コード例 #1
0
ファイル: SoundFileWriterFlac.cpp プロジェクト: PKEuS/SFML
bool SoundFileWriterFlac::open(const std::string& filename, unsigned int sampleRate, unsigned int channelCount)
{
    // Create the encoder
    m_encoder = FLAC__stream_encoder_new();
    if (!m_encoder)
    {
        err() << "Failed to write flac file \"" << filename << "\" (failed to allocate encoder)" << std::endl;
        return false;
    }

    // Setup the encoder
    FLAC__stream_encoder_set_channels(m_encoder, channelCount);
    FLAC__stream_encoder_set_bits_per_sample(m_encoder, 16);
    FLAC__stream_encoder_set_sample_rate(m_encoder, sampleRate);

    // Initialize the output stream
    if (FLAC__stream_encoder_init_file(m_encoder, filename.c_str(), NULL, NULL) != FLAC__STREAM_ENCODER_INIT_STATUS_OK)
    {
        err() << "Failed to write flac file \"" << filename << "\" (failed to open the file)" << std::endl;
        close();
        return false;
    }

    // Store the channel count
    m_channelCount = channelCount;

    return true;
}
コード例 #2
0
int convertWavToFlac(const char *wave_file, const char *flac_file, int split_interval_seconds, char** out_flac_files) {
    FILE *fin;
    if((fin = fopen(wave_file, "rb")) == NULL) {
        fprintf(stderr, "ERROR: opening %s for output\n", wave_file);
        return 1;
    }
    
    // read wav header and validate it, note this will most likely fail for WAVE files not created by Apple
    if(fread(buffer, 1, 44, fin) != 44 ||
       memcmp(buffer, "RIFF", 4) ||
       memcmp(buffer+36, "FLLR", 4)) {
        fprintf(stderr, "ERROR: invalid/unsupported WAVE file\n");
        fclose(fin);
        return 1;
    }
    unsigned num_channels = ((unsigned)buffer[23] << 8) | buffer[22];;
    unsigned sample_rate = ((((((unsigned)buffer[27] << 8) | buffer[26]) << 8) | buffer[25]) << 8) | buffer[24];
    //unsigned byte_rate = ((((((unsigned)buffer[31] << 8) | buffer[30]) << 8) | buffer[29]) << 8) | buffer[28];
    //unsigned block_align = ((unsigned)buffer[33] << 8) | buffer[32];
    unsigned bps = ((unsigned)buffer[35] << 8) | buffer[34];
    
    //Apple puts the number of filler bytes in the 2 bytes following FLLR in the filler chunk
    //get the int value of the hex
    unsigned filler_byte_count = ((unsigned)buffer[41] << 8) | buffer[40];
    //swallow the filler bytes, exiting if there were not enough
    if(fread(buffer, 1, filler_byte_count, fin) != filler_byte_count) {
        fprintf(stderr, "ERROR: invalid number of filler bytes\n");
        return 1;
    }
    //swallow the beginning of the data chunk, i.e. the word 'data'
    unsigned data_subchunk_size = 0;
    if(fread(buffer, 1, 8, fin) != 8 || memcmp(buffer, "data", 4))  {
        fprintf(stderr, "ERROR: bad data start section\n");
        return 1;
    }
    else {
        //Subchunk2Size == NumSamples * NumChannels * BitsPerSample/8
        data_subchunk_size = ((((((unsigned)buffer[7] << 8) | buffer[6]) << 8) | buffer[5]) << 8) | buffer[4];
    }

    //create the flac encoder
    FLAC__StreamEncoder *encoder = FLAC__stream_encoder_new();
    FLAC__stream_encoder_set_verify(encoder, true);
    FLAC__stream_encoder_set_compression_level(encoder, 5);
    FLAC__stream_encoder_set_channels(encoder, num_channels);
    FLAC__stream_encoder_set_bits_per_sample(encoder, bps);
    FLAC__stream_encoder_set_sample_rate(encoder, sample_rate);
    //unknown total samples
    FLAC__stream_encoder_set_total_samples_estimate(encoder, 0);
    char* next_flac_file = malloc(sizeof(char) * 1024);
    sprintf(next_flac_file, "%s.flac", flac_file);
    //fprintf(stderr, "writing to new flac file %s\n", next_flac_file);
    FLAC__stream_encoder_init_file(encoder, next_flac_file, progress_callback, NULL);
    
    long total_bytes_read = 0;
    int did_split_at_interval[1024];
    for(int i = 0; i < 1024; i++) {
        did_split_at_interval[i] = 0;
    }

