bool SoundFileWriterFlac::open(const std::string& filename, unsigned int sampleRate, unsigned int channelCount) { // Create the encoder m_encoder = FLAC__stream_encoder_new(); if (!m_encoder) { err() << "Failed to write flac file \"" << filename << "\" (failed to allocate encoder)" << std::endl; return false; } // Setup the encoder FLAC__stream_encoder_set_channels(m_encoder, channelCount); FLAC__stream_encoder_set_bits_per_sample(m_encoder, 16); FLAC__stream_encoder_set_sample_rate(m_encoder, sampleRate); // Initialize the output stream if (FLAC__stream_encoder_init_file(m_encoder, filename.c_str(), NULL, NULL) != FLAC__STREAM_ENCODER_INIT_STATUS_OK) { err() << "Failed to write flac file \"" << filename << "\" (failed to open the file)" << std::endl; close(); return false; } // Store the channel count m_channelCount = channelCount; return true; }
int convertWavToFlac(const char *wave_file, const char *flac_file, int split_interval_seconds, char** out_flac_files) { FILE *fin; if((fin = fopen(wave_file, "rb")) == NULL) { fprintf(stderr, "ERROR: opening %s for output\n", wave_file); return 1; } // read wav header and validate it, note this will most likely fail for WAVE files not created by Apple if(fread(buffer, 1, 44, fin) != 44 || memcmp(buffer, "RIFF", 4) || memcmp(buffer+36, "FLLR", 4)) { fprintf(stderr, "ERROR: invalid/unsupported WAVE file\n"); fclose(fin); return 1; } unsigned num_channels = ((unsigned)buffer[23] << 8) | buffer[22];; unsigned sample_rate = ((((((unsigned)buffer[27] << 8) | buffer[26]) << 8) | buffer[25]) << 8) | buffer[24]; //unsigned byte_rate = ((((((unsigned)buffer[31] << 8) | buffer[30]) << 8) | buffer[29]) << 8) | buffer[28]; //unsigned block_align = ((unsigned)buffer[33] << 8) | buffer[32]; unsigned bps = ((unsigned)buffer[35] << 8) | buffer[34]; //Apple puts the number of filler bytes in the 2 bytes following FLLR in the filler chunk //get the int value of the hex unsigned filler_byte_count = ((unsigned)buffer[41] << 8) | buffer[40]; //swallow the filler bytes, exiting if there were not enough if(fread(buffer, 1, filler_byte_count, fin) != filler_byte_count) { fprintf(stderr, "ERROR: invalid number of filler bytes\n"); return 1; } //swallow the beginning of the data chunk, i.e. the word 'data' unsigned data_subchunk_size = 0; if(fread(buffer, 1, 8, fin) != 8 || memcmp(buffer, "data", 4)) { fprintf(stderr, "ERROR: bad data start section\n"); return 1; } else { //Subchunk2Size == NumSamples * NumChannels * BitsPerSample/8 data_subchunk_size = ((((((unsigned)buffer[7] << 8) | buffer[6]) << 8) | buffer[5]) << 8) | buffer[4]; } //create the flac encoder FLAC__StreamEncoder *encoder = FLAC__stream_encoder_new(); FLAC__stream_encoder_set_verify(encoder, true); FLAC__stream_encoder_set_compression_level(encoder, 5); FLAC__stream_encoder_set_channels(encoder, num_channels); FLAC__stream_encoder_set_bits_per_sample(encoder, bps); FLAC__stream_encoder_set_sample_rate(encoder, sample_rate); //unknown total samples FLAC__stream_encoder_set_total_samples_estimate(encoder, 0); char* next_flac_file = malloc(sizeof(char) * 1024); sprintf(next_flac_file, "%s.flac", flac_file); //fprintf(stderr, "writing to new flac file %s\n", next_flac_file); FLAC__stream_encoder_init_file(encoder, next_flac_file, progress_callback, NULL); long total_bytes_read = 0; int did_split_at_interval[1024]; for(int i = 0; i < 1024; i++) { did_split_at_interval[i] = 0; } //read the wav file data chunk until we reach the end of the file. size_t