//=============================================================================
int Epetra_SerialSpdDenseSolver::Invert(void)
{
  if (!Factored()) Factor(); // Need matrix factored.
  POTRI ( SymMatrix_->UPLO(), N_, AF_, LDAF_, &INFO_);
  // Copy lower/upper triangle to upper/lower triangle: make full inverse
  SymMatrix_->CopyUPLOMat(SymMatrix_->Upper(), AF_, LDAF_, N_);
  double DN = N_;
  UpdateFlops((DN*DN*DN));
  Inverted_ = true;
  Factored_ = false;
  
  EPETRA_CHK_ERR(INFO_);
  return(0);
}
Exemple #2
0
int INV_CHOL(MATRIX_T L)
{
  
  /* computes the inverse of a symmetric square NxN 
   * matrix using its Cholesky factorization (in place) */

  int info;
  int N = (int)L.nrows;
  char uplo = 'L';

  POTRI(&uplo,&N,L.m,&N,&info);

  for(int i=0;i<N;i++){
  for(int j=i+1;j<N;j++){
    L.m[i+N*j] = L.m[j+N*i];
  }}

  return info;

}
Exemple #3
0
int main(int argc, char *argv[]){

#ifndef COMPLEX
  char *trans[] = {"T", "N"};
#else
  char *trans[] = {"C", "N"};
#endif
  char *uplo[]  = {"U", "L"};
  FLOAT alpha[] = {1.0, 0.0};
  FLOAT beta [] = {0.0, 0.0};

  FLOAT *a, *b;

  char *p;
  char btest = 'F';

  blasint m, i, j, info, uplos=0;
  double flops;

  int from =   1;
  int to   = 200;
  int step =   1;

  struct timeval start, stop;
  double time1;

  argc--;argv++;

  if (argc > 0) { from     = atol(*argv);		argc--; argv++;}
  if (argc > 0) { to       = MAX(atol(*argv), from);	argc--; argv++;}
  if (argc > 0) { step     = atol(*argv);		argc--; argv++;}

  if ((p = getenv("OPENBLAS_UPLO")))
	if (*p == 'L') uplos=1;

  if ((p = getenv("OPENBLAS_TEST"))) btest=*p;

  fprintf(stderr, "From : %3d  To : %3d Step = %3d Uplo = %c\n", from, to, step,*uplo[uplos]);

  if (( a    = (FLOAT *)malloc(sizeof(FLOAT) * to * to * COMPSIZE)) == NULL){
    fprintf(stderr,"Out of Memory!!\n");exit(1);
  }

  if (( b    = (FLOAT *)malloc(sizeof(FLOAT) * to * to * COMPSIZE)) == NULL){
    fprintf(stderr,"Out of Memory!!\n");exit(1);
  }

  for(m = from; m <= to; m += step){

#ifndef COMPLEX
      if (uplos & 1) {
	for (j = 0; j < m; j++) {
	  for(i = 0; i < j; i++)     a[i + j * m] = 0.;
	                             a[j + j * m] = ((double) rand() / (double) RAND_MAX) + 8.;
	  for(i = j + 1; i < m; i++) a[i + j * m] = ((double) rand() / (double) RAND_MAX) - 0.5;
	}
      } else {
	for (j = 0; j < m; j++) {
	  for(i = 0; i < j; i++)     a[i + j * m] = ((double) rand() / (double) RAND_MAX) - 0.5;
	                             a[j + j * m] = ((double) rand() / (double) RAND_MAX) + 8.;
	  for(i = j + 1; i < m; i++) a[i + j * m] = 0.;
	}
      }
#else
      if (uplos & 1) {
	for (j = 0; j < m; j++) {
	  for(i = 0; i < j; i++) {
	    a[(i + j * m) * 2 + 0] = 0.;
	    a[(i + j * m) * 2 + 1] = 0.;
	  }

	  a[(j + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) + 8.;
	  a[(j + j * m) * 2 + 1] = 0.;

	  for(i = j + 1; i < m; i++) {
	    a[(i + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) - 0.5;
	    a[(i + j * m) * 2 + 1] = ((double) rand() / (double) RAND_MAX) - 0.5;
	  }
	}
      } else {
	for (j = 0; j < m; j++) {
	  for(i = 0; i < j; i++) {
	    a[(i + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) - 0.5;
	    a[(i + j * m) * 2 + 1] = ((double) rand() / (double) RAND_MAX) - 0.5;
	  }

	  a[(j + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) + 8.;
	  a[(j + j * m) * 2 + 1] = 0.;

	  for(i = j + 1; i < m; i++) {
	    a[(i + j * m) * 2 + 0] = 0.;
	    a[(i + j * m) * 2 + 1] = 0.;
	  }
	}
      }
#endif

      SYRK(uplo[uplos], trans[uplos], &m, &m, alpha, a, &m, beta, b, &m);

      gettimeofday( &start, (struct timezone *)0);

      POTRF(uplo[uplos], &m, b, &m, &info);

      gettimeofday( &stop, (struct timezone *)0);

      if (info != 0) {
	fprintf(stderr, "Potrf info = %d\n", info);
	exit(1);
      }

      time1 = (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6;
      flops = COMPSIZE * COMPSIZE * (1.0/3.0 * (double)m * (double)m *(double)m +1.0/2.0* (double)m *(double)m + 1.0/6.0* (double)m) / time1 * 1.e-6;

      if ( btest == 'S' )
      {
	
 	for(j = 0; j < to; j++){
      		for(i = 0; i < to * COMPSIZE; i++){
        		a[i + j * to * COMPSIZE] = ((FLOAT) rand() / (FLOAT) RAND_MAX) - 0.5;
      		}
    	}

      	gettimeofday( &start, (struct timezone *)0);

      	POTRS(uplo[uplos], &m, &m, b, &m, a, &m,  &info);

      	gettimeofday( &stop, (struct timezone *)0);

      	if (info != 0) {
		fprintf(stderr, "Potrs info = %d\n", info);
		exit(1);
        }
        time1 = (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6;
        flops = COMPSIZE * COMPSIZE * (2.0 * (double)m * (double)m *(double)m ) / time1 * 1.e-6;

      }
	
      if ( btest == 'I' )
      {
	
      	gettimeofday( &start, (struct timezone *)0);

      	POTRI(uplo[uplos], &m, b, &m, &info);

      	gettimeofday( &stop, (struct timezone *)0);

      	if (info != 0) {
		fprintf(stderr, "Potri info = %d\n", info);
		exit(1);
        }

        time1 = (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6;
        flops = COMPSIZE * COMPSIZE * (2.0/3.0 * (double)m * (double)m *(double)m +1.0/2.0* (double)m *(double)m + 5.0/6.0* (double)m) / time1 * 1.e-6;
      }
	
      fprintf(stderr, "%8d : %10.2f MFlops : %10.3f Sec : Test=%c\n",m,flops ,time1,btest);


  }


  return 0;
}