    //read the wav file data chunk until we reach the end of the file.
    size_t bytes_read = 0;
    size_t need = (size_t)READSIZE;
    int flac_file_index = 0;
    while((bytes_read = fread(buffer, num_channels * (bps/8), need, fin)) != 0) {
        /* convert the packed little-endian 16-bit PCM samples from WAVE into an interleaved FLAC__int32 buffer for libFLAC */
        size_t i;
        for(i = 0; i < bytes_read*num_channels; i++) {
            /* inefficient but simple and works on big- or little-endian machines */
            pcm[i] = (FLAC__int32)(((FLAC__int16)(FLAC__int8)buffer[2*i+1] << 8) | (FLAC__int16)buffer[2*i]);
        }
        /* feed samples to encoder */
        FLAC__stream_encoder_process_interleaved(encoder, pcm, bytes_read);
        total_bytes_read += bytes_read;
        
        if(split_interval_seconds > 0) {
            double elapsed_time_seconds = (total_bytes_read * 16) / (bps * sample_rate);
            int interval = elapsed_time_seconds / split_interval_seconds;
            if(interval > 0) {
                if(!did_split_at_interval[interval-1]) {
                    //finish encoding the current flac file
                    FLAC__stream_encoder_finish(encoder);
                    FLAC__stream_encoder_delete(encoder);
                    
                    //add the flac file to the out_flac_files output parameter
                    *(out_flac_files + flac_file_index) = next_flac_file;
                    flac_file_index += 1;
                    
                    //get a new flac file name
                    //free(next_flac_file);
                    next_flac_file = malloc(sizeof(char) * 1024);
                    sprintf(next_flac_file, "%s_%d.flac", flac_file, interval);
                    //fprintf(stderr, "writing to new flac file %s\n", next_flac_file);
                    
                    //create a new encoder
                    encoder = FLAC__stream_encoder_new();
                    FLAC__stream_encoder_set_verify(encoder, true);
                    FLAC__stream_encoder_set_compression_level(encoder, 5);
                    FLAC__stream_encoder_set_channels(encoder, num_channels);
                    FLAC__stream_encoder_set_bits_per_sample(encoder, bps);
                    FLAC__stream_encoder_set_sample_rate(encoder, sample_rate);
                    FLAC__stream_encoder_set_total_samples_estimate(encoder, 0);
                    FLAC__stream_encoder_init_file(encoder, next_flac_file, progress_callback, NULL);
                    
                    //mark the interval as split
                    did_split_at_interval[interval-1] = 1;
                }
            }
        }
    }
    //fprintf(stderr, "total bytes read: %ld\nbits per sample: %d\nsample rate: %d\n", total_bytes_read, bps, sample_rate);

    *(out_flac_files + flac_file_index) = next_flac_file;

    //cleanup
    FLAC__stream_encoder_finish(encoder);
    FLAC__stream_encoder_delete(encoder);
    fclose(fin);
    
    return 0;
}
コード例 #3
0
ファイル: main.c プロジェクト: kode54/flac
int main(int argc, char *argv[])
{
	FLAC__bool ok = true;
	FLAC__StreamEncoder *encoder = 0;
	FLAC__StreamEncoderInitStatus init_status;
	FLAC__StreamMetadata *metadata[2];
	FLAC__StreamMetadata_VorbisComment_Entry entry;
	FILE *fin;
	unsigned sample_rate = 0;
	unsigned channels = 0;
	unsigned bps = 0;

	if(argc != 3) {
		fprintf(stderr, "usage: %s infile.wav outfile.flac\n", argv[0]);
		return 1;
	}

	if((fin = fopen(argv[1], "rb")) == NULL) {
		fprintf(stderr, "ERROR: opening %s for output\n", argv[1]);
		return 1;
	}