bytes_read = 0; size_t need = (size_t)READSIZE; int flac_file_index = 0; while((bytes_read = fread(buffer, num_channels * (bps/8), need, fin)) != 0) { /* convert the packed little-endian 16-bit PCM samples from WAVE into an interleaved FLAC__int32 buffer for libFLAC */ size_t i; for(i = 0; i < bytes_read*num_channels; i++) { /* inefficient but simple and works on big- or little-endian machines */ pcm[i] = (FLAC__int32)(((FLAC__int16)(FLAC__int8)buffer[2*i+1] << 8) | (FLAC__int16)buffer[2*i]); } /* feed samples to encoder */ FLAC__stream_encoder_process_interleaved(encoder, pcm, bytes_read); total_bytes_read += bytes_read; if(split_interval_seconds > 0) { double elapsed_time_seconds = (total_bytes_read * 16) / (bps * sample_rate); int interval = elapsed_time_seconds / split_interval_seconds; if(interval > 0) { if(!did_split_at_interval[interval-1]) { //finish encoding the current flac file FLAC__stream_encoder_finish(encoder); FLAC__stream_encoder_delete(encoder); //add the flac file to the out_flac_files output parameter *(out_flac_files + flac_file_index) = next_flac_file; flac_file_index += 1; //get a new flac file name //free(next_flac_file); next_flac_file = malloc(sizeof(char) * 1024); sprintf(next_flac_file, "%s_%d.flac", flac_file, interval); //fprintf(stderr, "writing to new flac file %s\n", next_flac_file); //create a new encoder encoder = FLAC__stream_encoder_new(); FLAC__stream_encoder_set_verify(encoder, true); FLAC__stream_encoder_set_compression_level(encoder, 5); FLAC__stream_encoder_set_channels(encoder, num_channels); FLAC__stream_encoder_set_bits_per_sample(encoder, bps); FLAC__stream_encoder_set_sample_rate(encoder, sample_rate); FLAC__stream_encoder_set_total_samples_estimate(encoder, 0); FLAC__stream_encoder_init_file(encoder, next_flac_file, progress_callback, NULL); //mark the interval as split did_split_at_interval[interval-1] = 1; } } } } //fprintf(stderr, "total bytes read: %ld\nbits per sample: %d\nsample rate: %d\n", total_bytes_read, bps, sample_rate); *(out_flac_files + flac_file_index) = next_flac_file; //cleanup FLAC__stream_encoder_finish(encoder); FLAC__stream_encoder_delete(encoder); fclose(fin); return 0; }
int main(int argc, char *argv[]) { FLAC__bool ok = true; FLAC__StreamEncoder *encoder = 0; FLAC__StreamEncoderInitStatus init_status; FLAC__StreamMetadata *metadata[2]; FLAC__StreamMetadata_VorbisComment_Entry entry; FILE *fin; unsigned sample_rate = 0; unsigned channels = 0; unsigned bps = 0; if(argc != 3) { fprintf(stderr, "usage: %s infile.wav outfile.flac\n", argv[0]); return 1; } if((fin = fopen(argv[1], "rb")) == NULL) { fprintf(stderr, "ERROR: opening %s for output\n", argv[1]); return 1; } /* read wav header and validate it */ if( fread(buffer, 1, 44, fin) != 44 || memcmp(buffer, "RIFF", 4) || memcmp(buffer+8, "WAVEfmt \020\000\000\000\001\000\002\000", 16) || memcmp(buffer+32, "\004\000\020\000data", 8) ) { fprintf(stderr, "ERROR: invalid/unsupported WAVE file, only 16bps stereo WAVE in canonical form allowed\n"); fclose(fin); return 1; } sample_rate = ((((((unsigned)buffer[27] << 8) | buffer[26]) << 8) | buffer[25]) << 8) | buffer[24]; channels = 2; bps = 16; total_samples = (((((((unsigned)buffer[43] << 8) | buffer[42]) << 8) | buffer[41]) << 8) | buffer[40]) / 4; /* allocate the encoder */ if((encoder = FLAC__stream_encoder_new()) == NULL) { fprintf(stderr, "ERROR: allocating encoder\n"); fclose(fin); return 1; } ok &= FLAC__stream_encoder_set_verify(encoder, true); ok &= FLAC__stream_encoder_set_compression_level(encoder, 5); ok &= FLAC__stream_encoder_set_channels(encoder, channels); ok &= FLAC__stream_encoder_set_bits_per_sample(encoder, bps); ok &= FLAC__stream_encoder_set_sample_rate(encoder, sample_rate); ok &= FLAC__stream_encoder_set_total_samples_estimate(encoder, total_samples); /* now add some metadata; we'll add some tags and a padding block */ if(ok) { if( (metadata[0] = FLAC__metadata_object_new(FLAC__METADATA_TYPE_VORBIS_COMMENT)) == NULL || (metadata[1] = FLAC__metadata_object_new(FLAC__METADATA_TYPE_PADDING)) == NULL || /* there are many tag (vorbiscomment) functions but these are convenient for this particular use: */ !FLAC__metadata_object_vorbiscomment_entry_from_name_value_pair(&entry, "ARTIST", "Some Artist") || !FLAC__metadata_object_vorbiscomment_append_comment(metadata[0], entry, /*copy=*/false) || /* copy=false: let metadata object take control of entry's allocated string */ !FLAC__metadata_object_vorbiscomment_entry_from_name_value_pair(&entry, "YEAR", "1984") || !FLAC__metadata_object_vorbiscomment_append_comment(metadata[0], entry, /*copy=*/false) ) { fprintf(stderr, "ERROR: out of memory or tag error\n"); ok = false; } metadata[1]->length = 1234; /* set the padding length */ ok = FLAC__stream_encoder_set_metadata(encoder, metadata, 2); } /* initialize encoder */ if(ok) { init_status = FLAC__stream_encoder_init_file(encoder, argv[2], progress_callback, /*client_data=*/NULL); if(init_status != FLAC__STREAM_ENCODER_INIT_STATUS_OK) { fprintf(stderr, "ERROR: initializing encoder: %s\n", FLAC__StreamEncoderInitStatusString[init_status]); ok = false; } } /* read blocks of samples from WAVE file and feed to encoder */ if(ok) { size_t left = (size_t)total_samples; while(ok && left) { size_t need = (left>READSIZE? (size_t)READSIZE : (size_t)left); if(fread(buffer, channels*(bps/8), need, fin) != need) { fprintf(stderr, "ERROR: reading from WAVE file\n"); ok = false; } else { /* convert the packed little-endian 16-bit PCM samples from WAVE into an interleaved FLAC__int32 buffer for libFLAC */ size_t i; for(i = 0; i < need*channels; i++) { /* inefficient but simple and works on big- or little-endian machines */ pcm[i] = (FLAC__int32)(((FLAC__int16)(FLAC__int8)buffer[2*i+1] << 8) | (FLAC__int16)buffer[2*i]); } /* feed samples to encoder */ ok = FLAC__stream_encoder_process_interleaved(encoder, pcm, need); } left -= need; } } ok &= FLAC__stream_encoder_finish(encoder); fprintf(stderr, "encoding: %s\n", ok? "succeeded" : "FAILED"); fprintf(stderr, " state: %s\n", FLAC__StreamEncoderStateString[FLAC__stream_encoder_get_state(encoder)]); /* now that encoding is finished, the metadata can be freed */ FLAC__metadata_object_delete(metadata[0]); FLAC__metadata_object_delete(metadata[1]); FLAC__stream_encoder_delete(encoder); fclose(fin); return 0; }
void CompressionTool::encodeRaw(const char *rawData, int length, int samplerate, const char *outname, AudioFormat compmode) { print(" - len=%ld, ch=%d, rate=%d, %dbits", length, (rawAudioType.isStereo ? 2 : 1), samplerate, rawAudioType.bitsPerSample); #ifdef USE_VORBIS if (compmode == AUDIO_VORBIS) { char outputString[256] = ""; int numChannels = (rawAudioType.isStereo ? 