCmd ("set ::visoptions.deformation "+ToString(def)+";\n");
                   Ng_TclCmd ("Ng_Vis_Set parameters;\n");
                   need_redraw = true;
                 }
               if (py::extract<double>(min).check())
                 {
                   Ng_TclCmd ("set ::visoptions.autoscale 0\n");
                   Ng_TclCmd ("set ::visoptions.mminval "+ToString(py::extract<double>(min)())+";\n");
                   Ng_TclCmd ("Ng_Vis_Set parameters;\n");                                      
                   need_redraw = true;
                 }
               if (py::extract<double>(max).check())
                 {
                   Ng_TclCmd ("set ::visoptions.autoscale 0\n");
                   Ng_TclCmd ("set ::visoptions.mmaxval "+ToString(py::extract<double>(max)())+";\n");
                   Ng_TclCmd ("Ng_Vis_Set parameters;\n");                   
                   need_redraw = true;
                 }
               if (py::extract<py::tuple>(clipnormal).check())
                 {
                   py::tuple norm = py::extract<py::tuple>(clipnormal)();
                   if (py::len(norm)==3)
                     {
                       // cout << "setting clipping normal" << endl;
                       // tclstring << "set ::viewoptions.clipping.enable 1" << endl
                       Ng_TclCmd ("set ::viewoptions.clipping.nx "+ToString(py::extract<double>(norm[0])())+";\n");
                       Ng_TclCmd ("set ::viewoptions.clipping.ny "+ToString(py::extract<double>(norm[1])())+";\n");
                       Ng_TclCmd ("set ::viewoptions.clipping.nz "+ToString(py::extract<double>(norm[2])())+";\n");
                       // << "set ::viewoptions.clipping.dist " << clipdist << endl;
                       need_redraw = true;
                     }
                 }
               if (py::extract<bool>(clipping).check())
                 {
                   bool clip = py::extract<bool>(clipping)();
                   Ng_TclCmd ("set ::viewoptions.clipping.enable "+ToString(int(clip))+";\n");
                   Ng_TclCmd ("Ng_SetVisParameters");
                   
                   need_redraw = true;
                 }
               if (need_redraw)
                 Ng_Redraw(true);
             },
             py::arg("deformation")=DummyArgument(),
             py::arg("min")=DummyArgument(),
             py::arg("max")=DummyArgument(),
             // py::arg("clippnt")=DummyArgument(),
             py::arg("clipnormal")=DummyArgument(),
             py::arg("clipping")=DummyArgument()
            )
      ;
    
    m.def ("Draw",
           [](shared_ptr<GridFunction> gf, int sd, bool autoscale, double min, double max)
              {
                // cout << "in draw" << endl;
                // cout << "gf in draw = " << *gf << endl;
                // cout << "dims of gf =  " << gf->Dimensions() << endl;
                gf->GetMeshAccess()->SelectMesh();
                // Visualize (gf, gf->GetName());

                // netgen::SolutionData * vis = new VisualizeCoefficientFunction (gf->GetMeshAccess(), gf);
                auto gfcf = make_shared<GridFunctionCoefficientFunction> (gf);
                netgen::SolutionData * vis = new VisualizeCoefficientFunction (gf->GetMeshAccess(), gfcf);                

                Ng_SolutionData soldata;
                Ng_InitSolutionData (&soldata);
  
                soldata.name = gf->GetName().c_str();
                soldata.data = 0;
                soldata.components = gf -> Dimension();
                if (gf->IsComplex()) soldata.components *= 2;
                soldata.iscomplex = gf -> IsComplex();
                soldata.draw_surface = true; // draw_surf;
                soldata.draw_volume  = true; // draw_vol; 
                /* 
                if (flags.GetDefineFlag("volume"))
                  soldata.draw_surface = false;
                if (flags.GetDefineFlag("boundary"))
                  soldata.draw_volume = false;
                */
                soldata.dist = 1;
                soldata.soltype = NG_SOLUTION_VIRTUAL_FUNCTION;
                soldata.solclass = vis;
                Ng_SetSolutionData (&soldata);
                
                if (gf->Dimension() == 1)
                  Ng_TclCmd (string("set ::visoptions.scalfunction ")+gf->GetName()+":1;\n");
                else
                  Ng_TclCmd (string("set ::visoptions.vecfunction ")+gf->GetName()+";\n");
                Ng_TclCmd (string("set ::visoptions.subdivisions ")+ToString(sd)+";\n");
		Ng_TclCmd ("set ::visoptions.autoscale "+ToString(autoscale)+";\n");
		if(!autoscale){
		  Ng_TclCmd ("set ::visoptions.mminval "+ToString(min)+";\n");
		  Ng_TclCmd ("set ::visoptions.mmaxval "+ToString(max)+";\n");
		}
		Ng_TclCmd ("Ng_Vis_Set parameters;\n");
                Ng_TclCmd ("set ::selectvisual solution;\n");
              },
             py::arg("gf"),py::arg("sd")=2,py::arg("autoscale")=true,
	      py::arg("min")=0.0,py::arg("max")=1.0
             );