	/* read wav header and validate it */
	if(
		fread(buffer, 1, 44, fin) != 44 ||
		memcmp(buffer, "RIFF", 4) ||
		memcmp(buffer+8, "WAVEfmt \020\000\000\000\001\000\002\000", 16) ||
		memcmp(buffer+32, "\004\000\020\000data", 8)
	) {
		fprintf(stderr, "ERROR: invalid/unsupported WAVE file, only 16bps stereo WAVE in canonical form allowed\n");
		fclose(fin);
		return 1;
	}
	sample_rate = ((((((unsigned)buffer[27] << 8) | buffer[26]) << 8) | buffer[25]) << 8) | buffer[24];
	channels = 2;
	bps = 16;
	total_samples = (((((((unsigned)buffer[43] << 8) | buffer[42]) << 8) | buffer[41]) << 8) | buffer[40]) / 4;

	/* allocate the encoder */
	if((encoder = FLAC__stream_encoder_new()) == NULL) {
		fprintf(stderr, "ERROR: allocating encoder\n");
		fclose(fin);
		return 1;
	}

	ok &= FLAC__stream_encoder_set_verify(encoder, true);
	ok &= FLAC__stream_encoder_set_compression_level(encoder, 5);
	ok &= FLAC__stream_encoder_set_channels(encoder, channels);
	ok &= FLAC__stream_encoder_set_bits_per_sample(encoder, bps);
	ok &= FLAC__stream_encoder_set_sample_rate(encoder, sample_rate);
	ok &= FLAC__stream_encoder_set_total_samples_estimate(encoder, total_samples);

	/* now add some metadata; we'll add some tags and a padding block */
	if(ok) {
		if(
			(metadata[0] = FLAC__metadata_object_new(FLAC__METADATA_TYPE_VORBIS_COMMENT)) == NULL ||
			(metadata[1] = FLAC__metadata_object_new(FLAC__METADATA_TYPE_PADDING)) == NULL ||
			/* there are many tag (vorbiscomment) functions but these are convenient for this particular use: */
			!FLAC__metadata_object_vorbiscomment_entry_from_name_value_pair(&entry, "ARTIST", "Some Artist") ||
			!FLAC__metadata_object_vorbiscomment_append_comment(metadata[0], entry, /*copy=*/false) || /* copy=false: let metadata object take control of entry's allocated string */
			!FLAC__metadata_object_vorbiscomment_entry_from_name_value_pair(&entry, "YEAR", "1984") ||
			!FLAC__metadata_object_vorbiscomment_append_comment(metadata[0], entry, /*copy=*/false)
		) {
			fprintf(stderr, "ERROR: out of memory or tag error\n");
			ok = false;
		}

		metadata[1]->length = 1234; /* set the padding length */

		ok = FLAC__stream_encoder_set_metadata(encoder, metadata, 2);
	}

	/* initialize encoder */
	if(ok) {
		init_status = FLAC__stream_encoder_init_file(encoder, argv[2], progress_callback, /*client_data=*/NULL);
		if(init_status != FLAC__STREAM_ENCODER_INIT_STATUS_OK) {
			fprintf(stderr, "ERROR: initializing encoder: %s\n", FLAC__StreamEncoderInitStatusString[init_status]);
			ok = false;
		}
	}

	/* read blocks of samples from WAVE file and feed to encoder */
	if(ok) {
		size_t left = (size_t)total_samples;
		while(ok && left) {
			size_t need = (left>READSIZE? (size_t)READSIZE : (size_t)left);
			if(fread(buffer, channels*(bps/8), need, fin) != need) {
				fprintf(stderr, "ERROR: reading from WAVE file\n");
				ok = false;
			}
			else {
				/* convert the packed little-endian 16-bit PCM samples from WAVE into an interleaved FLAC__int32 buffer for libFLAC */
				size_t i;
				for(i = 0; i < need*channels; i++) {
					/* inefficient but simple and works on big- or little-endian machines */
					pcm[i] = (FLAC__int32)(((FLAC__int16)(FLAC__int8)buffer[2*i+1] << 8) | (FLAC__int16)buffer[2*i]);
				}
				/* feed samples to encoder */
				ok = FLAC__stream_encoder_process_interleaved(encoder, pcm, need);
			}
			left -= need;
		}
	}

	ok &= FLAC__stream_encoder_finish(encoder);

	fprintf(stderr, "encoding: %s\n", ok? "succeeded" : "FAILED");
	fprintf(stderr, "   state: %s\n", FLAC__StreamEncoderStateString[FLAC__stream_encoder_get_state(encoder)]);