2 : 1); int totalSamples = length / ((rawAudioType.bitsPerSample / 8) * numChannels); int samplesLeft = totalSamples; int eos = 0; int totalBytes = 0; vorbis_info vi; vorbis_comment vc; vorbis_dsp_state vd; vorbis_block vb; ogg_stream_state os; ogg_page og; ogg_packet op; ogg_packet header; ogg_packet header_comm; ogg_packet header_code; Common::File outputOgg(outname, "wb"); vorbis_info_init(&vi); if (oggparms.nominalBitr > 0) { int result = 0; /* Input is in kbps, function takes bps */ result = vorbis_encode_setup_managed(&vi, numChannels, samplerate, (oggparms.maxBitr > 0 ? 1000 * oggparms.maxBitr : -1), (1000 * oggparms.nominalBitr), (oggparms.minBitr > 0 ? 1000 * oggparms.minBitr : -1)); if (result == OV_EFAULT) { vorbis_info_clear(&vi); error("Error: Internal Logic Fault"); } else if ((result == OV_EINVAL) || (result == OV_EIMPL)) { vorbis_info_clear(&vi); error("Error: Invalid bitrate parameters"); } if (!oggparms.silent) { sprintf(outputString, "Encoding to\n \"%s\"\nat average bitrate %i kbps (", outname, oggparms.nominalBitr); if (oggparms.minBitr > 0) { sprintf(outputString + strlen(outputString), "min %i kbps, ", oggparms.minBitr); } else { sprintf(outputString + strlen(outputString), "no min, "); } if (oggparms.maxBitr > 0) { sprintf(outputString + strlen(outputString), "max %i kbps),\nusing full bitrate management engine\nSet optional hard quality restrictions\n", oggparms.maxBitr); } else { sprintf(outputString + strlen(outputString), "no max),\nusing full bitrate management engine\nSet optional hard quality restrictions\n"); } } } else { int result = 0; /* Quality input is -1 - 10, function takes -0.1 through 1.0 */ result = vorbis_encode_setup_vbr(&vi, numChannels, samplerate, oggparms.quality * 0.1f); if (result == OV_EFAULT) { vorbis_info_clear(&vi); error("Internal Logic Fault"); } else if ((result == OV_EINVAL) || (result == OV_EIMPL)) { vorbis_info_clear(&vi); error("Invalid bitrate parameters"); } if (!oggparms.silent) { sprintf(outputString, "Encoding to\n \"%s\"\nat quality %2.2f", outname, oggparms.quality); } if ((oggparms.minBitr > 0) || (oggparms.maxBitr > 0)) { struct ovectl_ratemanage_arg extraParam; vorbis_encode_ctl(&vi, OV_ECTL_RATEMANAGE_GET, &extraParam); extraParam.bitrate_hard_min = (oggparms.minBitr > 0 ? (1000 * oggparms.minBitr) : -1); extraParam.bitrate_hard_max = (oggparms.maxBitr > 0 ? (1000 * oggparms.maxBitr) : -1); extraParam.management_active = 1; vorbis_encode_ctl(&vi, OV_ECTL_RATEMANAGE_SET, &extraParam); if (!oggparms.silent) { sprintf(outputString + strlen(outputString), " using constrained VBR ("); if (oggparms.minBitr != -1) { sprintf(outputString + strlen(outputString), "min %i kbps, ", oggparms.minBitr); } else { sprintf(outputString + strlen(outputString), "no min, "); } if (oggparms.maxBitr != -1) { sprintf(outputString + strlen(outputString), "max %i kbps)\nSet optional hard quality restrictions\n", oggparms.maxBitr); } else { sprintf(outputString + strlen(outputString), "no max)\nSet optional hard quality restrictions\n"); } } } else { sprintf(outputString + strlen(outputString), "\n"); } } puts(outputString); vorbis_encode_setup_init(&vi); vorbis_comment_init(&vc); vorbis_analysis_init(&vd, &vi); vorbis_block_init(&vd, &vb); ogg_stream_init(&os, 0); vorbis_analysis_headerout(&vd, &vc, &header, &header_comm, &header_code); ogg_stream_packetin(&os, &header); ogg_stream_packetin(&os, &header_comm); ogg_stream_packetin(&os, &header_code); while (!eos) { int result = ogg_stream_flush(&os,&og); if (result == 0) { break; } outputOgg.write(og.header, og.header_len); outputOgg.write(og.body, og.body_len); } while (!eos) { int numSamples = ((samplesLeft < 2048) ? samplesLeft : 2048); float **buffer = vorbis_analysis_buffer(&vd, numSamples); /* We