    
    m.def ("Draw", [](shared_ptr<CoefficientFunction> cf, shared_ptr<MeshAccess> ma, string name,
                 int sd, bool autoscale, double min, double max,
                 bool draw_vol, bool draw_surf) 
              {
                ma->SelectMesh();
                netgen::SolutionData * vis;
                if(dynamic_cast<ProlongateCoefficientFunction *>(cf.get()))
                {
                  shared_ptr<CoefficientFunction> wrapper(new ProlongateCoefficientFunctionVisualization(*static_cast<ProlongateCoefficientFunction *>(cf.get())));
                  vis = new VisualizeCoefficientFunction (ma, wrapper);
                }
                else
                  vis = new VisualizeCoefficientFunction (ma, cf);
                Ng_SolutionData soldata;
                Ng_InitSolutionData (&soldata);
  
                soldata.name = (char*)name.c_str();
                soldata.data = 0;
                soldata.components = cf -> Dimension();
                if (cf->IsComplex()) soldata.components *= 2;
                soldata.iscomplex = cf -> IsComplex();
                soldata.draw_surface = draw_surf;
                soldata.draw_volume  = draw_vol; 
                /* 
                if (flags.GetDefineFlag("volume"))
                  soldata.draw_surface = false;
                if (flags.GetDefineFlag("boundary"))
                  soldata.draw_volume = false;
                */
                soldata.dist = 1;
                soldata.soltype = NG_SOLUTION_VIRTUAL_FUNCTION;
                soldata.solclass = vis;
                Ng_SetSolutionData (&soldata);
                

                if (cf->Dimension() == 1)
                  Ng_TclCmd (string("set ::visoptions.scalfunction ")+name+":1;\n");
                else
                  if (cf->Dimension() == 3 || cf->Dimension() == ma->GetDimension())
                    Ng_TclCmd (string("set ::visoptions.vecfunction ")+name+";\n");

                Ng_TclCmd (string("set ::visoptions.subdivisions ")+ToString(sd)+";\n");
		Ng_TclCmd ("set ::visoptions.autoscale "+ToString(autoscale)+";\n");
		if(!autoscale){
		  Ng_TclCmd ("set ::visoptions.mminval "+ToString(min)+";\n");
		  Ng_TclCmd ("set ::visoptions.mmaxval "+ToString(max)+";\n");
		}
                Ng_TclCmd ("Ng_Vis_Set parameters;\n");
                Ng_TclCmd ("set ::selectvisual solution;\n");

              },
              py::arg("cf"),py::arg("mesh"),py::arg("name"),
              py::arg("sd")=2,py::arg("autoscale")=true,
	      py::arg("min")=0.0,py::arg("max")=1.0,
              py::arg("draw_vol")=true,py::arg("draw_surf")=true
             );





    ExportBVP(m);
    ExportDrawFlux(m);
}
Example #25
0
void init_ex8(py::module &m) {
    py::class_<Object, ref<Object>> obj(m, "Object");
    obj.def("getRefCount", &Object::getRefCount);

    py::class_<MyObject1, ref<MyObject1>>(m, "MyObject1", obj)
        .def(py::init<int>());

    m.def("make_object_1", &make_object_1);
    m.def("make_object_2", &make_object_2);
    m.def("make_myobject1_1", &make_myobject1_1);
    m.def("make_myobject1_2", &make_myobject1_2);
    m.def("print_object_1", &print_object_1);
    m.def("print_object_2", &print_object_2);
    m.def("print_object_3", &print_object_3);
    m.def("print_object_4", &print_object_4);
    m.def("print_myobject1_1", &print_myobject1_1);
    m.def("print_myobject1_2", &print_myobject1_2);
    m.def("print_myobject1_3", &print_myobject1_3);
    m.def("print_myobject1_4", &print_myobject1_4);

    py::class_<MyObject2, std::shared_ptr<MyObject2>>(m, "MyObject2")
        .def(py::init<int>());
    m.def("make_myobject2_1", &make_myobject2_1);
    m.def("make_myobject2_2", &make_myobject2_2);
    m.def("print_myobject2_1", &print_myobject2_1);
    m.def("print_myobject2_2", &print_myobject2_2);
    m.def("print_myobject2_3", &print_myobject2_3);
    m.def("print_myobject2_4", &print_myobject2_4);

    py::class_<MyObject3, std::shared_ptr<MyObject3>>(m, "MyObject3")
        .def(py::init<int>());
    m.def("make_myobject3_1", &make_myobject3_1);
    m.def("make_myobject3_2", &make_myobject3_2);
    m.def("print_myobject3_1", &print_myobject3_1);
    m.def("print_myobject3_2", &print_myobject3_2);
    m.def("print_myobject3_3", &print_myobject3_3);
    m.def("print_myobject3_4", &print_myobject3_4);

    py::implicitly_convertible<py::int_, MyObject1>();
}