	/* now that encoding is finished, the metadata can be freed */
	FLAC__metadata_object_delete(metadata[0]);
	FLAC__metadata_object_delete(metadata[1]);

	FLAC__stream_encoder_delete(encoder);
	fclose(fin);

	return 0;
}
コード例 #4
0
ファイル: compress.cpp プロジェクト: alexbevi/scummvm-tools
void CompressionTool::encodeRaw(const char *rawData, int length, int samplerate, const char *outname, AudioFormat compmode) {

	print(" - len=%ld, ch=%d, rate=%d, %dbits", length, (rawAudioType.isStereo ? 2 : 1), samplerate, rawAudioType.bitsPerSample);

#ifdef USE_VORBIS
	if (compmode == AUDIO_VORBIS) {
		char outputString[256] = "";
		int numChannels = (rawAudioType.isStereo ? 2 : 1);
		int totalSamples = length / ((rawAudioType.bitsPerSample / 8) * numChannels);
		int samplesLeft = totalSamples;
		int eos = 0;
		int totalBytes = 0;

		vorbis_info vi;
		vorbis_comment vc;
		vorbis_dsp_state vd;
		vorbis_block vb;

		ogg_stream_state os;
		ogg_page og;
		ogg_packet op;

		ogg_packet header;
		ogg_packet header_comm;
		ogg_packet header_code;

		Common::File outputOgg(outname, "wb");

		vorbis_info_init(&vi);

		if (oggparms.nominalBitr > 0) {
			int result = 0;

			/* Input is in kbps, function takes bps */
			result = vorbis_encode_setup_managed(&vi, numChannels, samplerate, (oggparms.maxBitr > 0 ? 1000 * oggparms.maxBitr : -1), (1000 * oggparms.nominalBitr), (oggparms.minBitr > 0 ? 1000 * oggparms.minBitr : -1));

			if (result == OV_EFAULT) {
				vorbis_info_clear(&vi);
				error("Error: Internal Logic Fault");
			} else if ((result == OV_EINVAL) || (result == OV_EIMPL)) {
				vorbis_info_clear(&vi);
				error("Error: Invalid bitrate parameters");
			}

			if (!oggparms.silent) {
				sprintf(outputString, "Encoding to\n         \"%s\"\nat average bitrate %i kbps (", outname, oggparms.nominalBitr);

				if (oggparms.minBitr > 0) {
					sprintf(outputString + strlen(outputString), "min %i kbps, ", oggparms.minBitr);
				} else {
					sprintf(outputString + strlen(outputString), "no min, ");
				}

				if (oggparms.maxBitr > 0) {
					sprintf(outputString + strlen(outputString), "max %i kbps),\nusing full bitrate management engine\nSet optional hard quality restrictions\n", oggparms.maxBitr);
				} else {
					sprintf(outputString + strlen(outputString), "no max),\nusing full bitrate management engine\nSet optional hard quality restrictions\n");
				}
			}
		} else {
			int result = 0;

			/* Quality input is -1 - 10, function takes -0.1 through 1.0 */
			result = vorbis_encode_setup_vbr(&vi, numChannels, samplerate, oggparms.quality * 0.1f);

			if (result == OV_EFAULT) {
				vorbis_info_clear(&vi);
				error("Internal Logic Fault");
			} else if ((result == OV_EINVAL) || (result == OV_EIMPL)) {
				vorbis_info_clear(&vi);
				error("Invalid bitrate parameters");
			}

			if (!oggparms.silent) {
				sprintf(outputString, "Encoding to\n         \"%s\"\nat quality %2.2f", outname, oggparms.quality);
			}

			if ((oggparms.minBitr > 0) || (oggparms.maxBitr > 0)) {
				struct ovectl_ratemanage_arg extraParam;
				vorbis_encode_ctl(&vi, OV_ECTL_RATEMANAGE_GET, &extraParam);