must tell the encoder that we have reached the end of the stream */ if (numSamples == 0) { vorbis_analysis_wrote(&vd, 0); } else { /* Adapted from oggenc 1.1.1 */ if (rawAudioType.bitsPerSample == 8) { const byte *rawDataUnsigned = (const byte *)rawData; for (int i = 0; i < numSamples; i++) { for (int j = 0; j < numChannels; j++) { buffer[j][i] = ((int)(rawDataUnsigned[i * numChannels + j]) - 128) / 128.0f; } } } else if (rawAudioType.bitsPerSample == 16) { if (rawAudioType.isLittleEndian) { for (int i = 0; i < numSamples; i++) { for (int j = 0; j < numChannels; j++) { buffer[j][i] = ((rawData[(i * 2 * numChannels) + (2 * j) + 1] << 8) | (rawData[(i * 2 * numChannels) + (2 * j)] & 0xff)) / 32768.0f; } } } else { for (int i = 0; i < numSamples; i++) { for (int j = 0; j < numChannels; j++) { buffer[j][i] = ((rawData[(i * 2 * numChannels) + (2 * j)] << 8) | (rawData[(i * 2 * numChannels) + (2 * j) + 1] & 0xff)) / 32768.0f; } } } } vorbis_analysis_wrote(&vd, numSamples); } while (vorbis_analysis_blockout(&vd, &vb) == 1) { vorbis_analysis(&vb, NULL); vorbis_bitrate_addblock(&vb); while (vorbis_bitrate_flushpacket(&vd, &op)) { ogg_stream_packetin(&os, &op); while (!eos) { int result = ogg_stream_pageout(&os, &og); if (result == 0) { break; } totalBytes += outputOgg.write(og.header, og.header_len); totalBytes += outputOgg.write(og.body, og.body_len); if (ogg_page_eos(&og)) { eos = 1; } } } } rawData += 2048 * (rawAudioType.bitsPerSample / 8) * numChannels; samplesLeft -= 2048; } ogg_stream_clear(&os); vorbis_block_clear(&vb); vorbis_dsp_clear(&vd); vorbis_info_clear(&vi); if (!oggparms.silent) { print("\nDone encoding file \"%s\"", outname); print("\n\tFile length: %dm %ds", (int)(totalSamples / samplerate / 60), (totalSamples / samplerate % 60)); print("\tAverage bitrate: %.1f kb/s\n", (8.0 * (double)totalBytes / 1000.0) / ((double)totalSamples / (double)samplerate)); } } #endif #ifdef USE_FLAC if (compmode == AUDIO_FLAC) { int i; int numChannels = (rawAudioType.isStereo ? 2 : 1); int samplesPerChannel = length / ((rawAudioType.bitsPerSample / 8) * numChannels); FLAC__StreamEncoder *encoder; FLAC__StreamEncoderInitStatus initStatus; FLAC__int32 *flacData; flacData = (FLAC__int32 *)malloc(samplesPerChannel * numChannels * sizeof(FLAC__int32)); if (rawAudioType.bitsPerSample == 8) { for (i = 0; i < samplesPerChannel * numChannels; i++) { FLAC__uint8 *rawDataUnsigned; rawDataUnsigned = (FLAC__uint8 *)rawData; flacData[i] = (FLAC__int32)rawDataUnsigned[i] - 0x80; } } else if (rawAudioType.bitsPerSample == 16) { /* The rawData pointer is an 8-bit char so we must create a new pointer to access 16-bit samples */ FLAC__int16 *rawData16; rawData16 = (FLAC__int16 *)rawData; for (i = 0; i < samplesPerChannel * numChannels; i++) { flacData[i] = (FLAC__int32)rawData16[i]; } } if (!flacparms.silent) { print("Encoding to\n \"%s\"\nat compression level %d using blocksize %d\n", outname, flacparms.compressionLevel, flacparms.blocksize); } encoder = FLAC__stream_encoder_new(); FLAC__stream_encoder_set_bits_per_sample(encoder, rawAudioType.bitsPerSample); FLAC__stream_encoder_set_blocksize(encoder, flacparms.blocksize); FLAC__stream_encoder_set_channels(encoder, numChannels); FLAC__stream_encoder_set_compression_level(encoder, flacparms.compressionLevel); FLAC__stream_encoder_set_sample_rate(encoder, samplerate); FLAC__stream_encoder_set_streamable_subset(encoder, false); FLAC__stream_encoder_set_total_samples_estimate(encoder, samplesPerChannel); FLAC__stream_encoder_set_verify(encoder, flacparms.verify); initStatus = FLAC__stream_encoder_init_file(encoder, outname, NULL, NULL); if (initStatus != FLAC__STREAM_ENCODER_INIT_STATUS_OK) { char buf[2048]; sprintf(buf, "Error in FLAC encoder. (check the parameters)\nExact error was:%s", FLAC__StreamEncoderInitStatusString[initStatus]); free(flacData); throw ToolException(buf); } else { FLAC__stream_encoder_process_interleaved(encoder, flacData, samplesPerChannel); } FLAC__stream_encoder_finish(encoder); FLAC__stream_encoder_delete(encoder); free(flacData); if (!flacparms.silent) { print("\nDone encoding file \"%s\"", outname); print("\n\tFile length: %dm %ds\n", (int)(samplesPerChannel / samplerate / 60), (samplesPerChannel / samplerate % 60)); } } #endif }
bool ofxFlacEncoder::encode(string wavInput, string flacOutput) { //ofLog(OF_LOG_VERBOSE, "init encoding (device%d)",deviceId); FLAC__bool ok = true; FLAC__StreamEncoder *encoder = 0; FLAC__StreamEncoderInitStatus init_status; FILE *fin; unsigned sample_rate = 0; unsigned channels = 0; unsigned bps = 0; if((fin = fopen(ofToDataPath(wavInput).c_str(), "rb")) == NULL){ //ofLog(OF_LOG_ERROR, "ERROR: opening %s for output\n", wavFile); return false; } // read and validate wav header if(fread(buffer, 1, 44, fin) != 44 || memcmp(buffer, "RIFF", 4) || memcmp(buffer + 8, "WAVEfmt \020\000\000\000\001\000\002\000", 16) || memcmp(buffer + 32, "\004\000\020\000data", 8)){ ofLog(OF_LOG_ERROR, "invalid/unsupported WAVE file, only 16bps stereo WAVE in canonical form allowed"); //fclose(fin); //return false; } sample_rate = ((((((unsigned) buffer[27] << 8) | buffer[26]) << 8) | buffer[25]) << 8) | buffer[24]; channels = 2; bps = 16; total_samples = (((((((unsigned) buffer[43] << 8) | buffer[42]) << 8) | buffer[41]) << 8) | buffer[40]) / 4; // allocate the encoder if((encoder = FLAC__stream_encoder_new()) == NULL){ ofLog(OF_LOG_ERROR, " allocating encoder\n"); fclose(fin); return false; } ok &= FLAC__stream_encoder_set_verify(encoder, true); ok &= FLAC__stream_encoder_set_compression_level(encoder, 5); ok &= FLAC__stream_encoder_set_channels(encoder, channels); ok &= FLAC__stream_encoder_set_bits_per_sample(encoder, bps); ok &= FLAC__stream_encoder_set_sample_rate(encoder, sample_rate); ok &= FLAC__stream_encoder_set_total_samples_estimate(encoder, total_samples); // initialize encoder if(ok){ init_status = FLAC__stream_encoder_init_file(encoder, ofToDataPath(flacOutput).c_str(), NULL, NULL); if(init_status != FLAC__STREAM_ENCODER_INIT_STATUS_OK){ ofLog(OF_LOG_ERROR, "initializing encoder: "); ofLog(OF_LOG_ERROR, FLAC__StreamEncoderInitStatusString[init_status]); ok = false; } } //ofLog(OF_LOG_VERBOSE, "start encoding (device%d)",deviceId); /* read blocks of samples from WAVE file and feed to encoder */ if(ok){ size_t left = (size_t) total_samples; while(ok && left){ size_t need = (left > READSIZE ? (size_t) READSIZE : (size_t) left); if(fread(buffer, channels * (bps / 8), need, fin) != need){ ofLog(OF_LOG_ERROR, "reading from WAVE file"); ok = false; }else{ /* convert the packed little-endian 16-bit PCM samples from WAVE into an interleaved FLAC__int32 buffer for libFLAC */ size_t i; for(i = 0; i < need * channels; i++){ /* inefficient but simple and works on big- or little-endian machines */ pcm[i] = (FLAC__int32) (((FLAC__int16) (FLAC__int8) buffer[2 * i + 1] << 8) | (FLAC__int16) buffer[2 * i]); } /* feed samples to encoder */ ok = FLAC__stream_encoder_process_interleaved(encoder, pcm, need); } left -= need; } } ok &= FLAC__stream_encoder_finish(encoder); // fprintf(stderr, "encoding: %s\n", ok ? "succeeded" : "FAILED"); // fprintf(stderr, // " state: %s\n", // FLAC__StreamEncoderStateString[FLAC__stream_encoder_get_state(encoder)]); FLAC__stream_encoder_delete(encoder); fclose(fin); return ok; }