				extraParam.bitrate_hard_min = (oggparms.minBitr > 0 ? (1000 * oggparms.minBitr) : -1);
				extraParam.bitrate_hard_max = (oggparms.maxBitr > 0 ? (1000 * oggparms.maxBitr) : -1);
				extraParam.management_active = 1;

				vorbis_encode_ctl(&vi, OV_ECTL_RATEMANAGE_SET, &extraParam);

				if (!oggparms.silent) {
					sprintf(outputString + strlen(outputString), " using constrained VBR (");

					if (oggparms.minBitr != -1) {
						sprintf(outputString + strlen(outputString), "min %i kbps, ", oggparms.minBitr);
					} else {
						sprintf(outputString + strlen(outputString), "no min, ");
					}

					if (oggparms.maxBitr != -1) {
						sprintf(outputString + strlen(outputString), "max %i kbps)\nSet optional hard quality restrictions\n", oggparms.maxBitr);
					} else {
						sprintf(outputString + strlen(outputString), "no max)\nSet optional hard quality restrictions\n");
					}
				}
			} else {
				sprintf(outputString + strlen(outputString), "\n");
			}
		}

		puts(outputString);

		vorbis_encode_setup_init(&vi);
		vorbis_comment_init(&vc);
		vorbis_analysis_init(&vd, &vi);
		vorbis_block_init(&vd, &vb);
		ogg_stream_init(&os, 0);
		vorbis_analysis_headerout(&vd, &vc, &header, &header_comm, &header_code);

		ogg_stream_packetin(&os, &header);
		ogg_stream_packetin(&os, &header_comm);
		ogg_stream_packetin(&os, &header_code);

		while (!eos) {
			int result = ogg_stream_flush(&os,&og);

			if (result == 0) {
				break;
			}

			outputOgg.write(og.header, og.header_len);
			outputOgg.write(og.body, og.body_len);
		}

		while (!eos) {
			int numSamples = ((samplesLeft < 2048) ? samplesLeft : 2048);
			float **buffer = vorbis_analysis_buffer(&vd, numSamples);

			/* We must tell the encoder that we have reached the end of the stream */
			if (numSamples == 0) {
				vorbis_analysis_wrote(&vd, 0);
			} else {
				/* Adapted from oggenc 1.1.1 */
				if (rawAudioType.bitsPerSample == 8) {
					const byte *rawDataUnsigned = (const byte *)rawData;
					for (int i = 0; i < numSamples; i++) {
						for (int j = 0; j < numChannels; j++) {
							buffer[j][i] = ((int)(rawDataUnsigned[i * numChannels + j]) - 128) / 128.0f;
						}
					}
				} else if (rawAudioType.bitsPerSample == 16) {
					if (rawAudioType.isLittleEndian) {
						for (int i = 0; i < numSamples; i++) {
							for (int j = 0; j < numChannels; j++) {
								buffer[j][i] = ((rawData[(i * 2 * numChannels) + (2 * j) + 1] << 8) | (rawData[(i * 2 * numChannels) + (2 * j)] & 0xff)) / 32768.0f;
							}
						}
					} else {
						for (int i = 0; i < numSamples; i++) {
							for (int j = 0; j < numChannels; j++) {
								buffer[j][i] = ((rawData[(i * 2 * numChannels) + (2 * j)] << 8) | (rawData[(i * 2 * numChannels) + (2 * j) + 1] & 0xff)) / 32768.0f;
							}
						}
					}
				}

				vorbis_analysis_wrote(&vd, numSamples);
			}

			while (vorbis_analysis_blockout(&vd, &vb) == 1) {
				vorbis_analysis(&vb, NULL);
				vorbis_bitrate_addblock(&vb);

				while (vorbis_bitrate_flushpacket(&vd, &op)) {
					ogg_stream_packetin(&os, &op);

					while (!eos) {
						int result = ogg_stream_pageout(&os, &og);

						if (result == 0) {
							break;
						}

						totalBytes += outputOgg.write(og.header, og.header_len);
						totalBytes += outputOgg.write(og.body, og.body_len);

						if (ogg_page_eos(&og)) {
							eos = 1;
						}
					}
				}
			}

			rawData += 2048 * (rawAudioType.bitsPerSample / 8) * numChannels;
			samplesLeft -= 2048;
		}