const char* _edje_multisense_encode_to_flac(char *snd_path, SF_INFO sfinfo) { unsigned int total_samples = 0; /* can use a 32-bit number due to WAVE size limitations */ FLAC__bool ok = 1; FLAC__StreamEncoder *encoder = 0; FLAC__StreamEncoderInitStatus init_status; FLAC__StreamMetadata *metadata[2]; FLAC__StreamMetadata_VorbisComment_Entry entry; SNDFILE *sfile; sf_count_t size; char *tmp; sfile = sf_open(snd_path, SFM_READ, &sfinfo); if (!sfile) return NULL; if (!sf_format_check(&sfinfo)) { sf_close(sfile); return NULL; } size = sf_seek(sfile, 0, SEEK_END); sf_seek(sfile, 0, SEEK_SET); tmp = malloc(strlen(snd_path) + 1 + 5); if (!tmp) { sf_close(sfile); return NULL; } strcpy(tmp, snd_path); snd_path = tmp; strcat(snd_path, ".flac"); total_samples = size; /* allocate the encoder */ if ((encoder = FLAC__stream_encoder_new()) == NULL) { ERR("ERROR: Creating FLAC encoder\n"); free(snd_path); sf_close(sfile); return NULL; } /* Verify it's own encoded output. This will slow the encoding process. */ ok &= FLAC__stream_encoder_set_verify(encoder, 1); //Levels range from 0 (fastest, least compression) to 8 (slowest, most compression). //A value larger than 8 will be treated as 8. //5 is used for good compression and moderate compression/decompression speed. ok &= FLAC__stream_encoder_set_compression_level(encoder, 5); ok &= FLAC__stream_encoder_set_channels(encoder, sfinfo.channels); ok &= FLAC__stream_encoder_set_bits_per_sample(encoder, 16); ok &= FLAC__stream_encoder_set_sample_rate(encoder, sfinfo.samplerate); ok &= FLAC__stream_encoder_set_total_samples_estimate(encoder, total_samples); /* now add some metadata; we'll add some tags and a padding block */ if (ok) { if ((metadata[0] = FLAC__metadata_object_new(FLAC__METADATA_TYPE_VORBIS_COMMENT)) == NULL || (metadata[1] = FLAC__metadata_object_new(FLAC__METADATA_TYPE_PADDING)) == NULL || !FLAC__metadata_object_vorbiscomment_entry_from_name_value_pair(&entry, "Encoder", "flac") || !FLAC__metadata_object_vorbiscomment_append_comment(metadata[0], entry, 0)) { ERR("ERROR: out of memory error or tag error\n"); ok = 0; } metadata[1]->length = 16; /* set the padding length */ ok = FLAC__stream_encoder_set_metadata(encoder, metadata, 2); } /* initialize encoder */ if (ok) { init_status = FLAC__stream_encoder_init_file(encoder, snd_path, NULL, (void *)(long)(total_samples)); if (init_status != FLAC__STREAM_ENCODER_INIT_STATUS_OK) { ERR("ERROR: unable to initialize FLAC encoder: %s\n", FLAC__StreamEncoderInitStatusString[init_status]); ok = 0; } } /* read blocks of samples from WAVE file and feed to encoder */ while (ok) { FLAC__int32 readbuffer[READBUF * 2]; sf_count_t count; int i; count = sf_readf_int(sfile, readbuffer, READBUF); if (count <= 0) break; for (i = 0; i < (count * sfinfo.channels); i++) readbuffer[i] = readbuffer[i] >> 16; ok = FLAC__stream_encoder_process_interleaved(encoder, readbuffer, count); } FLAC__stream_encoder_finish(encoder); /* now that encoding is finished, the metadata can be freed */ FLAC__metadata_object_delete(metadata[0]); FLAC__metadata_object_delete(metadata[1]); FLAC__stream_encoder_delete(encoder); sf_close(sfile); return (snd_path); }