		ogg_stream_clear(&os);
		vorbis_block_clear(&vb);
		vorbis_dsp_clear(&vd);
		vorbis_info_clear(&vi);

		if (!oggparms.silent) {
			print("\nDone encoding file \"%s\"", outname);
			print("\n\tFile length:  %dm %ds", (int)(totalSamples / samplerate / 60), (totalSamples / samplerate % 60));
			print("\tAverage bitrate: %.1f kb/s\n", (8.0 * (double)totalBytes / 1000.0) / ((double)totalSamples / (double)samplerate));
		}
	}
#endif

#ifdef USE_FLAC
	if (compmode == AUDIO_FLAC) {
		int i;
		int numChannels = (rawAudioType.isStereo ? 2 : 1);
		int samplesPerChannel = length / ((rawAudioType.bitsPerSample / 8) * numChannels);
		FLAC__StreamEncoder *encoder;
		FLAC__StreamEncoderInitStatus initStatus;
		FLAC__int32 *flacData;

		flacData = (FLAC__int32 *)malloc(samplesPerChannel * numChannels * sizeof(FLAC__int32));

		if (rawAudioType.bitsPerSample == 8) {
			for (i = 0; i < samplesPerChannel * numChannels; i++) {
				FLAC__uint8 *rawDataUnsigned;
				rawDataUnsigned = (FLAC__uint8 *)rawData;
				flacData[i] = (FLAC__int32)rawDataUnsigned[i] - 0x80;
			}
		} else if (rawAudioType.bitsPerSample == 16) {
			/* The rawData pointer is an 8-bit char so we must create a new pointer to access 16-bit samples */
			FLAC__int16 *rawData16;
			rawData16 = (FLAC__int16 *)rawData;
			for (i = 0; i < samplesPerChannel * numChannels; i++) {
				flacData[i] = (FLAC__int32)rawData16[i];
			}
		}

		if (!flacparms.silent) {
			print("Encoding to\n         \"%s\"\nat compression level %d using blocksize %d\n", outname, flacparms.compressionLevel, flacparms.blocksize);
		}

		encoder = FLAC__stream_encoder_new();

		FLAC__stream_encoder_set_bits_per_sample(encoder, rawAudioType.bitsPerSample);
		FLAC__stream_encoder_set_blocksize(encoder, flacparms.blocksize);
		FLAC__stream_encoder_set_channels(encoder, numChannels);
		FLAC__stream_encoder_set_compression_level(encoder, flacparms.compressionLevel);
		FLAC__stream_encoder_set_sample_rate(encoder, samplerate);
		FLAC__stream_encoder_set_streamable_subset(encoder, false);
		FLAC__stream_encoder_set_total_samples_estimate(encoder, samplesPerChannel);
		FLAC__stream_encoder_set_verify(encoder, flacparms.verify);

		initStatus = FLAC__stream_encoder_init_file(encoder, outname, NULL, NULL);

		if (initStatus != FLAC__STREAM_ENCODER_INIT_STATUS_OK) {
			char buf[2048];
			sprintf(buf, "Error in FLAC encoder. (check the parameters)\nExact error was:%s", FLAC__StreamEncoderInitStatusString[initStatus]);
			free(flacData);
			throw ToolException(buf);
		} else {
			FLAC__stream_encoder_process_interleaved(encoder, flacData, samplesPerChannel);
		}

		FLAC__stream_encoder_finish(encoder);
		FLAC__stream_encoder_delete(encoder);

		free(flacData);

		if (!flacparms.silent) {
			print("\nDone encoding file \"%s\"", outname);
			print("\n\tFile length:  %dm %ds\n", (int)(samplesPerChannel / samplerate / 60), (samplesPerChannel / samplerate % 60));
		}
	}
#endif
}
コード例 #5
0
bool ofxFlacEncoder::encode(string wavInput, string flacOutput) {
    
    //ofLog(OF_LOG_VERBOSE, "init encoding (device%d)",deviceId);
	FLAC__bool ok = true;
	FLAC__StreamEncoder *encoder = 0;
	FLAC__StreamEncoderInitStatus init_status;
	FILE *fin;
	unsigned sample_rate = 0;
	unsigned channels = 0;
	unsigned bps = 0;
    
	if((fin = fopen(ofToDataPath(wavInput).c_str(), "rb")) == NULL){
        
		//ofLog(OF_LOG_ERROR, "ERROR: opening %s for output\n", wavFile);
		return false;
	}
    
	// read and validate wav header
	if(fread(buffer, 1, 44, fin) != 44 || memcmp(buffer, "RIFF", 4)
       || memcmp(buffer + 8, "WAVEfmt \020\000\000\000\001\000\002\000", 16)
       || memcmp(buffer + 32, "\004\000\020\000data", 8)){
		ofLog(OF_LOG_ERROR,
              "invalid/unsupported WAVE file, only 16bps stereo WAVE in canonical form allowed");
		//fclose(fin);
		//return false;
	}
	sample_rate = ((((((unsigned) buffer[27] << 8) | buffer[26]) << 8) | buffer[25]) << 8)
    | buffer[24];
	channels = 2;
	bps = 16;
	total_samples = (((((((unsigned) buffer[43] << 8) | buffer[42]) << 8) | buffer[41]) << 8)
                     | buffer[40]) / 4;
    
	// allocate the encoder
	if((encoder = FLAC__stream_encoder_new()) == NULL){
		ofLog(OF_LOG_ERROR, " allocating encoder\n");
		fclose(fin);
		return false;
	}
    
	ok &= FLAC__stream_encoder_set_verify(encoder, true);
	ok &= FLAC__stream_encoder_set_compression_level(encoder, 5);
	ok &= FLAC__stream_encoder_set_channels(encoder, channels);
	ok &= FLAC__stream_encoder_set_bits_per_sample(encoder, bps);
	ok &= FLAC__stream_encoder_set_sample_rate(encoder, sample_rate);
	ok &= FLAC__stream_encoder_set_total_samples_estimate(encoder, total_samples);
    
	// initialize encoder
	if(ok){
		init_status = FLAC__stream_encoder_init_file(encoder, ofToDataPath(flacOutput).c_str(), NULL, NULL);
		if(init_status != FLAC__STREAM_ENCODER_INIT_STATUS_OK){
			ofLog(OF_LOG_ERROR, "initializing encoder: ");
			ofLog(OF_LOG_ERROR, FLAC__StreamEncoderInitStatusString[init_status]);
			ok = false;
		}
	}
    
	//ofLog(OF_LOG_VERBOSE, "start encoding (device%d)",deviceId);
	/* read blocks of samples from WAVE file and feed to encoder */
	if(ok){
		size_t left = (size_t) total_samples;
		while(ok && left){
			size_t need = (left > READSIZE ? (size_t) READSIZE : (size_t) left);
			if(fread(buffer, channels * (bps / 8), need, fin) != need){
				ofLog(OF_LOG_ERROR, "reading from WAVE file");
				ok = false;
			}else{
				/* convert the packed little-endian 16-bit PCM samples from WAVE into an interleaved FLAC__int32 buffer for libFLAC */
				size_t i;
				for(i = 0; i < need * channels; i++){
					/* inefficient but simple and works on big- or little-endian machines */
					pcm[i] = (FLAC__int32) (((FLAC__int16) (FLAC__int8) buffer[2 * i + 1] << 8)
                                            | (FLAC__int16) buffer[2 * i]);
				}
				/* feed samples to encoder */
				ok = FLAC__stream_encoder_process_interleaved(encoder, pcm, need);
			}
			left -= need;
		}
	}
    
	ok &= FLAC__stream_encoder_finish(encoder);
    
    //	fprintf(stderr, "encoding: %s\n", ok ? "succeeded" : "FAILED");
    //	fprintf(stderr,
    //			"   state: %s\n",
    //			FLAC__StreamEncoderStateString[FLAC__stream_encoder_get_state(encoder)]);
    
	FLAC__stream_encoder_delete(encoder);
	fclose(fin);
    
	return ok;


    
}
コード例 #6
0
const char*
_edje_multisense_encode_to_flac(char *snd_path, SF_INFO sfinfo)
{
   unsigned int total_samples = 0; /* can use a 32-bit number due to WAVE size limitations */
   FLAC__bool ok = 1;
   FLAC__StreamEncoder *encoder = 0;
   FLAC__StreamEncoderInitStatus init_status;
   FLAC__StreamMetadata *metadata[2];
   FLAC__StreamMetadata_VorbisComment_Entry entry;
   SNDFILE *sfile;
   sf_count_t size;
   char *tmp;

   sfile = sf_open(snd_path, SFM_READ, &sfinfo);
   if (!sfile) return NULL;
   if (!sf_format_check(&sfinfo))
     {
        sf_close(sfile);
        return NULL;
     }
   size = sf_seek(sfile, 0, SEEK_END);
   sf_seek(sfile, 0, SEEK_SET);
   tmp = malloc(strlen(snd_path) + 1 + 5);
   if (!tmp)
     {
        sf_close(sfile);
        return NULL;
     }
   strcpy(tmp, snd_path);
   snd_path = tmp;
   strcat(snd_path, ".flac");

   total_samples = size;

   /* allocate the encoder */
   if ((encoder = FLAC__stream_encoder_new()) == NULL)
     {
        ERR("ERROR: Creating FLAC encoder\n");
        free(snd_path);
        sf_close(sfile);
        return NULL;
     }

   /* Verify it's own encoded output. This will slow the encoding process. */
   ok &= FLAC__stream_encoder_set_verify(encoder, 1);

   //Levels range from 0 (fastest, least compression) to 8 (slowest, most compression).
   //A value larger than 8 will be treated as 8.
   //5 is used for good compression and moderate compression/decompression speed.
   ok &= FLAC__stream_encoder_set_compression_level(encoder, 5);
   ok &= FLAC__stream_encoder_set_channels(encoder, sfinfo.channels);
   ok &= FLAC__stream_encoder_set_bits_per_sample(encoder, 16);
   ok &= FLAC__stream_encoder_set_sample_rate(encoder, sfinfo.samplerate);
   ok &= FLAC__stream_encoder_set_total_samples_estimate(encoder, total_samples);

   /* now add some metadata; we'll add some tags and a padding block */
   if (ok)
     {
        if ((metadata[0] = FLAC__metadata_object_new(FLAC__METADATA_TYPE_VORBIS_COMMENT)) == NULL
            || (metadata[1] = FLAC__metadata_object_new(FLAC__METADATA_TYPE_PADDING)) == NULL
            || !FLAC__metadata_object_vorbiscomment_entry_from_name_value_pair(&entry, "Encoder", "flac")
            || !FLAC__metadata_object_vorbiscomment_append_comment(metadata[0], entry, 0))
          {
             ERR("ERROR: out of memory error or tag error\n");
             ok = 0;
          }
        metadata[1]->length = 16; /* set the padding length */
        ok = FLAC__stream_encoder_set_metadata(encoder, metadata, 2);
     }

   /* initialize encoder */
   if (ok)
     {
        init_status = FLAC__stream_encoder_init_file(encoder, snd_path, NULL,
                                                     (void *)(long)(total_samples));
        if (init_status != FLAC__STREAM_ENCODER_INIT_STATUS_OK)
          {
             ERR("ERROR: unable to initialize FLAC encoder: %s\n",
                 FLAC__StreamEncoderInitStatusString[init_status]);
             ok = 0;
          }
     }
   
   /* read blocks of samples from WAVE file and feed to encoder */
   while (ok)
     {
        FLAC__int32 readbuffer[READBUF * 2];
        sf_count_t count;
        int i;
        
        count = sf_readf_int(sfile, readbuffer, READBUF);
        if (count <= 0) break;
        for (i = 0; i < (count * sfinfo.channels); i++)
          readbuffer[i] = readbuffer[i] >> 16;
        ok = FLAC__stream_encoder_process_interleaved(encoder, readbuffer,
                                                      count);
     }

   FLAC__stream_encoder_finish(encoder);
   /* now that encoding is finished, the metadata can be freed */
   FLAC__metadata_object_delete(metadata[0]);
   FLAC__metadata_object_delete(metadata[1]);

   FLAC__stream_encoder_delete(encoder);
   sf_close(sfile);
   return (snd_path);
}